
ML Concepts Covered in 678
•  Advanced MLP concepts: Higher Order, Batch,

Classification Based, etc.
•  Recurrent Neural Networks
•  Support Vector Machines
•  Relaxation Neural Networks

–  Hopfield Networks, Boltzmann Machines
•  Deep Learning – Deep Neural Networks
•  HMM (Hidden Markov Model) learning and Speech

Recognition, EM algorithm
•  Rule Based Learning – CN2, etc.
•  Bias Variance Decomposition, Advanced Ensembles
•  Semi-Supervised Learning

Relaxation Networks

Other ML/678 Areas
•  ADIB (Automatic Discovery of Inductive Bias)
•  Structured Prediction, Multi-output Dependence

Learning
•  Manifold Learning/Non-Linear Dimensionality

Reduction
•  Record Linkage/Family History Directions
•  Meta-Learning
•  Feature Selection
•  Computational Learning Theory
•  Transfer Learning
•  Transduction
•  Other Unsupervised Learning Models
•  Statistical Machine Learning Class

Manifold Sculpting

Support Vector Machines

•  Elegant combination of statistical learning
theory and machine learning – Vapnik

•  Good empirical results
•  Non-trivial implementation
•  Can be slow and memory intensive
•  Binary classifier
•  Much current work

SVM Overview
•  Non-linear mapping from input space into a higher

dimensional feature space
•  Linear decision surface (hyper-plane) sufficient in

the high dimensional feature space (just like MLP)
•  Avoid complexity of high dimensional feature

space with kernel functions which allow
computations to take place in the input space,
while giving much of the power of being in the
feature space

•  Get improved generalization by placing hyper-
plane at the maximum margin

Only need the support
vectors since they
define the decision
surface, the other
points can be ignored.

SVM learning finds
the support vectors
which optimize the
maximum margin
decision surface

Feature Space and Kernel
Functions

•  Since most problems require a non-linear decision surface, we do a
non-linear map Φ(x) = (Φ1(x),Φ2(x), …,ΦN(x)) from input space to
feature space

•  Feature space can be of very high (even infinite) dimensionality
•  By choosing a proper kernel function/feature space, the high

dimensionality can be avoided in computation but effectively used for
the decision surface to solve complex problems - "Kernel Trick"

The SVM learning about a linearly separable dataset (top row) and a dataset that
needs two straight lines to separate in 2D (bottom row) with left the linear kernel,
middle the polynomial kernel of degree 3, and right the RBF kernel. Remember that
right two models are separating with a Hyperplane in the expanded space.

Standard SVM Approach
1.  Select a 2 class training set, a kernel function, and C value (soft

margin parameter)
2.  Pass these to a Quadratic optimization package which will return an

α for each training pattern based on the following (non-bias
version). This optimization keeps weights and error both small.

3.  Training instances with non-zero α are the support vectors for the
maximum margin SVM classifier.

4.  Execute by using the support vectors

Basic Kernel Execution
Primal:

Dual:

Kernel version:

Support vectors and weights αi are obtained by a quadratic optimization solution

Dual vs. Primal Form
•  Magnitude of αi is an indicator of effect of pattern on weights

(embedding strength)
•  Note that patterns on borders have large αi while easy patterns never

effect the weights
•  Could have trained with just the subset of patterns with αi > 0 (support

vectors) and ignored the others
•  Can train in dual. How about execution? Either way (dual can be

efficient if support vectors are few and/or the feature space would be
very large)

Standard (Primal) Perceptron Algorithm���
•  Target minus Output not used. Just add (or subtract) a portion

(multiplied by learning rate) of the current pattern to the weight vector
•  If weight vector starts at 0 then learning rate can just be 1
•  R could also be 1 for this discussion

Dual and Primal Equivalence
•  Note that the final weight vector is a linear combination of

the training patterns

•  The basic decision function (primal and dual) is

•  How do we obtain the coefficients αi

Basic Kernel Execution
Primal:

Dual:

Kernel version:

Support vectors and weights αi are obtained by a quadratic optimization solution

Choosing a Kernel
•  Can start from a desired feature space and try to construct

kernel
•  More often one starts from a reasonable kernel and may

not analyze the feature space
•  Some kernels are better fit for certain problems, domain

knowledge can be helpful
•  Common kernels:

–  Polynomial
–  Gaussian
–  Sigmoidal
–  Application specific

€

K(x,z) = e−γ x−z 2

€

K(x,z) = tanh(a x ⋅ z + c)
€

K(x,z) = (a x ⋅ z + c)d

SVM Notes
•  Excellent empirical and theoretical potential
•  Some people have just used the maximum margin with a linear

classifier
•  Multi-class problems not handled naturally. Basic model classifies

into just two classes. Can do one model for each class (class i is 1 and
all else 0) and then decide between conflicting models using
confidence, etc.

•  How to choose kernel – main learning parameter other than margin
penalty C. Kernel choice will include other parameters to be defined
(degree of polynomials, variance of Gaussians, etc.)

•  Speed and Size: both training and testing, how to handle very large
training sets (millions of patterns and/or support vectors) not yet
solved

Standard (Primal) Perceptron Algorithm���
•  Target minus Output not used. Just add (or subtract) a portion

(multiplied by learning rate) of the current pattern to the weight vector
•  If weight vector starts at 0 then learning rate can just be 1
•  R could also be 1 for this discussion

Dual and Primal Equivalence
•  Note that the final weight vector is a linear combination of

the training patterns

•  The basic decision function (primal and dual) is

•  How do we obtain the coefficients αi

Dual Perceptron Training Algorithm
•  Assume initial 0 weight vector

Dual vs. Primal Form
•  Gram Matrix: all (xi·xj) pairs – Done once and stored (can be large)
•  αi: One for each pattern in the training set. Incremented each time it is

misclassified, which would lead to a weight change in primal form
•  Magnitude of αi is an indicator of effect of pattern on weights (embedding

strength)
•  Note that patterns on borders have large αi while easy patterns never effect the

weights
•  Could have trained with just the subset of patterns with αi > 0 (support vectors)

and ignored the others
•  Can train in dual. How about execution? Either way (dual can be efficient if

support vectors are few)

Polynomial Kernels

•  For greater dimensionality can do

Kernel Trick Realities
•  Polynomial Kernel - all monomials of degree 2

–  x1x3y1y2 + x1x3y1y3 + (all 2nd order terms)
–  K(x,z) = <Φ1(x)·Φ2(x)> = (x1x3)(y1y2) + (x1x3)(y1y3) + ...
–  Lot of stuff represented with just one <x·z>2

•  However, in a full higher order solution we would would like separate
coefficients for each of these second order terms, including weighting
within the terms (i.e. (2x1)(y1·3y2))

•  SVM just sums them all with individual coefficients of 1
–  Thus, not as powerful as a second order system with arbitrary weighting
–  This kind of arbitrary weighting can be done in an MLP because learning

is done in the layers between inputs and hidden nodes
–  Of course, individual weighting requires a theoretically exponential

increase in terms/hidden nodes which we need to find weights for as the
polynomial degree increases. Also learning algorithms which can actually
find these most salient higher-order features.

Maximum Margin
•  Maximum margin can lead to overfit due to noise
•  Problem may not be linearly separable within a

reasonable feature space
•  Soft Margin is a common solution, allows slack

variables
•  αi constrained to be >= 0 and less than C. The C

allows outliers. How to pick C. Can try different
values for the particular application to see which
works best.

Soft Margins

•  Optimizing the margin in the higher order feature space is convex and
thus there is one guaranteed solution at the minimum (or maximum)

•  SVM Optimizes the dual representation (avoiding the higher order
feature space)

•  The optimization is quadratic in the αi terms and linear in the
constraints – can drop C maximum for non soft margin

•  While quite solvable, requires complex code and usually done with a
purchased numerical methods software package – Quadratic
programming

Quadratic Optimization

Execution
•  Typically use dual form
•  If the number of support vectors is small then dual

is fast
•  In cases of low dimensional feature spaces, could

derive weights from αi and use normal primal
execution

•  Approximations to dual are possible to obtain
speedup (smaller set of prototypical support
vectors)

Standard SVM Approach
1.  Select a 2 class training set, a kernel function (calculate the Gram

Matrix), and C value (soft margin parameter)
2.  Pass these to a Quadratic optimization package which will return an

α for each training pattern based on the following (non-bias version)

3.  Patterns with non-zero α are the support vectors for the maximum
margin SVM classifier.

4.  Execute by using the support vectors

A Simple On-Line Approach
•  Stochastic on-line gradient ascent
•  Can be effective
•  This version assumes no bias
•  Sensitive to learning rate
•  Stopping criteria tests whether it is an appropriate solution

– can just go until little change is occurring or can test
optimization conditions directly

•  Can be quite slow and usually quadratic programming is
used to get an exact solution

•  Newton and conjugate gradient techniques also used – Can
work well since it is a guaranteed convex surface – bowl
shaped

•  Maintains a margin of 1 (typical in standard implementation) which
can always be done by scaling α or equivalently w and b

•  Change update to not increase αi if term in parenthesis is > 1

Large Training Sets

•  Big problem since the Gram matrix (all (xi·xj)
pairs) is O(n2) for n data patterns
–  106 data patterns require 1012 memory items
–  Can’t keep them in memory
–  Also makes for a huge inner loop in dual training

•  Key insight: most of the data patterns will not be
support vectors so they are not needed

Chunking���
•  Start with a reasonably sized subset of the Data set (one

that fits in memory and does not take too long during
training)

•  Train on this subset and just keep the support vectors or
the m patterns with the highest αi values

•  Grab another subset, add the current support vectors to it
and continue training

•  Note that this training may allow previous support vectors
to be dropped as better ones are discovered

•  Repeat until all data is used and no new support vectors are
added or some other stopping criteria is fulfilled

