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Abstract
There is an abundance of mobile health apps on the
market today, and almost all focus entirely on net
caloric intake (exercise minus calories consumed).
Recording daily caloric intake can be cumbersome
and inefficient. One rising suggestion in the health
field for reaching weight goals is recording the
number of bites during meals throughout the day.
In this paper, we record our efforts to classify bites
and non-bites in an effort to automate counting the
number of bites during a meal. We first describe
our user study and data gathering efforts using a
YEI 3-Space Sensor. Next, we analyze our initial
results and discuss consequent changes to our train-
able dataset. Finally, we discuss our process for
improving features and reducing our trainable arff
files to only the most relevant input features. We
also report on the performance of numerous base-
level classifiers such as KNN, Naive Bayes, and de-
cision trees as well as meta-level classifiers (voting,
bagging, and boosting) using Weka.
By using Weka, a uniformed window size, mean,
standard deviation, covariance, spectral entropy,
and energy, our final accuracies ranged between
86% and 100% on almost all learners.

Introduction
Previous research has successfully used accelerometer data
to learn to distinguish a host of gestures and body move-
ments. Different mathematical models have been employed–
including fast-fourier transform and spectral entropy–to rec-
ognize various physical motions. [Lester et al., 2006] Many
of these experiments take place in hospitals or elderly care fa-
cilities. These learning models allow doctors to safely mon-
itor patients from a distance and receive regular feedback on
their physical activities.

Furthermore, these machine learning models allow doctors
to link patients’ reported pain levels with their corresponding
activities. Over time, the machine learning models improve
and learn what types of activities are critical or important to
report. Although these models can successfully classify activ-
ities such as “walking, jogging, [or] riding a bike,” previous

research has not demonstrated that these models can learn to
recognize the motion of taking a bite of food. [Lester et al.,
2005]

Our research will extend these projects by training machine
learning models to recognize the physical movements of tak-
ing a bite. As in previous experiments, we will use “an ac-
celerometer sensor-based approach” to record and derive our
data set features. [Khan et al., 2010] Additionally, we will use
a wrapper to reduce our data set to the most relevant and pre-
dictive features. We expect, much like in Huynh and Schieles
research, that this approach will improve “recognition rates”
through “careful selection of individual features.” [Huynh
and Schiele, 2005]

Methods
Data Gathering
With the help of Josh West from the Department of Health
Science, we conducted a user study with 13 participants on
February 21, 2014. During this study, we recorded 130 in-
stances (bites) of users eating food with a fork. For each par-
ticipant, we strapped a YEI 3-Space Sensor to the person’s
wrist that recorded data using a built-in accelerometer, gyro-
scope, and magnetometer.

Before taking a bite, a participant placed his hand in the
start position (the base of the table) and clicked a button on
the YEI sensor to indicate the beginning of the measurement
time window. After taking a bite and returning his hand to the
start position, the participant clicked a second button to mark
the end of the bite instance.

In addition to these collected data, we used a data set of 260
bite instances and 91 non-bite instances recorded from a pre-
vious user study. In our initial experiments, we believed that
this additional data would allow us to train machine learning
models to differentiate between bite and non-bite instances.

Initial Data Set
As mentioned earlier, each data instance represented the YEI
3-Space Sensor readings and button readings. To form the
trainable arff file from the raw data, features had to be ex-
tracted from the gathered data. Other research that has in-
volved machine learning in human movement recognition has
used a wide range of varying features. In fact, most studies
use as many features as possible. Our initial approach focused
on a limited feature set that included:



• āx, āy, āz - The mean acceleration readings for the x, y,
and z axes.

• σx, σy, σz - The standard deviation of the acceleration
readings for the x, y, and z axes.

It was necessary to analyze these data over fixed time inter-
vals. Finding an appropriate window size that fit the results
proved difficult. We estimate that many people eat at differ-
ent rates, and it may be necessary to create a sub-learner that
can learn window size for each individual. However, through
manual slicing of our data we were able to find a uniform
window that could be used for data extraction.

Data Definition Data Instance
(x,y,z Gyroscope) (-0.00936,0.01940,-0.00777)
(x,y,z Accelerometer) (-0.04792,0.97900,-0.05313)
(x,y,z Compass) (0.24748,-0.43911,0.09929)
Button State 0
...

Table 1: Explanatory definition of the gathered data

Initial Results
After collecting and transforming the data from our user study
into a useable arff file, we ran our data through a series of
learning models. Initially, we used backpropagation and de-
cision tree to test the accuracy. Unfortunately, each of these
models performed poorly when predicting the output class of
an instance (bite or non-bite).

In light of our results, we analyzed our data set for possible
errors and ways to improve. During the first iteration, we only
included bite instances with data for the x, y, and z means and
standard deviations (see Table 2 Iteration #1). In an effort to
improve prediction accuracies, we decided to record non-bite
instances and add them to our data set. We recorded 89 non-
bite instance–bringing the total number of bite instances to
404.

Next, we calculated the x, y, and z covariance for ac-
celeration for each instance in the data set. When we in-
cluded covariance–as well as the non-bite instances–and ran
this dataset through the learning models in Weka, our aver-
age accuracy across the models increased from 84.7770% to
86.0032% (See Table 2 Iteration #2).

Feature Improvement
Beyond the temporal domain, we hoped to derive additional
features from the frequency domain using the discrete Fourier
transform (DFT). These frequency domain features include
spectral entropy, energy, and the DC component.

For a bite of length L, the spectral entropy was calculated
in two parts. First, a probability density function was calcu-
lated over the frequency domain, excluding the DC compo-
nent:

pdf [u] =
F(b[i])[u]

L/2+1∑
u=1

F(b[i])[u]

Second, this pdf [u] is used to calculate the signal’s entropy e:

e = −
L/2+1∑
u=1

log2(pdf [u])pdf [u]

Note that here and throughout this paper F(·) denotes the
DFT operator. It is also worth mentioning here that each
Fourier domain feature was calculated separately for x, y, and
z acceleration readings. (see Table 2 Iteration #3 for the ini-
tial results with this feature included.)

The spectral energy ε for a bite of length L was calcu-
lated using the following formula (again, the DC component
is omitted):

ε =

L/2+1∑
u=1

|F(b[i])[u]|2

Finally, the DC components µ are used as input features as
well:

µ = F(b[i])[0]

This feature can be interpreted as the mean energy within the
signal.

In total, 18 different features were derived:

1. cxy, cxz, cyz - The covariance for the x and y readings;
x and z readings; and y and z readings.

2. āx, āy, āz - The mean acceleration readings for the x, y,
and z axes.

3. σx, σy, σz - The standard deviation of the acceleration
readings for the x, y, and z axes.

4. ex, ey, ez - Spectral entropy for the x, y, and z accelera-
tion frequency domains.

5. εx, εy, εz - Spectral energy for the x, y, and z accelera-
tion frequency domains.

6. µx, µy, µz - The DC component for the x, y, and z ac-
celeration frequency domains.

Our early data sets–although they yielded high prediction
accuracies (see Table 2 Iteration #4, which used all features)–
proved to be of relatively poor quality. These initial data
sets combine data collected from a smart phone with data
recorded using the YEI 3-Space Sensor. Upon later inves-
tigation, we discovered that the smart phone orients its axes
differently than the YEI 3-Space Sensor. For example, when
strapped to the wrist, the android phone points the z-axis
upward, perpendicular to the arm; the YEI 3-Space Sensor,
however, interprets this direction as the y-axis. Furthermore,
the YEI 3-Space Sensor normalizes and corrects its readings
for gravity, but the smart phone sensor does not.

In addition to incompatible sensor readings, the window
size and sampling rate also emerged as sources of inconsis-
tency. Note that window size refers to the number of ac-
celerometer readings in a subsection of the sensor’s entire log
of readings. For data collected by the smart phone, the win-
dows were selected by hand. But for the YEI 3-Space Sen-
sor, the windows were automatically generated using button
presses logged at the start and end of each bite.



Files Iteration #1
Accuracy (%)

Iteration #2
Accuracy (%)

Iteration #3
Accuracy (%)

Iteration #4
Accuracy (%)

BAYES
BayesNet 89.1358 88.642 91.1111 94.0741
NaiveBayes 81.9753 82.2222 87.6543 85.9259
NaiveBayesUpdateable 81.9753 82.2222 87.6543 85.9259

FUNCTIONS
Logistic 84.9383 88.3951 90.8642 93.5802
MultilayerPerceptron 89.6296 95.5556 95.0617 95.5556
SGD 84.4444 87.4074 90.3704 91.358
SGDText 78.0247 78.0247 78.0247 78.0247
SimpleLogistic 84.9383 87.4074 91.1111 93.5802
SMO 79.5062 82.716 85.679 85.9259
VotedPerceptron 77.7778 78.5185 79.2593 49.8765

LAZY
IBk 91.1111 95.3086 96.7901 96.7901
KStar 90.6173 96.2963 96.7901 95.0617
LWL 81.4815 79.2593 85.9259 90.3704

MISC
InputMappedClassifier 78.0247 78.0247 78.0247 78.0247

RULES
DecisionTable 89.8765 89.8765 91.6049 94.0741
JRip 88.8889 90.1235 90.1235 94.0741
OneR 76.2963 76.2963 85.1852 87.9012
PART 90.3704 88.642 94.5679 95.5556
ZeroR 78.0247 78.0247 78.0247 78.0247

TREES
DecisionStump 78.0247 78.0247 90.3704 90.3704
HoeffdingTree 81.4815 82.716 87.1605 85.679
J48 89.1358 89.3827 95.0617 95.8025
LMT 90.3704 91.358 94.321 94.5679
RandomForest 92.3457 92.3457 96.2963 96.2963
RandomTree 87.1605 89.1358 93.3333 95.0617
REPTree 88.8889 89.3827 92.5926 93.8272

Average Accuracies 84.7770 86.0032 89.3848 90.1010

Table 2: Initial Results



Learning Model Before
Accuracy
(%)

With Feature Re-
duction (%)

With Feat. Reduc-
tion and Bagging
(%)

With Feat. Reduc-
tion and Boosting
(%)

Logistic 86.9565 88.4058 89.1304 89.3116
MultilayerPerceptron 86.2319 87.3188 87.1981 87.5
SimpleLogistic 87.6812 88.4058 88.6473 88.7681
JRip 88.4058 85.8696 87.1981 88.0435
PART 86.2319 87.3188 87.6812 87.6812
J48 87.6812 88.0435 88.8889 89.1304
LMT 86.2319 86.2319 86.9565 87.8623
RandomForest 89.8551 90.5797 89.6135 89.4928
Average Accuracy 87.4094 87.7717 88.1643 88.4737

Table 3: Final Results for uniform-wind-5

The sensors also differed in the rates at which they captured
readings. While the smart phone captured 70 readings-per-
second, the YEI 3-Space Sensor only captured 10 readings-
per-second. Resultantly, the derived features for the initial in-
stances used windows of data with varying lengths and sam-
pling frequencies.

As shown in Table 3, some of the most salient attributes
are the spectral features based on the DFT. The DFT calcula-
tion is sensitive to both the size of the window and sampling
frequency, producing different results as each attribute varies.

Because of these inconsistencies, we compiled two addi-
tional data sets: uniform wind and uniform wind 5. Both data
sets contain bite and non-bite instances using a uniform win-
dow of 100 readings collected at a uniform rate. In order to
derive more consistent attribute values, the data sets only con-
tain positive bite instances recorded using the YEI 3-Space
Sensor. The non-bite instances, however, differ in each file.
Non-bite instances in uniform wind are derived from data col-
lected by the smart phone on non-bite activities. Although
these data were not collected by the YEI 3-Space Sensor, they
nevertheless represent arbitrary non-bite gestures. The uni-
form wind 5’s non-bite instances are derived from the YEI
3-Space Sensor. Many of these instances more closely re-
semble a bite and require greater precision by the machine
learning models in order to be correctly classified. In addi-
tion, the non-bite instances include motions such as reading a
book, washing one’s hands, and reaching for objects.

Feature Reduction Attempts

Although the data set does not have an extremely high di-
mensionality, we attempted to reduce these 18 features to an
optimal subset of features with respect to accuracy. To select
the most optimal features, we used the wrapper model. This
method works by training and testing a particular model’s ac-
curacy using only a subset of the available features. Theoreti-
cally, accuracy may be improved by choosing a subset of fea-
tures that excludes noisy and irrelevant features. Finding such
a subset requires searching through a search space of feature
subsets; our approach employed Weka’s genetic search algo-
rithm to sift through possible subsets.

Bagging and Boosting
With the most predictive features identified using the wrap-
per, we next tried improving our results further through use
of boosting and bagging.

Results

Learning Model Accuracy (%)
Logistic 100
MultilayerPerceptron 100
SimpleLogistic 99.1597
JRip 95.7983
PART 99.1597
J48 99.1597
LMT 99.1597
RandomForest 100
Average Accuracy 99.0546375

Table 4: Final Results for uniform-wind

Tables 3 and 4 summarize our final results for the uni-
form wind and uniform wind 5 data sets. Notice that several
of the models achieve 100% accuracy on uniform wind. Be-
cause uniform wind’s non-bite instances represent arbitrary
gestures, these results suggest that the machine learners are
well equipped to distinguish between arbitrary movements
compared to actual bite gestures.

Perhaps of greater interest are the results for uni-
form wind 5. Recall that this data set includes many non-bite
instances resembling actual bites. As the accuracies in Table
*** suggest, this appears to be a more difficult task. Even
after applying feature reduction, bagging, and boosting there
is only a slight improvement in accuracy. Despite the decline
in accuracy compared to uniform wind, it is remarkable that
the machine learners can still achieve near 90% accuracy by
each of the models. This is true of all of the tested learning
models; no one model significantly outperformed the rest.

Our feature reduction attempts for uniform wind 5 also re-
vealed some interesting results. Table 5 shows which features
were retained by each model after reduction; theoretically,
these features are the most predictive. The right most column
of Table 5 indicates the number of models that retained the



Features Logistic Multilayer
Percep-
tron

Simple
Logistic

JRip PART J48 LMT Random
Forest

Retained
by # of
Models

zSpecEntropy x x x x x x x x 8
zstd x x x x x x x 7
yzCov x x x x x x x 7
ystd x x x x x x 6
ySpecEntropy x x x x x 5
ySignalEnergyMean x x x x x 5
zSignalEnergyMean x x x x x 5
xzCov x x x x 4
zSignalEnergy x x x x 4
xSignalEnergyMean x x x x 4
xmean x x x 3
ymean x x x 3
zmean x x x 3
xSpecEntropy x x x 3
xstd x x 2
ySignalEnergy x x 2
xyCov 0
xSignalEnergy 0

Table 5: This table shows which features were retained following feature reduction on each of the models.

Information
Gain Rank-
ing

Attributes

0.3608 zSignalEnergy
0.3608 zstd
0.2782 zSpecEntropy
0.2291 xyCov
0.2059 xmean
0.2059 xSignalEnergyMean
0.1523 xzCov
0.0855 zmean
0.0752 zSignalEnergyMean
0 ymean
0 ystd
0 xstd
0 xSignalEnergy
0 ySignalEnergyMean
0 ySignalEnergy
0 yzCov
0 ySpecEntropy
0 xSpecEntropy

Table 6: Attributes ranked by information gain.

feature after reduction; the features have been sorted accord-
ing to this metric. Features derived from the z and y accel-
eration readings appear to be the most predictive across the
learning models. zSpecEntropy is used by all models. One
possible explanation for the predictive quality of features de-
rived from the y acceleration may be because the primary di-
rection of a bite gesture is up and down along the y axis.

Compare these results, however, with those of ranking fea-
tures according to the information gain each attribute pro-

vides (see Table 6). Again, attributes based on z acceleration
readings rank higher for predictive ability. This time, how-
ever, y’s derived features appear much lower. This may be
explained by the non-bite instances that do not resemble the
bite motions. For example, motions such as reaching for ob-
jects or washing one’s hands provide more motion in the z
direction than taking a bite. Thus, initially, a decision tree
would likely split based on attributes derived from the z ac-
celeration data to differentiate between bites and non-bites.
This may also explain why features derived from the z accel-
eration feature is retained so often during reduction.

Conclusion and Future Work

Our research reaffirms the possibility of correctly classify-
ing the physical motion of taking a bite. The results from
our experiments demonstrate that accuracy steadily improves
with the inclusion of calculated attributes such as variance,
spectral entropy, and spectral energy. In addition to this, we
observed slight accuracy improvements for various machine
learning models by bagging and finding an optimal subset of
features.

In future experiments, researchers can add more bite and
non-bite instances to the data set. A richer data set will al-
low for better overall learning and improved generalization to
new bite instances. These future experiments may also add
features to the data set in order to discover the most predic-
tive attributes for classifying bite instances. Finally, future
work may branch out to classify a variety of hand-to-head
movements–such as scratching the back of the head, touch-
ing the nose, or massaging the front of the neck.
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