Bagging, Boosting and Costs

Three meta-level techniques are often useful in
Data Mining applications.

They are termed meta-level because they apply to
a learning algorithm rather than an instance set,
and are aimed at improving the performance of a

learner on an instance set.

They are generally applicable to any learning
alogrithm.

e Bagging
e Boosting

e Cost-based Learning

Bagging

Bagging is a simple technique generally useful to:

e reduce the impact of the order of instances on
learning algorithms whose output models are
order-dependent, and/or

e reduce the probability of misclassification based
on any single induced model

Let L be the chosen learning algorithm, N be a
user-defined parameter specifying the number of
samples/bags, and d the size of each bag.

Algorithm Bagging(Instance_set, L, N, d)
For k <— 1to N
S;. < random sample of size d drawn from
Instance_set
M. + the model induced by L from S;,
For each new query instance ¢
Class(q) = argmax, = 6(v, M;(q))

where V' is the finite set of target class values, and

d(a,b) =1if a = b and 6(a, b) = 0 otherwise.

Note the similarity between bagging and N-fold
cross-validation.

Boosting

Boosting is based on the observation that finding
many rough rules of thumb (i.e., weak learning)
can be a lot easier than finding a single, highly
accurate prediction rule (i.e., strong learning).

Boosting assumes that weak learners can be made
strong by repeatedly running a given weak learner
on various distributions over the training data (i.e.,
varying the focus of the learner), and then
combining the weak classifiers into a single
composite classifier.

As with bagging, boosting generates a hypothesis
whose error on the training set is small by

combining many hypotheses whose error may be
large (but still better than random guessing - see

the test on ¢ in the AdaBoost.M1 algorithm).

However, unlike bagging, boosting tries actively to
force the weak learning algorithm to change 1ts
hypothesis by changing the distribution over the
training instances as a function of the errors made
by previously generated hypotheses.

AdaBoost.M1

Let L be the chosen “weak” learning algorithm
and T be the number of iterations to perform.

Algorithm AdaBoost.M1(Instance_set, L)
For ¢ «— 1 to | Instance_set |
Dy (3) - 1

|Instance_set|
Fort=1to T
h: <— the model induced by L from

Instance_set with distribution Dy
€t < 2ihy(;) 2y Dy(i)

If e > .5
T'—t—1
Abort loop

By fet

For ¢ «— 1 to | Instance_set |
- Dy(i) By if hi(x;) = v
Dy(1) « Z “ |1 otherwise
where Z; is a normalisation constant,
chosen so that D,y will be a distribution

hfinal(%) = argmaz, ey @)=y log é

