
Bagging, Boosting and Costs

Three meta-level techniques are often useful in
Data Mining applications.

They are termed meta-level because they apply to
a learning algorithm rather than an instance set,
and are aimed at improving the performance of a
learner on an instance set.

They are generally applicable to any learning
alogrithm.

• Bagging

• Boosting

• Cost-based Learning

4

Bagging

Bagging is a simple technique generally useful to:

• reduce the impact of the order of instances on
learning algorithms whose output models are
order-dependent, and/or

• reduce the probability of misclassification based
on any single induced model

Let L be the chosen learning algorithm, N be a
user-defined parameter specifying the number of
samples/bags, and d the size of each bag.

Algorithm Bagging(Instance set, L, N , d)
For k ← 1 to N

Sk ← random sample of size d drawn from
Instance set

Mk ← the model induced by L from Sk

For each new query instance q
Class(q) = argmaxv∈V

∑k
i=1 δ(v,Mi(q))

where V is the finite set of target class values, and
δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.

Note the similarity between bagging and N -fold
cross-validation.

5

Boosting

Boosting is based on the observation that finding
many rough rules of thumb (i.e., weak learning)
can be a lot easier than finding a single, highly
accurate prediction rule (i.e., strong learning).

Boosting assumes that weak learners can be made
strong by repeatedly running a given weak learner
on various distributions over the training data (i.e.,
varying the focus of the learner), and then
combining the weak classifiers into a single
composite classifier.

As with bagging, boosting generates a hypothesis
whose error on the training set is small by
combining many hypotheses whose error may be
large (but still better than random guessing - see
the test on εt in the AdaBoost.M1 algorithm).

However, unlike bagging, boosting tries actively to
force the weak learning algorithm to change its
hypothesis by changing the distribution over the
training instances as a function of the errors made
by previously generated hypotheses.

6

AdaBoost.M1

Let L be the chosen “weak” learning algorithm
and T be the number of iterations to perform.

Algorithm AdaBoost.M1(Instance set, L)
For i ← 1 to | Instance set |

D1(i) ←
1

|Instance set|

For t = 1 to T
ht ← the model induced by L from

Instance set with distribution Dt

εt ←
∑

i:ht(xi) #=yi
Dt(i)

If εt > .5
T ← t − 1
Abort loop

βt ←
εt

1−εt
For i ← 1 to | Instance set |

Dt+1(i) ←
Dt(i)
Zt

×



βt if ht(xi) = yi

1 otherwise
where Zt is a normalisation constant,
chosen so that Dt+1 will be a distribution

hfinal(x) ← argmaxy∈Y
∑

t:ht(x)=y log 1
βt

7

