
ML Concepts Covered in 678
•  Advanced MLP concepts: Higher Order, Batch, 

Classification Based, etc.
•  Recurrent Neural Networks
•  Support Vector Machines
•  Relaxation Neural Networks

–  Hopfield Networks, Boltzmann Machines
•  Deep Learning – Deep Neural Networks
•  HMM (Hidden Markov Model) learning and Speech 

Recognition, EM algorithm
•  Rule Based Learning – CN2, etc.
•  Bias Variance Decomposition, Advanced Ensembles
•  Semi-Supervised Learning





Relaxation Networks



Other ML/678 Areas
•  ADIB (Automatic Discovery of Inductive Bias)
•  Structured Prediction, Multi-output Dependence 

Learning
•  Manifold Learning/Non-Linear Dimensionality 

Reduction
•  Record Linkage/Family History Directions
•  Meta-Learning
•  Feature Selection
•  Computational Learning Theory
•  Transfer Learning
•  Transduction
•  Other Unsupervised Learning Models
•  Statistical Machine Learning Class



Manifold Sculpting



Support Vector Machines

•  Elegant combination of statistical learning 
theory and machine learning – Vapnik

•  Good empirical results
•  Non-trivial implementation
•  Can be slow and memory intensive
•  Binary classifier
•  Much current work



SVM Overview
•  Non-linear mapping from input space into a higher 

dimensional feature space
•  Linear decision surface (hyper-plane) sufficient in 

the high dimensional feature space (just like MLP)
•  Avoid complexity of high dimensional feature 

space with kernel functions which allow 
computations to take place in the input space, 
while giving much of the power of being in the 
feature space

•  Get improved generalization by placing hyper-
plane at the maximum margin



Only need the support 
vectors since they 
define the decision 
surface, the other 
points can be ignored.

SVM learning finds 
the support vectors 
which optimize the 
maximum margin 
decision surface



Feature Space and Kernel 
Functions

•  Since most problems require a non-linear decision surface, we do a 
non-linear map Φ(x) = (Φ1(x),Φ2(x), …,ΦN(x)) from input space to 
feature space 

•  Feature space can be of very high (even infinite) dimensionality
•  By choosing a proper kernel function/feature space, the high 

dimensionality can be avoided in computation but effectively used for 
the decision surface to solve complex problems - "Kernel Trick"





The SVM learning about a linearly separable dataset (top row) and a dataset that 
needs two straight lines to separate in 2D (bottom row) with left the linear kernel, 
middle the polynomial kernel of degree 3, and right the RBF kernel.  Remember that 
right two models are separating with a Hyperplane in the expanded space.



Standard SVM Approach
1.  Select a 2 class training set, a kernel function, and C value (soft 

margin parameter)
2.  Pass these to a Quadratic optimization package which will return an 

α for each training pattern based on the following (non-bias 
version).  This optimization keeps weights and error both small.

3.  Training instances with non-zero α are the support vectors for the 
maximum margin SVM classifier.

4.  Execute by using the support vectors 





Basic Kernel Execution
Primal:

Dual:

Kernel version:

Support vectors and weights αi are obtained by a quadratic optimization solution



Dual vs. Primal Form
•  Magnitude of αi is an indicator of effect of pattern on weights 

(embedding strength) 
•  Note that patterns on borders have large αi while easy patterns never 

effect the weights 
•  Could have trained with just the subset of patterns with αi > 0 (support 

vectors) and ignored the others 
•  Can train in dual.  How about execution?  Either way (dual can be 

efficient if support vectors are few and/or the feature space would be 
very large) 



Standard (Primal) Perceptron Algorithm���
•  Target minus Output not used.  Just add (or subtract) a portion 

(multiplied by learning rate) of the current pattern to the weight vector 
•  If weight vector starts at 0 then learning rate can just be 1 
•  R could also be 1 for this discussion 



Dual and Primal Equivalence
•  Note that the final weight vector is a linear combination of 

the training patterns

•  The basic decision function (primal and dual) is

•  How do we obtain the coefficients αi  



Basic Kernel Execution
Primal:

Dual:

Kernel version:

Support vectors and weights αi are obtained by a quadratic optimization solution



Choosing a Kernel
•  Can start from a desired feature space and try to construct 

kernel
•  More often one starts from a reasonable kernel and may 

not analyze the feature space
•  Some kernels are better fit for certain problems, domain 

knowledge can be helpful
•  Common kernels: 

–  Polynomial
–  Gaussian   
–  Sigmoidal
–  Application specific

€ 

K(x,z) = e−γ x−z 2

€ 

K(x,z) = tanh(a x ⋅ z + c)
€ 

K(x,z) = (a x ⋅ z + c)d



SVM Notes
•  Excellent empirical and theoretical potential
•  Some people have just used the maximum margin with a linear 

classifier
•  Multi-class problems not handled naturally.  Basic model classifies 

into just two classes.  Can do one model for each class (class i is 1 and 
all else 0) and then decide between conflicting models using 
confidence, etc.

•  How to choose kernel – main learning parameter other than margin 
penalty C.  Kernel choice will include other parameters to be defined 
(degree of polynomials, variance of Gaussians, etc.)

•  Speed and Size: both training and testing, how to handle very large 
training sets (millions of patterns and/or support vectors) not yet 
solved



Standard (Primal) Perceptron Algorithm���
•  Target minus Output not used.  Just add (or subtract) a portion 

(multiplied by learning rate) of the current pattern to the weight vector 
•  If weight vector starts at 0 then learning rate can just be 1 
•  R could also be 1 for this discussion 



Dual and Primal Equivalence
•  Note that the final weight vector is a linear combination of 

the training patterns

•  The basic decision function (primal and dual) is

•  How do we obtain the coefficients αi  



Dual Perceptron Training Algorithm
•  Assume initial 0 weight vector



Dual vs. Primal Form
•  Gram Matrix: all (xi·xj) pairs – Done once and stored (can be large) 
•  αi: One for each pattern in the training set.  Incremented each time it is 

misclassified, which would lead to a weight change in primal form 
•  Magnitude of αi is an indicator of effect of pattern on weights (embedding 

strength) 
•  Note that patterns on borders have large αi while easy patterns never effect the 

weights 
•  Could have trained with just the subset of patterns with αi > 0 (support vectors) 

and ignored the others 
•  Can train in dual.  How about execution?  Either way (dual can be efficient if 

support vectors are few) 



Polynomial Kernels

•   For greater dimensionality can do



Kernel Trick Realities
•  Polynomial Kernel - all monomials of degree 2

–  x1x3y1y2 + x1x3y1y3 + ....  (all 2nd order terms)
–  K(x,z) = <Φ1(x)·Φ2(x)> = (x1x3)(y1y2) + (x1x3)(y1y3) + ... 
–  Lot of stuff represented with just one <x·z>2

•  However, in a full higher order solution we would would like separate 
coefficients for each of these second order terms, including weighting 
within the terms (i.e. (2x1)(y1·3y2))

•  SVM just sums them all with individual coefficients of 1
–  Thus, not as powerful as a second order system with arbitrary weighting
–  This kind of arbitrary weighting can be done in an MLP because learning 

is done in the layers between inputs and hidden nodes
–  Of course, individual weighting requires a theoretically exponential 

increase in terms/hidden nodes which we need to find weights for as the 
polynomial degree increases.  Also learning algorithms which can actually 
find these most salient higher-order features.



Maximum Margin
•  Maximum margin can lead to overfit due to noise
•  Problem may not be linearly separable within a 

reasonable feature space
•  Soft Margin is a common solution, allows slack 

variables
•  αi constrained to be >= 0 and less than C.  The C 

allows outliers.  How to pick C.  Can try different 
values for the particular application to see which 
works best. 



Soft Margins



•  Optimizing the margin in the higher order feature space is convex and 
thus there is one guaranteed solution at the minimum (or maximum)

•  SVM Optimizes the dual representation (avoiding the higher order 
feature space)

•  The optimization is quadratic in the αi terms and linear in the 
constraints – can drop C maximum for non soft margin

•  While quite solvable, requires complex code and usually done with a 
purchased numerical methods software package – Quadratic 
programming

Quadratic Optimization



Execution
•  Typically use dual form
•  If the number of support vectors is small then dual 

is fast
•  In cases of low dimensional feature spaces, could 

derive weights from αi and use normal primal 
execution

•  Approximations to dual are possible to obtain 
speedup (smaller set of prototypical support 
vectors)



Standard SVM Approach
1.  Select a 2 class training set, a kernel function (calculate the Gram 

Matrix), and C value (soft margin parameter)
2.  Pass these to a Quadratic optimization package which will return an 

α for each training pattern based on the following (non-bias version) 

3.  Patterns with non-zero α are the support vectors for the maximum 
margin SVM classifier.

4.  Execute by using the support vectors 



A Simple On-Line Approach
•  Stochastic on-line gradient ascent
•  Can be effective 
•  This version assumes no bias
•  Sensitive to learning rate
•  Stopping criteria tests whether it is an appropriate solution 

– can just go until little change is occurring or can test 
optimization conditions directly

•  Can be quite slow and usually quadratic programming is 
used to get an exact solution

•  Newton and conjugate gradient techniques also used – Can 
work well since it is a guaranteed convex surface – bowl 
shaped



•  Maintains a margin of 1 (typical in standard implementation) which 
can always be done by scaling α or equivalently w and b

•  Change update to not increase αi if term in parenthesis is > 1



Large Training Sets

•  Big problem since the Gram matrix (all (xi·xj) 
pairs) is O(n2) for n data patterns
–  106 data patterns require 1012 memory items
–  Can’t keep them in memory
–  Also makes for a huge inner loop in dual training

•  Key insight: most of the data patterns will not be 
support vectors so they are not needed



Chunking���
•  Start with a reasonably sized subset of the Data set (one 

that fits in memory and does not take too long during 
training)

•  Train on this subset and just keep the support vectors or 
the m patterns with the highest αi values

•  Grab another subset, add the current support vectors to it 
and continue training

•  Note that this training may allow previous support vectors 
to be dropped as better ones are discovered

•  Repeat until all data is used and no new support vectors are 
added or some other stopping criteria is fulfilled


