
CS 270 - Ensembles 1

Ensembles

CS 270 - Ensembles 2

A “Holy Grail” of Machine Learning

Automated

Learner

Just a

Data Set

or

just an

explanation

of the problem

Hypothesis

Input Features

Outputs

CS 270 - Ensembles 3

Ensembles
⚫ Multiple diverse models (Base Models) are trained on the same task and then

their outputs are combined to come up with a final output

⚫ Most commonly base models are variations of the same ML algorithm with
different training sets or hyperparameters

⚫ The specific overfit of each base model can be averaged out

⚫ If models are diverse (uncorrelated errors) then even if the individual models are
weak generalizers, the ensemble can be very accurate

⚫ Many different Ensemble approaches

– Bagging, Boosting, Stacking, Gating/Mixture of Experts, Wagging,
Mimicking, Heuristic Weighted Voting, Combinations

M1 MnM3M2

Combining Approach

Ensembles are Scriptural

Mosiah 29:26, 27 Now it is not common that the voice of the

people desireth anything contrary to that which is right; but

it is common for the lesser part of the people to desire that

which is not right; therefore this shall ye observe and make

it your law--to do your business by the voice of the people.

And if the time comes that the voice of the people doth

choose iniquity, then is the time that the judgments of God

will come upon you; yea, then is the time he will visit you

with great destruction even as he has hitherto visited this

land.

CS 270 - Ensembles 4

CS 270 - Ensembles 5

Bias vs. Variance
⚫ Learning models can have error based on two basic issues: Bias and

Variance

– "Bias" measures the basic capacity of a learning approach to fit the task

– "Variance" measures the extent to which different hypotheses trained using
a learning approach will vary based on training set variations and
hyperparameters

⚫ MLPs trained with backprop have low bias error because they can
fit tasks well, but can have relatively high variance error because
each model might fall into odd nuances (overfit) based on training
set choice, initial weights, and other parameters – Typical with the
more complex models

⚫ Naïve Bayes has high bias error (doesn't fit that well), but has no
variance error

⚫ We would like low bias error and low variance error

⚫ Ensembles using multiple trained models with high-variance and
low-bias error can average out the variance, leaving just the bias

Some classifiers

CS 270 - Ensembles 6

NEAREST

NEIGHBOR

GAUSSIAN

 QUADRATIC LINEAR

 BAYES
MULTILAYER

NEURAL

NETWORK

SUPPORT

 VECTOR

 MACHINE

SIMPLE

PERCEPTRON

Amplifying Weak Learners

⚫ Combining weak learners
– Assume n induced models which are independent of each other

with each having accuracy of about 60% on a two class problem.
While one model is not dependable, if a majority of a group of
these lean in one direction, then we can have higher confidence.

– If all n give the same class output then you can be confident it is
correct with probability 1-(1-.6)n. For n=10, confidence would be
99.4%.

– Normally not independent (e.g. similar training sets). If all n were
the same hypothesis, then no advantage could be gained.

– Also, unlikely that all n would give the same output, but if a
majority did, then still get an overall accuracy better than the base
accuracy of the models

– If m models say class 1 and w models say class 2, then

 P(majority_class) = 1 – Binomial(n, min(m,w), .6)

CS 270 - Ensembles 7

P(r) =
n!

r!(n - r)!
pr(1- p)n-r

CS 270 - Ensembles 8

Bagging

⚫ Bootstrap aggregating (Bagging)

⚫ Induce n learners using the same initial parameters

⚫ Each training set is chosen uniformly at random with replacement from the
original data set, training sets might be 2/3rds of the data set – still need to save
some separate data for testing

⚫ All n hypotheses have an equal vote for classifying novel instances

⚫ Great way to improve overall accuracy by decreasing variance. Consistent
significant empirical improvement

⚫ Does not overfit (whereas boosting may), but may be more conservative
overall on accuracy improvements

⚫ Bigger n the better (diminishing), but need to consider efficiency trade-off

⚫ Typically used with the same learning algorithm and thus best for those which
tend to give more diverse hypotheses based on initial random conditions

⚫ Could use other schemes to improve the diversity between learners

– Different initial hyperparameters, sampling approaches, etc.

– Different learning algorithms

– The more diversity the better - (yet often used just with the same learning algorithm
and different training subsets)

CS 270 - Ensembles 9

Boosting - AdaBoost

⚫ Boosting by resampling - Each TSt is chosen randomly with distribution Dt
with replacement from the original training data. D1 has all instances equally
likely to be chosen. Typically each TSt is the same size as the original data
set.

– Induce first model. Change Dt+1 so that instances which are mis-classified by the
current model on its current TS have a higher probability of being chosen for future
training sets.

– Keep training new models until stopping criteria met

⚫ n models induced – not best approach

⚫ Overall Accuracy levels out on validation set

⚫ Most recent model has accuracy less than 50% on its TS

⚫ All models vote, but each model’s vote is scaled by its accuracy on the
training set it was trained on

⚫ Boosting is more aggressive than bagging on accuracy but in some
cases can overfit and do worse – can theoretically converge to training
set

– On average better than bagging, but worse for some tasks

– In rare cases can be worse than the non-ensemble approach

– Bagging can be trained in parallel, Boosting requires sequential training

Boosting

⚫ Another approach to boosting is to have each base model

train on the entire training set but have the ML algorithm

take each current instance weighting into account during

learning.

⚫ How might you do that for

– MLPs

– Decision Trees

– k-NN

⚫ Then still have final models vote each weighted by its

accuracy

CS 270 - Ensembles 10

Boosting

⚫ Another approach to boosting is to have each base model

train on the entire training set but have the ML algorithm

take each current instance weighting into account during

learning.

⚫ How might you do that for

– MLPs – Scale learning rate by weight

– Decision Trees – instance membership is scaled by weight

– k-NN – node vote is scaled by weight

⚫ Then still have final models vote each weighted by its

accuracy

CS 270 - Ensembles 11

CS 270 - Ensembles 12

Ensemble Creation Approaches

⚫ A good goal is to get less correlated errors between models

⚫ Injecting randomness – initial weights, different learning parameters,

etc.

⚫ Different Training sets – Bagging, Boosting, different features, etc.

⚫ Different subset of features for each model

⚫ Forcing differences – different objective functions, auxiliary tasks

⚫ Different machine learning models

– Obvious, but surprisingly it is used less often

– More work to get all the models running, creating compatible data formats, etc.

⚫ One aspect of COD (Classifier Output Distance) research - which

algorithms are most different and thus most effective to ensemble

CS 270 - Ensembles 13

Ensemble Combining Approaches

⚫ Unweighted Voting (e.g. Bagging)

⚫ Weighted voting – based on accuracy, etc. (e.g. Boosting)

⚫ Stacking - Learn the combination function
– Higher order possibilities

– Which algorithm should be used for the stacker

– Must match the input/output data types between models

– Stacking the stack, etc.

⚫ Gating function/Mixture of Experts – The gating function
uses the input features to decide which expert or
combination (weighted) of experts to use in the vote with
experts being strong in different parts of the input space

⚫ Heuristic Weighted Voting – differs for each instance

Brief Intro to Gradient Boosting

⚫ Often used with decision trees and regression

⚫ Common winner in task competitions

⚫ Train first model F1 with the basic training set

⚫ Train next model h creating updated ensemble model Fm+1 = Fm + h

⚫ But, train h using the residual/error (the difference between the
target and the current output of Fm)

– For h, change training instance (x,y) to (x, y - Fm(x))

– Each new model learns to output and cancel the remaining error from the
previous model, leaving less error with each model

– Learning focuses on instances where the latest Fm has higher error

⚫ Also learns each model’s weighting coefficient  with gradient
descent to minimize chosen loss function (SSE common)

⚫ Once trained, Fm no longer changes, and we keep adding new h’s
until remaining error is almost gone or test error begins to increase

⚫ Final output is the weighted sum of the models

CS 270 - Ensembles 14

Gradient Boosting Training

CS 270 - Ensembles 15

Brief Intro to Gradient Boosting

⚫ How to combine? Each model’s weighting/voting coefficient i is
learned with gradient descent to minimize loss as models are created,
then frozen

⚫ XGBoost – eXtreme Gradient Boosting – a popular and successful
software library for efficient parallel gradient boosting
implementations

CS 270 - Ensembles 16

An Example of Gradient Boosting

CS 270 - Ensembles 17

1) Fit a shallow regression tree T1 to the data

• the first model is 𝑀1 = 𝑇1

• The shortcomings of the model are given by the negative

gradients.

2) Fit a tree T2 to the negative gradients

• The second model is: 𝑀2 = 𝑀1 + 𝜂𝛾2𝑇2

• 𝜂 is a learning rate (e.g. .1) to encourage more models

• 𝛾i is optimized, then frozen, so that 𝑀i best fits the data

3) Continue adding models (trees) until stopping criteria met

4) The final model is 𝑀final = 𝑀final-1 + 𝜂𝛾final 𝑇final

Gradient Boosting Notes

⚫ Avoid overfit (and maintain relatively weak models) by:

– Tree constraints (e.g. max depth usually 4-8)

– Tree models learn different  for each leaf node

– Stochastic Gradient Boosting - rows and/or columns dropped for

current TS – commonly creating TS for h by choosing 50% of DS

without replacement

– Shrinkage – new h’s scaled by smaller learning rate (e.g. .1),

leading to a larger number of iterative models (slower learning but

better generalization)

– Early stopping (validation set)

– Regularization - Standard L1 and L2 on weight magnitudes

CS 270 - Ensembles 18

Dropout – Overfit avoidance

⚫ For each instance during training temporarily drop any hidden or input
node and its connections with probability p and then train

⚫ Final network just has all averaged weights (actually scaled by 1-p since
that better matches the expected values at training time)

⚫ Works as if ensembling 2n different network substructures

⚫ Lots of other variations – Dropconnect, etc.

CS 270 - Ensembles 19

CS 270 - Ensembles 20

Ensemble Summary

⚫ Other Models – Random Forests, Boosted stumps,
Cascading, Arbitration, Delegation, PDDAGS (Parallel
Decision DAGs), Bayesian Model Averaging and
Combination, Clustering Ensemble, etc.

⚫ End-to-end ensembles, combiner participates in base
model training

⚫ Efficiency Issues
– Wagging (Weight Averaging) - Multi-layer? - Dropout

– Mimicking - Oracle Learning, semi-supervised

⚫ Great way to decrease variance/overfit

⚫ Almost always gain accuracy improvements with
Ensembles

Oracle Learning

CS 270 - Ensembles 21

	Slide 1: Ensembles
	Slide 2: A “Holy Grail” of Machine Learning
	Slide 3: Ensembles
	Slide 4: Ensembles are Scriptural
	Slide 5: Bias vs. Variance
	Slide 6: Some classifiers
	Slide 7: Amplifying Weak Learners
	Slide 8: Bagging
	Slide 9: Boosting - AdaBoost
	Slide 10: Boosting
	Slide 11: Boosting
	Slide 12: Ensemble Creation Approaches
	Slide 13: Ensemble Combining Approaches
	Slide 14: Brief Intro to Gradient Boosting
	Slide 15: Gradient Boosting Training
	Slide 16: Brief Intro to Gradient Boosting
	Slide 17: An Example of Gradient Boosting
	Slide 18: Gradient Boosting Notes
	Slide 19: Dropout – Overfit avoidance
	Slide 20: Ensemble Summary
	Slide 21: Oracle Learning

