Bagging, Boosting and Costs

Three *meta-level* techniques are often useful in Data Mining applications.

They are termed meta-level because they apply to a learning algorithm rather than an instance set, and are aimed at improving the performance of a learner on an instance set.

They are generally applicable to any learning alogrithm.

- Bagging
- Boosting
- Cost-based Learning

Bagging

Bagging is a simple technique generally useful to:

- reduce the impact of the order of instances on learning algorithms whose output models are order-dependent, and/or
- reduce the probability of misclassification based on any single induced model

Let L be the chosen learning algorithm, N be a user-defined parameter specifying the number of samples/bags, and d the size of each bag.

Algorithm Bagging(Instance_set, L, N, d) For $k \leftarrow 1$ to N $S_k \leftarrow$ random sample of size d drawn from Instance_set $M_k \leftarrow$ the model induced by L from S_k For each new query instance q $Class(q) = argmax_{v \in V} \Sigma_{i=1}^k \delta(v, M_i(q))$

where V is the finite set of target class values, and $\delta(a, b) = 1$ if a = b and $\delta(a, b) = 0$ otherwise.

Note the similarity between bagging and N-fold cross-validation.

Boosting

Boosting is based on the observation that finding many rough rules of thumb (i.e., weak learning) can be a lot easier than finding a single, highly accurate prediction rule (i.e., strong learning).

Boosting assumes that weak learners can be made strong by repeatedly running a given weak learner on various distributions over the training data (i.e., varying the focus of the learner), and then combining the weak classifiers into a single composite classifier.

As with bagging, boosting generates a hypothesis whose error on the training set is small by combining many hypotheses whose error may be large (but still better than random guessing - see the test on ϵ_t in the AdaBoost.M1 algorithm).

However, unlike bagging, boosting tries actively to force the weak learning algorithm to change its hypothesis by changing the distribution over the training instances as a function of the errors made by previously generated hypotheses.

AdaBoost.M1

Let L be the chosen "weak" learning algorithm and T be the number of iterations to perform.

Algorithm AdaBoost.M1(Instance_set, L)
For
$$i \leftarrow 1$$
 to $|$ Instance_set $|$
 $D_1(i) \leftarrow \frac{1}{|Instance_set|}$
For $t = 1$ to T
 $h_t \leftarrow$ the model induced by L from
Instance_set with distribution D_t
 $\epsilon_t \leftarrow \sum_{i:h_t(x_i) \neq y_i} D_t(i)$
If $\epsilon_t > .5$
 $T \leftarrow t - 1$
Abort loop
 $\beta_t \leftarrow \frac{\epsilon_t}{1 - \epsilon_t}$
For $i \leftarrow 1$ to $|$ Instance_set $|$
 $D_{t+1}(i) \leftarrow \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & \text{if } h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}$
where Z_t is a normalisation constant,
chosen so that D_{t+1} will be a distribution
 $h_{final}(x) \leftarrow argmax_{y \in Y} \sum_{t:h_t(x) = y} log \frac{1}{\beta_t}$