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This paper presents DMP3 (Dynamic Multilayer Perceptron 3), a multilayer perceptron (MLP) con-
structive training method that constructs MLPs by incrementally adding network elements of varying
complexity to the network. DMP3 differs from other MLP construction techniques in several important
ways, and the motivation for these differences are given. Information gain rather than error minimization
is used to guide the growth of the network, which increases the utility of newly added network elements
and decreases the likelihood that a premature dead end in the growth of the network will occur. The
generalization performance of DMP3 is compared with that of several other well-known machine learning
and neural network learning algorithms on nine real world data sets. Simulation results show that DMP3
performs better (on average) than any of the other algorithms on the data sets tested. The main reasons
for this result are discussed in detail.

1. Introduction

One of the first neural models used in the field

of neural networks was the single layer perceptron

model.1,2 The well understood weakness of single

layer perceptron networks is that they are able to

learn (with 100% accuracy) only those functions

that are linearly separable. Despite this weakness,

using a modified learning algorithm single layer per-

ceptron networks have been shown to work well in

terms of generalization accuracy in relation to other

learning models on many learning problems.3 How-

ever, since many problems of interest do not exhibit

aspects of linear separability, the upper bound on the

generalization performance of a single layer percep-

tron for such problems is lower than it is for learn-

ing models that are capable of rendering arbitrary

decision surfaces, such as multilayer perceptron net-

works (MLPs). Since MLPs are capable of going

beyond the limited set of linearly separable problems

and solving arbitrarily complex problems (assuming

that the computational resources are unbounded),

a great deal of effort has been devoted to the

development of MLP training algorithms.

A primary drawback to many of the current MLP

training methods is that they require the specifi-

cation of the network architecture a priori (make

an educated guess as to the appropriate number

of layers, number of nodes in each layer, connec-

tivity between nodes, etc.). With a pre-specified

network architecture there is no guarantee that it

will be appropriate for the problem at hand, and

it may not even be capable of converging to a so-

lution. This has led to the development of several

MLP training algorithms that do not require the

user to specify the network architecture a priori .

Some of these include network construction tech-

niques such as Cascade Correlation,4 DCN,5 node

splitting,6 ASOCS,7,8 DNAL,9 Upstart,10 Meiosis,11
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Perceptron Cascade,12 the Tower and Inverted

Pyramid algorithms,13 Tiling,14 and Extentron.15

All of these methods are error driven approaches that

dynamically generate a network structure for solving

the given training set during the training phase.

Other approaches to the architecture selection

problem include minimum message length (MML)

based methods, which use a complexity/accuracy

tradeoff to determine the appropriate network

architecture.16–22 Cross validation uses the perfor-

mance of the network on a holdout set to de-

termine the optimal architecture. There are also

techniques, such as Bayesian training,23–26 early

stopping,27–30 connection pruning algorithms,31–37

and weight decay,38,39 that seek to obviate the need

to specify an “optimal” MLP architecture, instead

using the most complex architecture that can be

practically implemented.

This paper presents a dynamic method for in-

crementally constructing multilayer-layer perceptron

networks called DMP3 (Dynamic Multilayer Percep-

tron 3), which is an improvement of the DMP140

and DMP241 algorithms. The basic DMP3 algo-

rithm cycles between two phases, a training phase

and a growth phase. Initially, DMP3 starts with a

single node in the network (the root node). If, after

the training phase, the network has failed to reduce

the error to an acceptable level then the algorithm

enters the growth phase. During this phase new net-

work elements are connected to the existing network

structure. The existing network weights are frozen,

and the weights that connect the new elements to

the existing network are initialized to predetermined

values. This creates a predefined niche for the new

elements to fill as the elements are trained to add to

the information that is embodied by the current net-

work weights. Information gain is used to guide the

growth of the network and the training of network

elements. If the addition of new elements does not

produce any improvement in information gain over

the old network, then a small increase is made in

the complexity of the new network elements and the

elements are retrained. The algorithm terminates

when it cannot improve the information gain of the

network without a large jump in the complexity of

the network structure. Section 2 discusses aspects

of the DMP3 algorithm in detail, and also gives a

formal description of the algorithm.

DMP3 incorporates several strategies that differ

from the approaches employed by other MLP con-

struction techniques.

• DMP3 prevents overlearning by ceasing to grow

the network structure when the current network

error cannot be reduced by an incremental increase

in the complexity of the current network structure.

• DMP3 does not connect the outputs of previously

allocated units to the new network elements, which

helps to prevent the new elements from overlearn-

ing by limiting their fan in.

• The output node of the network does not change

from one iteration to the next. Also, once trained

the weights which connect elements of the net-

work to the output node are frozen and are not

allowed to change as new elements are added

to the network. Rather, DMP3 augments the

existing knowledge of the output node through

small, incremental addition of network elements as

required.

• When required, DMP3 provides for a modest

increase in the complexity of newly allocated

network elements, which helps newly allocated

elements to assist the network as it becomes

increasingly difficult to decrease the remaining

network error.

• The MLP construction algorithms which are most

similar to DMP3 use a divide and conquer ap-

proach that partitions the training set, training

each network element with only a portion of the

available data, which can reduce the reliability of

individual network elements. With DMP3 each

network element is trained on the entire training

set.

• Information gain rather than error minimization

is used to guide the training of network elements.

This tends to produce more useful feature detec-

tors for strategies such as DMP3 that grow the

network in an incremental fashion.

The differences between DMP3 and other MLP

construction techniques along with other related

work are discussed in detail in Sec. 3.

The DMP3 algorithm is tested on nine real world

data sets obtained from the UCI machine learning

database. The performance of DMP3 is compared

with several other learning methods, which include

c4.5, cn2, ib1, c4, id3, a single layer perceptron net-

work, and mml. DMP3 is also compared against a
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CV based MLP architecture selection strategy. The

reason for choosing to compare DMP3 with a CV

based MLP architecture selection is that CV does not

require the fine tuning of any adjustable parameters,

nor does it require that a strategy be implemented

to avoid overlearning. DMP3 is not compared em-

pirically with other network construction techniques

due to the number of tunable parameters that must

be adjusted for most of these algorithms and the

choices that must be made (such as which method

to use to prevent the network from overlearning) in

order to produce good results, which is beyond the

scope of this paper. Also, many of the algorithms

are not given with sufficient to detail to allow for

an accurate implementation. The results that are

reported in this paper show that the individual net-

works produced by DMP3 have on average better

generalization performance than the other learning

algorithms on the data sets tested. Due to the large

number of algorithms and data sets tested, this result

is sufficient to show the utility of the DMP3 algo-

rithm from an empirical standpoint. It is also shown

that it is possible to significantly improve the perfor-

mance of DMP3 by using bagging to combine several

DMP3 networks, which improves the performance

of DMP3 on every data set tested. This indicates

that DMP3 networks, while capable of good indi-

vidual performance, are also good candidates for

bagging. Section 4 discusses the data sets and

methods and details the results of the experiments.

The conclusion is given in Sec. 5.

2. DMP3 (Dynamic Multilayer

Perceptron 3)

2.1. The basic DMP algorithm

While it is a simple matter to extend the DMP

algorithm to handle multiple output classes, in the

following it is assumed that the learning problem

has a single, 2 state output in order to simplify the

discussion.

The basic DMP algorithm begins with a net-

work composed of a single node (the output node).

An example of what the network looks like at this

point can be seen in Fig. 1 (Iteration 1). With this

example, in the first iteration the network is com-

posed of a single node, and the learning problem has

two input features, f1 and f2. The network is trained

to minimize an appropriate error function, at which

Fig. 1. Progression of the DMP algorithm.

point all of the weights in the network are frozen.

If after training the network fails to correctly clas-

sify some portion of the examples in the training set,

then two child nodes are allocated and connected to

the output node (Iteration 2 of Fig. 1). The two

new child nodes will be trained to assist the output

node in correctly classifying the misclassified exam-

ples. In order to accomplish this, one of the child

nodes (which we label the left child) is biased to

assist the network with any misclassified positive

examples by initializing the weight that connects it

to the output node to a positive value. Conversely,

the weight that connects the right child to the output

node is initialized to a negative value, which biases

the right child to assist the network with negative

training examples. Training of the network then re-

sumes. However, the only weights that are allowed

to change are the weights of the newly allocated

children and the weights that connect the newly

allocated children to the output node. This is rep-

resented graphically in Fig. 1 by bolding the links

that have updateable weights. If, after the new

children have been fully trained the network still

fails to classify a sufficient number of the examples

in its training set, then two additional children are

allocated and connected to the output node of the

network (Iteration 3 of Fig. 1). As before, during

the training phase only the most recently added

weights are modified, and all other weights (the

non-bolded links in iteration 3 of Fig. 1) are frozen.

This process can continue until either the net-

work error falls below some threshold, or until the
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addition of more children fails to significantly reduce

the network error.

The intuition behind the DMP approach is to

correct misclassified training examples by adding

nodes to the network that are specifically targeted at

examples from a particular class. So, if the network

incorrectly classifies a subset of positive training

examples from its training set, then a new node

(the left child) should be allocated with the specific

purpose of assisting the parent when it sees such

an example. Conversely, if the network incorrectly

classifies some of the negative training examples, a

new node (the right child) should be allocated to

assist the parent whenever a misclassified negative

example is encountered. This forces a structure on

the network that helps each new child to quickly

find a niche to occupy in assisting the network in

classifying elements of the training set.

2.2. Important elements of the

DMP algorithm

There are several details that must be considered in

order for the DMP algorithm to produce networks

that exhibit good generalization performance:

• the choice of the error function;

• the types of child nodes to add to the network;

• setting the child to parent weights;

• where to grow the network;

• how to train sibling nodes.

These details are discussed in Secs. 2.2.1 through

2.2.6.

2.2.1. The error function — Guiding the

network growth

The choice of which function to minimize with the

training algorithm is a critical element of the DMP

algorithm. A standard approach is to minimize the

error (the difference between the network output and

the desired response), but this approach can create

problems with the growth of the network. When

error minimization is used as the basis for train-

ing the network it is possible for the growth of the

network to reach a premature dead end, in which

case the network will fail to correctly classify all (or

as many as possible) of the examples in the train-

ing set. Also, if the reduction that each child node

makes to the total network error is small, the size of

the network can become large.

Fig. 2. Example training sets for the left and right child.

Figure 2 illustrates how the use of error mini-

mization partitions the training set for each child.

In this figure there are examples from two different

output classes, X’s and O’s. The training set for

the network is shown in the leftmost box. The best

partition (in terms of number of misclassifications)

that a single perceptron can do for this particular

problem is represented by the line which separates

the examples in this box, with the examples on the

left of the line classified as X’s and the examples

on the right side of the line classified as O’s. The

O’s on the left side of the line are misclassified, and

a left child will be allocated to assist the network in

classifying these examples. In order to assist the net-

work in classifying the misclassified O’s, the left child

must be able to identify a few of the O’s from the

X’s. In this sense, a de facto training set is defined

for the left child, shown in the box located in the

upper right-hand corner of this figure, which is the

set of misclassified O’s along with the entire set of

X’s from the parent node’s training set. Conversely,

the right child must assist in correctly classifying

the misclassified X’s, which problem is represented

by the instances contained in the box in the lower

right-hand corner.

Figure 2 reveals an inherent problem that is

often seen when using error minimization to guide

the growth of MLP networks, which is that the

children are often not capable of making an appre-

ciable reduction of the network error. Looking at the

“training sets” in Fig. 2, it is difficult to see how the



DMP3: A Dynamic Multilayer Perceptron Construction Algorithm 149

children are going to be able to reduce the network

error any further. This problem is demonstrated by

trying to find a 1-D hyperplane (a line) that both

maximizes classification accuracy for a child while

also identifying at least one of the parent node’s

exceptional cases. The difficulty is that the examples

of each class that the network misclassifies tend to

be the hardest examples to separate from the oppo-

site class. In other words, the network already han-

dles all of the easy examples and passes the hardest

examples off on its children.

Depending upon the training algorithm, this

problem can lead to a dead end in the growth of

the network. In the example shown in Fig. 2, if the

child nodes are perceptrons like the parent then the

best the left child can do, assuming the children

are trained so as to minimize network error, is to

classify all examples as X’s. The right child is faced

by a similar problem, and can do no better than

classify all of the examples in its training set as

O’s. Neither child by itself is capable of correcting

the classification of any of the incorrectly classified

examples. Following the next step of the DMP al-

gorithm new children will be allocated to handle the

misclassified examples. But the set of misclassifed

examples will be exactly the same as in the previ-

ous iteration, and if the new children are identical to

the children allocated during the last iteration it is

unlikely that they will perform any differently, and

so the network has reached a dead end. Even when

network growth doesn’t reach a dead end, in order

for the network to progress towards a solution in a

timely fashion each child must correct the output of

at least one training example, otherwise the size of

the network could become arbitrarily large.

Due to dead ends encountered in the growth of

the network structure, training each node to maxi-

mize classification accuracy does not always produce

a network with the maximum possible classification

accuracy on the entire training set. Therefore, if

the goal is to incrementally grow a network that

is both small and maximizes classification accuracy

on the training set, some criteria other than mini-

mization of training set error should be used to eval-

uate the performance of the individual nodes that

are incrementally added to the network architecture.

Obviously, in general the primary goal is not to

maximize training set accuracy, but to maximize

generalization performance. In some cases it may

Fig. 3. Possible decision surfaces for a simple training
set.

be desirable to quickly terminate the growth of

the network. But for many cases training each

node to minimize its training set error will make

it difficult for the network to learn an appropriate

decision surface for complex problems.

With this in mind it is informative to consider the

amount of information that each node contributes to

the current network knowledge. Figure 3 shows a

training set with two possible hyperplanes (or lines

for the two-dimensional case) passing through the

input space. If the hyperplanes are viewed as de-

cision surfaces, with the arrow indicating the side

of the hyperplane in which examples are classi-

fied as O’s, then the leftmost hyperplane of Fig. 3

maximizes classification accuracy for the training set

of this particular problem. However, if each hyper-

plane is viewed as a partition of the set of training

examples, then the rightmost hyperplane provides

the network with the most information.

The formula for calculating the information

contained in a set of examples with N possible

output classes is given by,

I = −
N∑
i

Pi log2 Pi (1)

where Pi is the probability of class i. This is the

same formula that is used as the splitting criteria

for id3.42 For the two-class problem, this formula

reduces to

I(p, n) = − p

p+ n
log2

p

p+ n
− n

p+ n
log2

n

p+ n

(2)
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where p is the number of positive examples in

the training set and n is the number of negative

examples. When the set of training examples is par-

titioned by the network into two sets (those with

high output and those with low output), then the

formula for calculating the amount of information

that the partition has is

I(partition) =
phigh + nhigh

p+ n
I(phigh, nhigh)

+
plow + nlow

p+ n
I(plow, nlow) (3)

where phigh, nhigh is the number of positive/negative

examples respectively for which the network has a

high output, and plow, nlow is the number of posi-

tive/negative examples for which the network output

is low. The information gain for a given partition of

the training set is then

I(p, n)− I(partition) (4)

(Since I(p, n) is independent of the partition

we can ignore it, the goal then is to minimize

I(partition).) The information gain for the leftmost

hyperplane of Fig. 3 is 0, while the rightmost hyper-

plane has an information gain of 0.085. From the

standpoint of information gain the rightmost hyper-

plane is clearly better than the leftmost hyperplane.

The reason why the rightmost hyperplane is a

better choice for the network as a whole becomes ev-

ident at the next few steps of the DMP algorithm.

Assuming the hyperplane that maximizes informa-

tion gain is chosen, at the next step DMP will allo-

cate a left child which will be expected to assist in

correcting the output for the misclassifed examples

from the O output class (since there are no misclas-

sified X’s there may be little for the right child to

do in this case), which problem corresponds to the

examples illustrated in Fig. 4.

Of the two hyperplanes shown in Fig. 4, the

horizontal hyperplane produces a larger information

gain (0.194) than the vertical hyperplane that maxi-

mizes classification accuracy for the left child’s train-

ing set (info-gain of 0). If the left child generates the

hyperplane with the largest information gain, then

it is possible for the network to correct its output

on all of the O examples that are below the hyper-

plane. At this point, the only misclassified O’s that

are left are shown in Fig. 5. At the next step of the

Fig. 4. Second step of DMP using info-gain.

Fig. 5. Last step of DMP.

Fig. 6. The final solution.

DMP algorithm two more children will be allocated

and the left child will be expected to assist in sep-

arating these remaining misclassified 0’s from the X

examples. This can be accomplished if the left child

generates the hyperplane shown in Fig. 5 (which is

the hyperplane that maximizes both classification

accuracy and information gain), at which point
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the network has converged to a solution and the

algorithm is finished.

For this example, the final solution generated by

DMP using information gain instead of error mini-

mization is the three hyperplanes shown in Fig. 6.

These three hyperplanes completely separate the set

of X’s from the O’s that surround them.

2.2.2. Increasing the computational power

of the children

If a child has the same computational power as its

parent it can be difficult for the child to assist in

the identification of any of the parent node’s errors.

Since new children are required to assist the network

on the more difficult parts of the training set it makes

sense to increase the computational power of the

children as training progresses. In general there is

no need to restrict a child to be a single perceptron

node (or even to restrict the initial network structure

to be a single perceptron node for that matter). New

children can be made computationally more power-

ful by letting the children be small MLP networks,

and then providing for small increases in the num-

ber of nodes in the hidden layer of new children that

are being added to the network as required. As the

network grows and it becomes increasingly difficult

for new children to boost the performance of the

network, the computational complexity of children

that are added to the network can be increased by

increasing the number of nodes in their hidden

layer(s) by one or two hidden nodes.

The increase in the complexity of new children

should not be unbounded, and should only be done

when required to improve the performance of the

network. It is always possible to increase the com-

plexity of the children (or initial network structure)

to the point that it completely solves the training

set, but this approach suffers from over learning and

memorization. On the other hand, if the increase is

too small then a child might not identify any of the

parent’s errors, which results in a dead end in the

growth of the network. A dead end in the growth

of the network will not always be detrimental, how-

ever, since it naturally limits the complexity of the

network and can help to prevent over learning.

The appropriate increase in the complexity of a

child over that of the parent is an open question.

This is a difficult problem, and it is possible that a

single, optimal solution (for all types of “interesting”

learning problems) does not exist. But in keeping

with the incremental nature of DMP, and in order

to avoid over learning, the increase in the complex-

ity of a child as training progresses is kept small. If,

despite a small increase in computational ability, a

child is unable to identify any of the parent’s errors

then it is acceptable for the network to cease to grow

at that point. This amounts to a form of bias that

favors networks that can be grown easily and incre-

mentally. When the network’s errors are too difficult

for new children to identify without a large increase

in the complexity of the new children then these

errors are assumed to be noise and ignored, and

the growth of the network at that point is halted.

2.2.3. Using small, trainable parent

to child weights

The organization of neurons into a predefined, highly

constrained network structure where each neuron (or

group of neurons) is assigned a relatively specific task

in relation to the other neurons in the structure is

often seen with biological systems. This approach

makes sense when it is known in advance the ap-

proximate type of function that each neuron should

perform, and the predefined structure enables each

network element to learn the appropriate function

better and more efficiently than would otherwise be

possible. For many real world problems of interest

the only information about the problem domain that

is available is a finite set of pre-classified examples,

in which case it is extremely difficult to specify an

“optimal”, highly constrained network structure a

priori . Nevertheless, it is possible to realize some

of the benefits of a constrained network structure

by partially constraining the structure as occasion

permits during the training process, and this is the

approach that DMP employs.

With the DMP approach, one child, which we

have labeled the “left” child, is responsible for as-

sisting the parent when it detects a positive example

that has been misclassified, and the other child (or

“right” child) is responsible for assisting with the

negative exceptions. This means that the weight be-

tween the left child and the parent should be positive,

since a positive weight will push the network towards

a positive output. Similarly, the weight between the

right child and the parent should be negative. By

maintaining the positive and negative values of the
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left and right child weights, this forces a structure on

the network where each child is assigned a relatively

specific task. Furthermore, aside from the weights of

the newly added left and right child, all of the other

weights in the network are fixed during the training

cycle. This makes it less difficult for newly added

children to discover what function they should per-

form in relation to the other elements of the network,

which greatly reduces the time needed to train the

children and can also reduce the total time needed

to train the network.

The weights between a child and the parent

should initially be set to a value which is large

enough to guarantee that the child will fill the desired

niche in the network structure, but should not be so

large that the network becomes overly sensitive to

the child’s output. In addition, the training algo-

rithm should be allowed to adjust the child to parent

weight so that the child can be of maximal benefit

to the network. With DMP, the parent to left child

weight is initialized to a positive value, and the pa-

rent to right child weight is initialized to a negative

value. These weights, along with the other weights of

the newly added children, can then be updated with

the training algorithm while all other weights in the

network are frozen. The initial values for the par-

ent to child weights bias the left and right children

to detect positive examples and negative examples,

respectively. Having the parent to child weights

trainable does make it possible that the weights could

change sign, but in practice this does not occur and

the final values for the parent to child weights are

generally near their initial settings.

2.2.4. Only grow at the root node

If a child node fails to correct all of the network error

that it has been assigned then it is possible to correct

the remaining network error by allocating more chil-

dren and connecting them directly to the child node.

If in turn these new children fail to correct all of the

network error then their output can be corrected by

adding children to them. This process can continue

until the network converges to a solution.

However, instead of adding children to children

in many cases it may be better to only add chil-

dren to the root node of the network. With the

approach used in this paper, if the network (root

node along with its current set of children) does not

correctly classify all of the examples in the training

set, then more children are allocated and connected

to the root node in an attempt to correct the net-

work’s remaining error. By connecting the children

directly to the root node of the network, the out-

put of the children have a more direct effect on the

output of the network, and the training time for the

children is expedited since the error is not diluted by

being propagated through multiple network layers.

2.2.5. Train siblings together

It is possible for the children to be trained separately

from the network and from each other if desired.

However, with the DMP3 approach the newly added

children are trained together using standard back-

propagation, where the only weights that are up-

dated are those of the newly added children. By

so doing, the left and right child can cooperate to

achieve better performance than is possible when

they are trained separately. For example, when

the left child incorrectly outputs high on a negative

example it may cause the network to commit an

error that it would not have otherwise committed.

In this case the right child can help counteract the

detrimental high output of the left child if the right

child’s output is also high (since when the outputs

of both children are high, their outputs will tend

to cancel each other), thus restoring the network to

the original (correct) output. By training the two

children at the same time using backpropagation,

each sibling can detect when it might be able to help

the other in this fashion, and adjust its weights ac-

cordingly. This leads to a quicker reduction in the

total network error, and smaller networks in general.

2.3. DMP3

2.3.1. The DMP3 algorithm

A pseudo code version of the implementation of the

DMP algorithm used for this paper, which we call

DMP3, is given in Fig. 7. In order to prevent the

choice of a network which has settled into a sub-

optimal local minima, with each training phase three

copies of the current network (each copy has its train-

able weights initialized to small, random values) are

trained using information gain, and the copy of the

network that has the best information gain is chosen

and the other two copies are discarded. The weights
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BEGIN
//Number of hidden nodes for children
h=0 // Initially set to 0.
start with a single layer network

END
return parentNet
while (noimprove LT 3)
endif
h=h+1
noimprove = noimprove + 1

else
freeze parentNet weights
noimprove=0
parentNet=bestNet

if infoGain(bestNet) GT infoGain(parentNet)
bestNet=newNet with best infoGain
train 3 copies of newNet
set right child to root node weight = -10.0
set left child to root node weight = 10.0
connect children to the root node of newNet
create left/right child with h hidden nodes
newNet=CopyNetwork(parentNet)

do
noimprove=0
freeze parentNet weights
parentNet = copy with best infoGain
train 3 copies of the network

Fig. 7. DMP3 algorithm.

of the current best network are frozen, a copy of the

network is made, and the new network is augmented

(if needed) by connecting a newly allocated left and

right child to the output node.

The child to parent weights of the left child are

initially set at +10.0, and the weight which connects

the right child to the parent is set to −10.0. Three

copies of the augmented network are then trained

with IDT using info-gain, and the copy with the best

info-gain is chosen. The only weights that are al-

lowed to change during training are the weights of

the newly allocated children, and the weights that

connect the newly allocated children to the root node

of the augmented network. If after training the aug-

mented network exhibits greater info-gain than the

current best network, then the current best network

is replaced with the augmented network.

Initially, new left and right children added to the

network have zero hidden nodes. However, if an

augmented network does not improve the info-gain

over the current best network, then the complexity of

newly allocated children is increased by adding one

hidden node to the hidden layer of each child, and

the process is repeated (each node of the child

is fully connected to the original input features).

Initially, the base level of complexity for newly al-

located children is set at zero hidden nodes, but as

the network grows the base level of complexity can be

incrementally increased. For example, if the current

iteration of the DMP3 algorithm requires children

with two hidden nodes to decrease the network error,

then the next iteration will start with the complexity

level for new children set to two hidden nodes. The

next iteration will first try children with two hidden

nodes, and if that fails to reduce the network error

it will try children with three hidden nodes, and

finally children with four hidden nodes (the algo-

rithm terminates when three contiguous cycles of the

algorithm fail to improve the info-gain of the current

best network). This corresponds to the belief that

the problem of reducing the remaining network error

tends to become more difficult with each iteration

of the algorithm, and so each iteration ought to

start with the complexity set at least as high as the

level of complexity that was required for the previous

iteration. However, in keeping with the incremental

DMP network construction approach, the maximum

increase from one iteration to the next in the start-

ing complexity level for new children is small (two

nodes). DMP3 thus implicitly limits the complexity

of the network by allowing only small, incremental

increases to the complexity level of newly allocated

children, and if these increases are not enough to

reduce the network error any further the algorithm

terminates.

Figure 8 shows an example of a sequence of

networks that could be produced with the imple-

mentation of the DMP3 algorithm given in Fig. 7

Fig. 8. Example progression of the DMP3 algorithm.
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(while all nodes are fully connected to the original

input these connections have been omitted for the

features, sake of clarity). In this figure each box

represents an iteration of the DMP3 algorithm.

Initially (the beginning of Iteration 1) the network

is composed of a single node. With each iteration

DMP3 attempts to improve the performance (mea-

sured by the entropy or information gain of the

network) of the previous iterations best network

by incrementally adding children of increasing com-

plexity. For example, in the second iteration shown

in Fig. 8 DMP3 first adds two children composed

of a single node each. When this fails to improve

the performance, DMP3 increases the complexity of

the children by a single hidden node and retrains the

network. This succeeds in improving the perfor-

mance of the network, and DMP3 enters the next

iteration. In the third iteration, DMP3 first tries

adding children with one hidden node each (since

this is what worked during the last iteration), if

this fails to improve the performance of the network

DMP3 then tries children with two hidden nodes,

and if this still fails to improve the performance

DMP3 tries children with three hidden nodes. If

none of these networks improves the performance

then the algorithm terminates, and the previous it-

eration’s best network is chosen, which for this case

would be the five node network from Iteration 2.

2.3.2. The training cycle

A short, dynamic training cycle, which we call IDT

for “improvement driven training”, is used to train

new children when they are added to the DMP3

network. Figure 9 gives a pseudo code version of

the IDT training algorithm. IDT works as follows.

Initially, new children are trained for 1000 itera-

tions. This step corresponds to the IGTrain function

call, which is defined in Fig. 10. After this initial

phase, training continues as before but after each ten

training iterations the network is tested on the

training set to determine its training set performance

(measured in terms of information gain for the DMP3

algorithm), and the weight setting with the best

performance is saved. Training is halted if the net-

work fails to improve upon the best weight setting

on 20 consecutive tests of the performance of the

network, at which point the saved weight setting

END
net=LazyTrain(net, 10, 20)
net=IGTrain(net, 1000)

BEGIN
IDT(net)

Fig. 9. Improvement driven training.

END
endfor
endfor
UpdateNonFrozenWeights(net,error)
//Update the nonfrozen weights with standard back propogation
else error = error*negErrAdjust

//weight error to favor examples which can produce a higher info gain
if targetOutput = high let error = error*posErrAdjust

let error = the error of the net on example e
for each incorrectly classi�ed example e in the training set
posErrAdjust = posInfoGain/normalizeVal
negErrorAdjust = negInfoGain/normalizeVal
normalizeVal = MAX(negInfoGain,posInfoGain)
posInfoGain = posEntropy - currEntropy
negInfoGain = negEntropy - currEntropy
let posEntropy = netropy with 1 less positive error
let negEntropy = entropy with 1 less negative error
let currEntropy = the current entropy

for i=1 to maxi
BEGIN
IGTrain(net, maxi)

Fig. 10. Training function with modified error.
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END
return bestSoFar
endfor
endif
x = 1
bestSoFar = copy(currNet)

if currNet is better than bestSoFar
IGTrain(currNet, maxi)

for x=1 to maxTries
bestSoFar = copy(currNet)

BEGIN
LazyTrain(currNet, maxi, maxTries)

Fig. 11. Variable length portion of the training phase.

is restored to the network. This step corresponds

to the LazyTrain function call, which is defined in

Fig. 11. Pseudo code for the IGTrain function is

given in Fig. 10. Since each step of the DMP3

algorithm attempts to generate a network that

maximizes the information gain, a slight modifica-

tion was made to the calculation of the network

error for each training example. This modifica-

tion weights the error for each incorrectly classified

example by the (approximate) normalized amount

of information gain that would be expected if

the example were correctly classified. Since the

calculation of information gain is computationally

expensive, the expected information gain is only cal-

culated once for every pass through the training

set.

For example, given a training set with 15 ex-

amples, 10 of which have a high target classifi-

cation, let 7 of the positive examples and 3 of

the negative examples be correctly classified by the

current network. If 1 of the incorrectly classified

positive examples somehow became correctly clas-

sified (without affecting the classification of any of

the other training examples) the information gain

for the network would be 0.025. On the other hand,

if one of the incorrectly classified negative examples

was corrected the information gain would be 0.053.

Normalizing these two numbers, the error for an in-

correctly classified positive example would then be

adjusted by multiplying it by 0.47, and the error for a

negative example would be unchanged. This weights

the error of each example proportional to the degree

it can benefit the network in terms of information

gain, which will tend to adjust the weights so that

the examples that will produce the greatest informa-

tion gain are correctly classified.

The pseudo code for LazyTrain is given in Fig. 11.

The LazyTrain algorithm trains the network for a

variable length of time, giving up when no progress

has been made during the last few cycles of the

algorithm.

The primary reason for choosing to use a short

training cycle was due to time constraints, but there

are other benefits, such as the avoidance of over

learning. Simulation results using standard MLP

networks trained with IDT and vanilla backprop-

agation indicate that it tends to produce weight

settings with better generalization performance than

networks trained with a long, static training cycle.

3. Related Work

3.1. Network construction algorithms

The majority of network construction methods are

typified by a network that starts from a very sim-

ple basis, usually one node, and adds nodes and

connections as needed in order to learn the train-

ing set. These strategies include Cascade Corre-

lation,4 DNAL,38 Tiling,14 Extentron,15 Perceptron

Cascade,12 the Tower and Inverted Pyramid algo-

rithms,13 and DCN.5 Other construction algorithms

include Meiosis,11 node splitting,6 and sequential

learning.43

Several network constructions algorithms such

as Tower and Inverted Pyramid, DCN, Tiling, and

Extentron grow the network by creating a new out-

put node and connecting the existing network to it,

with the old output node becoming an input node for

the new output node. This approach may not work

well for many learning problems since the old output

node has not been trained to be a feature detector,

and may not be as beneficial to the network as would

otherwise be possible. DMP3 takes a different ap-

proach, augmenting the output node by connecting

new network elements to it and then training these

elements to assist the output node. Like DMP3,

Cascade Correlation does not create new output

nodes to grow the network, instead connecting the

output of the newly allocated node to the output

node of the network. But with the basic algorithm

each new node receives inputs from all other nodes

(except the output node) in the network that can
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lead to units with a large fan in. Much like connect-

ing the old output node to the new one, connect-

ing previously allocated units to new units may not

provide a great deal of benefit to the newly allocated

node, since the previously allocated units were not

trained as feature detectors for the new unit. In

addition, after training new candidate units Cascade

Correlation retrains all of the output node weights,

which may cause the output node to unlearn im-

portant information. This becomes more likely as

the fan in to the output node increases, since the

number of output node weights may become too

large for the training set to properly constrain. With

DMP3, newly allocated network elements do not

receive input from any previously allocated units.

DMP3 also retains any knowledge that has been

learned by the network by not retraining any of

the previously allocated output node weights. While

new evidence can over-ride the current knowledge

embodied in the network weights, the network does

not “unlearn” that knowledge (the weights remain

unchanged).

While most of the incremental MLP construc-

tion algorithms use error minimization, DMP3 uses

information gain to guide the network construction

process. This helps DMP3 to avoid adding elements

that will not be beneficial to the network, and it

also helps to avoid premature termination of net-

work growth. The utility of using information gain is

discussed in detail in Sec. 3.1.1.

One of the drawbacks of most current MLP

construction algorithms is that they do not have built

in mechanisms to prevent the network from over-

learning, rather treating this important subject as

an afterthought. For example, Burgess12 states that

“for good generalization it is necessary to restrict

the size of the network to match the task,” but no

specific algorithm is presented on how to do so. Left

uncontrolled, all of these methods will suffer from

over learning, and so in some respects they do not

avoid the architecture selection problem but must

utilize some type of architecture selection strategy

(such as CV or MDL based strategies) in an attempt

to avoid over learning. This is due to the fact that,

left uncontrolled, the network structure can grow to

fit the training set data exactly. But with many

problems the training data may contain noise that

will cause the algorithm to perform worse if the noisy

instances are memorized. Also, the network can grow

to the point that the amount of training data is

insufficient to properly constrain the network

weights. A common technique used to avoid this

problem is to balance the complexity of the network

versus the performance of the network on the train-

ing data. Another approach is to use a holdout set

to determine the point at which the growth of the

network should cease. DMP3 naturally limits the

complexity of the network by terminating the growth

of the network when the network error cannot be

reduced without a large increase in the current net-

work complexity, which reduces the probability that

the network will suffer from overfitting.

Of the several MLP construction algorithms,

DMP3 is most similar to the Upstart algorithm.10

But the Upstart algorithm can be susceptible to

over learning and memorization due to the divide

and conquer, exception handling approach that Up-

start uses. This is highlighted by the following four

characteristics of the Upstart algorithm.

• Upstart bases the training set for children on

the parent’s exceptional cases, and exception

handling mechanisms are in general susceptible to

noise, since it is difficult to distinguish noise from

exceptional cases.

• Children have complete control over the parent

output. The confidence that the parent has in its

output is not taken into account, nor is the confi-

dence that the child has in its output. If a child

detects an exception, then the parent must ignore

whatever conclusion it has made and do what the

child tells it to do. For an MLP network, this

essentially means that the magnitude of the child

to parent weights must be quite large in order for

the child to be able to force the parent to output

what the child determines is correct regardless of

the other inputs the parent receives. This makes

the network susceptible to child errors.

• A child node is trained on fewer training examples

than a parent node. It seems counterintuitive to

trust the prediction of the child more than the

parent when the function that the child performs

is determined from a subset of the parent node’s

training set. Furthermore, children can have chil-

dren, and the further removed a child node is from

the parent, the smaller its training set tends to
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be. This means that the leaf nodes of the net-

work are trained on fewer training examples than

other nodes, and so will tend to be more likely

to produce classification errors. Since the leaf

nodes in the network also have the greatest in-

fluence on the output of the network, Upstart

networks sometimes exhibit worse generalization

performance than the root node of the network

exhibited before the addition of children.

• For MLPs, the decision surface that a child gener-

ates extends infinitely beyond the region occupied

by the training cases. This is normally not an area

of concern for an MLP since in the standard train-

ing approach every node in the network sees every

training example, and it is generally assumed that

the training set sufficiently covers the input space.

However, with Upstart some of the nodes in the

network may be trained using relatively small sub-

sets of the available training data, which may not

contain enough training examples to adequately

cover the input space. For example, as illustrated

in Fig. 12, when a child node is trained on few

exceptional cases there may be many possible de-

cision surfaces that identify the exceptions, but

each of these decision surfaces can have a drasti-

cally different, non-local effect on the network as

a whole.

While DMP3 is similar in some respects to

Upstart, there are several significant differences.

These differences include:

• DMP3 softens the exception handling nature of

Upstart. With DMP3 the parent to child weights

Fig. 12. Possible decision surfaces.

are small and trainable, which differs from Up-

start that has extremely large, untrainable weights

between the child and parent nodes making the

network extremely sensitive to child node errors.

• DMP3 uses information gain to guide the growth

of the network. The standard Upstart algorithm

uses error minimization, which can lead to prema-

ture dead ends in the growth of the network for

real valued input data.

• DMP3 abandons the divide and conquer approach

used by upstart. DMP3 trains each network el-

ement using the entire available training data,

rather than only the exceptional cases as done with

Upstart, which tends to make the children more

reliable than if they were trained on a subset of

the available data.

• DMP3 only adds children to the root node. Up-

start attempts to correct child nodes that are in

error by allocating children to the child nodes.

This creates a situation where children can be

added to children, which can cause the network

to become exponentially large.

• With DMP3 the children can increase in com-

plexity if required. It can become increasingly

difficult to correct the remaining error as train-

ing progresses. DMP3 attempts to alleviate this

problem by allowing for modest increases in the

complexity of the children that are being added to

the network structure. No such provision is made

in the Upstart algorithm.

Taken together, these modifications can reduce

the problem of over learning, foster a greater degree

of cooperation between nodes in the network, and

can lead to a significant improvement in generaliza-

tion performance.

3.2. Other architecture selection methods

3.2.1. Early stopping

Early stopping strategies27–30 utilize overly complex

network architectures. One of the main advantages

of using a network that is more complex than is ac-

tually needed is that larger networks tend to have

fewer local minima in the error surface defined by

the training set. However, with a larger network

there is a higher likelihood that over learning will

occur. In other words, larger network architectures

are more likely to converge to a lower training set
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error, but often tend to produce higher error on

non-training examples. In order to avoid this, early

stopping strategies try to determine when the net-

work has been trained sufficiently to do well on the

problem but has not yet over learned (or memorized)

the training data. One way to do this is to occasion-

ally test the performance of the network on a holdout

set and stop training when the performance on the

holdout set begins to degrade.

3.2.2. Cross validation (CV)

CV is often used to select an optimal architecture

from amongst a set of available network architec-

tures. In a comparison of CV with two other MLP

architecture selection strategies in a recent paper,44

CV was found to be the best at choosing the optimal

network architecture, at least on the data sets tested.

However, the comparison was based on only a single

type of artificial data and did not look at any real

world problem domains.

In a larger study,45 CV was found not to per-

form as well as desired when selecting an optimal

architecture from a large set of relatively similar

architectures. Several strategies are suggested which

can be applied when using CV based MLP ar-

chitecture selection to significantly improve the

performance CV based architecture selection.

CV is often used to select between different types

of learning algorithms. In another paper CV was

used to select between a small set of competing

learning algorithms (C4.5, C4.5rules, and an MLP

trained with backpropagation).46 The three com-

peting learning algorithms were compared on five

problems drawn from real world problem domains.

Schaffer reported that CV’s average performance was

several percentage points better than any of the

individual learning algorithms on the problems

tested. Schaffer states that CV will generally reduce

the risk of extremely poor performance, and can also

produce higher average model accuracy.

3.2.3. Weight decay

Weight decay adds a penalty term to the error

function that favors smaller weights.38,39 The rate

of weight decay is often chosen by training several

different networks with different rates of decay and

then using CV to estimate which rate is optimal.

3.2.4. Network Pruning

Pruning techniques start with a large, overly speci-

fied network and iteratively prune connections that

are estimated to be unnecessary. CV is often used

to assist in the estimation process. The pruning

can take place during the training process or

training cycles can be alternated with pruning

cycles. Pruning strategies include Optimal Brain

Damage,34 Skeletonization,31 and Optimal Brain

Surgeon35 among others.32–37

4. Experiments

4.1. Data sets and algorithms

Nine data bases from the UCI machine learning

database were used to test the DMP3 algorithm.

Table 1 lists the data sets used in this paper. The

first column gives a tag used to identify the data set

throughout the rest of this paper. The total number

of attributes is listed in the third column, and the

Table 1. Data sets.

Tag Full name Attributes Instances Problem description

bc breast cancer 9 286 recurrence of breast cancer in treated patients

bcw breast cancer Wisconsin 10 699 malignancy/non-malignancy of breast tissue lump

bupa bupa liver disorders 7 345 predict liver disorders from blood tests

echo echocardiogram 13 132 survival of heart attack victims after one year

ion ionosphere 35 351 classification of radar returns from ionosphere

promot promoter gene sequences 57 106 identification of promoter genes in E. coli

sonar sonar 61 208 identification of rocks/mines via reflected sonar signals

sthear statlog heart 13 270 presence/absence of heart disease

voting house votes 1984 16 435 predict party affiliation from voting record
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fourth column gives the total number of examples

contained in the data set. The last column describes

the problem domain. For the sake of simplicity we

limited the data sets used in this paper to those with

two output classes. All of these data sets are based

upon real world problem domains, and are more

or less representative of the types of classification

problems that occur in the real world.

With the exception of the scores for the CV based

MLP architecture selection algorithm which were

taken from Ref. 45, the scores reported in this pa-

per for the other learning algorithms are taken from

Ref. 47, which is a comprehensive case study compar-

ing the results of several machine learning algorithms

across a large variety of data sets. The results from

this case study are averages obtained using ten-fold

cross validation. Generally, the various learning al-

gorithms were tested using their default parameter

settings.

The DMP3 algorithm is trained/tested using

ten-fold cross validation on the same data splits that

were used in Ref. 47. This allows the use of the

student t-test to calculate confidence levels and

directly compare the results of different learning

algorithms on each data set.

The learning algorithms that DMP3 is compared

against are summarized in Table 2. The first column

lists the name that we will use to refer to the cor-

responding learning algorithm throughout the rest

of this paper. The second column gives the com-

mon name for the learning algorithm, and the last

column lists the type of the learning algorithm. A

brief description of each type of learning algorithm

follows.

Decision trees are a well-known learning model

that has been studied extensively by the machine

learning community. Decision tree algorithms in-

clude c4.5, id3, and IND v2.1./citeup42,48,49. A

decision tree is composed of possibly many decision

nodes, all of which are connected by some path to

the root node of the tree. All examples enter the

tree at the root decision node, which makes a de-

cision, based upon the examples attributes, about

which branch to send the example on down the tree.

The example is then passed down to the next node

on that branch, which makes a decision on which

sub-branch to send the example down. This proce-

dure continues until the example reaches a leaf node

of the tree, at which point a decision is made on the

example’s classification.

Instance based learning algorithms are variants

of the nearest neighbor classification algorithm.50,51

With a nearest neighbor approach an example of

an unknown class is classified the same as the

closest example or set of closest examples (where

distance is generally measured in Euclidean terms)

of known classification. The instance based learning

algorithms seek to decrease the amount of storage

required by the standard nearest neighbor approach,

which normally saves the entire training set, while at

the same time improving upon classification perfor-

mance. There are several variants to this approach.

Due to space constraints we report only the re-

sults for ib1 since ib1 exhibited better overall perfor-

mance than any of the other instance based learning

algorithms on the data sets tested in this paper.

The cn2 rule induction algorithm52,53 uses a

modified search technique based on the AQ beam

search method. The original version of cn2 uses en-

tropy as a search heuristic. One of the advantages

of rules is that they are generally thought to be

Table 2. Learning algorithms.

Tag Full name Type of learning algorithm

mlp multilayer perceptron CV based MLP architecture selection

per linear threshold perceptron single layer perceptron

c4 c4 c4 decision tree/rule based classifier

c4.5tp c4.5 tree pruned decision tree/rule based classifier

ib1 instance based 1 Incremental nearest neighbor approach

id3 id3 decision tree/rule based classifier

mml IND v2.1 MML based decision tree selection

cn2o ordered cn2 decision tree/rule based classifier



160 T. L. Andersen & T. R. Martinez

Table 3. DMP3 versus other well-known learning algorithms.

DMP3 mlp per c4 c45tp ibl id3 mml cn2o

bc 73.30 69.14 66.50 71.40 73.90 71.80 66.20 75.30 66.10

bcw 95.43 95.24 93.00 95.10 94.70 96.30 94.30 94.80 95.20

bupa 70.96 72.26 66.40 64.40 62.60 62.30 65.20 67.50 58.00

echo 88.79 86.80 87.00 90.10 90.10 84.00 86.20 92.40 83.20

ion 87.86 88.17 82.00 90.60 90.90 86.30 88.30 88.30 82.60

promot 87.35 90.70 75.90 76.30 77.30 82.10 74.50 79.10 87.80

sonar 80.43 78.56 73.20 71.60 73.00 86.50 74.00 72.60 55.40

sthear 80.51 78.93 80.80 76.70 73.40 79.60 77.10 81.90 78.60

voting 93.90 94.21 94.50 96.80 96.80 92.40 94.50 97.30 93.80

Average 84.28 83.78 79.92 81.44 81.41 82.37 80.03 83.24 77.86

comprehensible by a human. However, this charac-

teristic is only evident when the number of rules is

relatively small.

4.2. Results

Table 3 compares the generalization performance of

DMP3 with the other machine learning algorithms

on the data sets tested in this paper. These results

are averages obtained using ten-fold cross validation.

The last row of the table gives the average score of

each algorithm across all data sets tested. DMP3 has

the highest average generalization accuracy of any

of the learning algorithms on the data sets tested.

The second best scoring algorithm is the CV based

MLP architecture selection method. With the excep-

tion of CV, the confidence that DMP3 is better than

the other learning algorithms on these data sets

is 0.95 or greater. The confidence that DMP3 is

better than CV is 0.7, which is not high enough

to be considered statistically significant. However,

CV based MLP architecture selection requires an

enormous amount of computation in comparison to

DMP3 since CV must retrain each network architec-

ture ten times in order to generate the CV holdout

set score for the architecture. DMP3, on the other

hand, only trains a single network architecture.

Table 4 gives the average size of the network (in

number of perceptron nodes) produced by the DMP3

algorithm for each data set. For two of the data sets

(promot and bc) the DMP3 algorithm never grow

the network beyond a single node. The reason that

DMP3 did not grow networks with more than a sin-

gle node on the promot data set is due to the fact

that the single layer network achieved 100% accuracy

Table 4. Network size.

net size

bc 1.00

bcw 6.32

bupa 16.00

echo 5.32

ion 5.60

promot 1.00

sonar 3.72

sthear 9.12

voting 4.60

Average 5.85

on the training set for this particular data set. On

the bc data set DMP3 was unable to improve the

information gain over that of a single layer network,

and so the algorithm terminated with a single node

in the network.

DMP3 produced the largest networks on the bupa

data set, with an average network size of 16 nodes.

For most of the data sets, however, DMP3 tends to

produce relatively small networks, with an average

network size of less than six nodes across all data

sets. Prior research3 has shown that simple learn-

ing algorithms can exhibit quite good generalization

performance on many learning problems, so it is not

surprising that DMP3 is able to produce good results

with such small networks.

4.2.1. Bagging DMP3 networks

For a given network architecture and training set

there can be many different weight settings that
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exhibit equivalent (or nearly equivalent) training set

performance. While the training set performance of

these weight vectors may be equivalent the gener-

alization performance can often differ significantly.

But it can be difficult or impossible to determine

the weight vector(s) that has the best generaliza-

tion performance. With DMP3 and other learning

algorithms that generate dynamic network topolo-

gies this problem is exacerbated, since the algo-

rithm must select an optimal architecture in addi-

tion to finding an optimal weight vector for that

architecture in order to achieve good performance.

On many learning problems DMP3 tends to pro-

duce a different network architecture and/or weight

setting for each training run, even when the train-

ing set is exactly the same as it was in previous

training runs. This is a common trait of many neu-

ral network construction and training algorithms.

Unfortunately, different network architectures and

weight settings can have significantly different gene-

ralization performance, and it is desirable to avoid

generating the architectures and weight settings that

suffer from poor performance.

One of the ways to deal with the non-

deterministic nature of DMP3 (and other neural

network construction and training algorithms) is to

somehow guide the process so that a single, “opti-

mal” network architecture and weight setting is pro-

duced. However, from a Bayes optimal point of view

it generally does not make sense to choose a sin-

gle architecture and weight setting unless this sin-

gle valued choice is a good approximation to the

optimum. The Bayes optimum choice is obtained

by summing the prediction of each possible archi-

tecture and weight setting weighted by its posteri-

ori probability. This process sounds simple enough,

but unfortunately there are a number of difficulties

which must be overcome in order to implement it,

the foremost of which is that the problem of deter-

mining the posterior distribution of the various ar-

chitectures and weight settings (and other parame-

ters) makes it impossible to calculate the true value

of the required integral. This difficulty forces any

“Bayes optimal” neural network training approach to

use several layers of approximation methods in order

to produce any results, which can erode confidence

in the level of optimality that the Bayesian training

approach provides.

Rather than use a Bayes optimal approach, we

chose to use the much simpler approach of bagging to

resolve the problem of the non-deterministic nature

of the DMP3 algorithm and attempt to improve its

generalization performance. As with the Bayesian

based neural network training technique proposed

by Neal,24 with bagging several networks are gene-

rated and the individual outputs of each network

are combined to produce a final answer. For dis-

crete classification problems, the method used to

combine the outputs is to give each network a single

vote for the output class of its choice, and the output

class with the greatest number of votes is chosen as

the winner. This differs from the Bayesian approach,

where each network’s vote is weighted according

to the (estimated) probability of the network. In

practice, the performance difference between bagging

and bayesian approaches is likely to be negligible in

many cases. The Bayesian approach will perform

differently from bagging only when the probabilities

of the various networks differ from each other by a

significant degree, or when the networks produced by

the Gibbs sampling process are significantly different

than those produced for bagging.

DMP3 was used to generate 50 networks that

were then combined using bagging into a single

aggregate classifier. We call this approach DMPB for

Dynamic Multilayer Perceptron Bagging. Bagging

DMP3 networks proved to be very effective, produc-

ing an increase in the generalization performance of

DMP3 for every data set tested. Table 5 gives the

generalization results for DMPB.

While bagging improves the generalization per-

formance of DMP3 on every data set, it has the

opposite effect on the training set scores. The second

Table 5. DMPB generalization performance.

DMPB

bc 73.46

bcw 95.57

bupa 71.57

echo 90.82

ion 88.90

promot 91.55

sonar 80.74

sthear 82.96

voting 94.02

Average 85.51
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Table 6. Training set scores for DMP3 and DMPB.

DMP3 DMPB

bc 78.72 78.32

bcw 99.13 98.90

bupa 81.28 80.74

echo 98.36 98.39

ion 98.10 97.63

promot 100.00 100.00

sonar 97.20 96.90

sthear 96.51 95.35

voting 99.09 99.00

Average 94.27 93.91

column of Table 6 gives the average training set

scores of DMP3, and the third column gives the

training set score when the networks are combined

with bagging. It is interesting that bagging almost

always reduces the training set scores while increas-

ing the test set scores. This indicates that bagging is

an effective method for reducing the overfitting that

occurs with the DMP3 algorithm.

5. Conclusion

In a comparison of DMP3 with several other machine

learning and neural network learning algorithms on

nine different data sets, the average generalization

performance of DMP3 was shown to be significantly

better than any of the other algorithms on the data

sets tested, which shows that DMP3 is capable of

producing networks with excellent individual gene-

ralization performance. It is, perhaps, surprising

that the generalization performance of the individual

networks which the DMP3 algorithm produced were

on average better than those produced by CV based

MLP architecture selection on the data sets tested,

since DMP3 did not utilize any type of holdout set

in determining an appropriate network architecture.

However, there are several elements of the DMP3

algorithm that help to explain this result.

DMP3 differs from current network construc-

tion methods in several ways, and these differences

can lead to improved generalization performance.

Unlike many network construction algorithms (such

as cascade correlation, DCN, and Extentron), DMP3

does not connect the outputs of previously created

nodes to the input of new nodes. Since previously al-

located elements generally are not trained as freezing

the current network weights in the growth phase,

DMP3 seeks to avoid discarding any of the knowl-

edge that is embodied by the current network struc-

ture. Rather, DMP3 seeks to augment this knowl-

edge through the addition of children. Since it is

known that the network needs assistance to correct

any errors that it is producing, it makes sense to

augment the network with elements that are specif-

ically designed to help the network with the posi-

tive exceptions, and also to create elements to help

with the negative exceptions. By initializing the

child to parent weights to particular values, DMP3

creates a constrained network architecture that

allows the nodes in the network to quickly find an

appropriate function to perform in relation to the

other network elements.

We have also shown that it can be advantageous

to use information gain rather than error minimiza-

tion when growing MLP networks with the DMP3

algorithm. The use of information gain produces

nodes that are better feature detectors (in the sense

that they reveal more information about the train-

ing set) than those that would be produced by

using error minimization. This information can then

be incorporated into the network’s decision making

process, which in turn leads to better generaliza-

tion performance. By using information gain to eva-

luate the performance of new network elements on

the remaining network error the DMP3 algorithm

is able to incrementally generate complex decision

boundaries that otherwise might not be possible to

generate. For example, using simple perceptron units

DMP3 can incrementally generate a series of de-

cision surfaces that can identify exceptional cases

that are completely surrounded by counterexamples.

Information gain may also work better than error

minimization in guiding the growth of the network

and the selection of new network elements for other

types of MLP construction algorithms as well. For

example, MLP construction methods such as Exten-

tron grow the network by creating a new output unit

and connecting all previously allocated units to it,

which is seemingly quite different from the direc-

tion of growth taken by DMP3 networks. But of the

two decision surfaces shown in Fig. 3 of Sec. 2.1.1,

Extentron will benefit the most from choosing the

decision surface that maximizes information gain

over that which minimizes error (since this decision
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surface will be a much better input feature for the

new output node that will be allocated during the

next growth phase).

While the individual DMP3 networks performed

well in comparison with other methods, significant

improvement in the generalization performance of

DMP3 occurs when bagging is used to combine

several DMP3 networks. It is notable that bagging

improved DMP3’s generalization performance (and

generally decreased its training set performance) on

every data set tested in this paper, since this shows

that the errors of DMP3 networks tend to be uncorre-

lated, and the correct answers tend to be correlated.

Because of the large number of networks that

are required for bagging, out of necessity the DMP3

algorithm utilized a short, improvement driven

training cycle (IDT) that stopped training when no

progress had been made at improving the perfor-

mance of the network for the last few training cycles.

A side benefit of IDT (likely due to its similarity

to other stopped training methods) is a decreased

probability that the network grown by the DMP3

algorithm will overfit the problem. Although we do

not report the results in this paper, this characte-

ristic was confirmed in experiments that tested IDT

using error minimization on standard (pre-specified)

MLP networks.

There are several areas for future work. One area

that will be examined by future research is the IDT

training method. While weighting the error with

information gain worked reasonably well, it is pos-

sible that other training methods, such as genetic

algorithms, would be more effective at finding a

weight setting with maximal information gain. We

will also examine other ways to determine the

appropriate level of complexity for new children (for

example, whether it makes sense to increase the

complexity of both new children equally, or if one

child ought to be different) and other ways to add

them to the network structure. It may also be advan-

tageous to retrain portions of the network. Another

area for research is in the application of information

gain, or other criteria, to other network construction

algorithms such as Cascade Correlation.
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