
Deep Learning

l Basic Philosophy
l Why Deep Learning
l Deep Backpropagation
l CNNs – Convolutional Neural Networks
l First “Deep” Nets - Unsupervised Pre-Training Networks
l Deep Supervised Networks with managed gradient

approaches
– Learning tricks, Dropout, Batch normalization, ResNets, etc.

l GANs
l Recurrent Networks - LSTM, GRU
l Deep Reinforcement Learning
l Transformers - GPT

CS 270 – Deep Learning 1

Deep Learning Overview

l Train neural networks with many layers (vs. shallow nets
with just a couple of layers)

l Multiple layers work to build an improved feature space
– First layer learns 1st order features (e.g. edges…)
– 2nd layer learns higher order features (combinations of first layer

features, combinations of edges, etc.)
– Some models learn in an unsupervised mode and discover general

features of the input space – serving multiple tasks related to the
unsupervised instances (image recognition, etc.)

– Final layer of transformed features are fed into supervised layer(s)

CS 270 – Deep Learning 2

Deep Net Feature Transformation

CS 270 – Deep Learning 3

ML Model

New Feature Space

Original Features

Supervised
Learning

Supervised
or

unsupervised
Learning

Deep Learning Tasks
l Images Example: view of a learned vision feature layer (Basis)
l Each square in the figure shows the input image that maximally

activates one of the 100 units

CS 270 – Deep Learning 4

Why Deep Learning

l Biological Plausibility – e.g. Visual Cortex
l Hastad proof - Problems which can be represented with a

polynomial number of nodes with k layers, may require an
exponential number of nodes with k-1 layers (e.g. parity)

l Highly varying functions can be efficiently represented
with deep architectures
– Less weights/parameters to update than a less efficient shallow

representation

l Sub-features created in deep architecture can potentially be
shared between multiple tasks
– Type of Transfer/Multi-task learning

CS 270 – Deep Learning 5

Deep Neural Networks Sketch

l More than just MLPs, but…
l Rumelhart 1986 – great early success
l Interest subsides a bit in the late 90’s as other models are

introduced – SVMs, Graphical models, etc. – each "wave" ...
l Convolutional Neural Nets –LeCun 1989-> Image, speech, etc.
l Deep Belief nets (Hinton) and Stacked auto-encoders (Bengio) –

2006 – Unsupervised pre-training followed by supervised. Good
feature extractors.

l 2012 -> Initial successes with supervised approaches which
overcome vanishing gradient, etc., and are more generally
applicable. Current explosion, but don’t drop the other tools in
your kit!

– Stay the course

CS 270 – Deep Learning 6

Early Work

l Fukushima (1980) – Neo-Cognitron
l LeCun (1989) – Convolutional Neural Networks (CNN)

– Miminal interest at the time before other critical advances

l Many layered MLP with backpropagation
– Tried early but without much success

l Very slow
l Vanishing gradient

– More recent work demonstrated significant accuracy
improvements by "patiently" training deeper MLPs with BP using
fast machines (GPUs)

l More general learning!
l Much improved since 2012 with some important extensions to the

original MLP/BP approach

CS 270 – Deep Learning 7

Vanishing/Unstable Gradient

l Vanishing Gradient – error attenuates as it propagates to earlier
layers – t - z < 1, f '(net), scaled by small initial weights

l Leads to very slow training (especially at early layers when top
layers saturate and have small f '(net))

l Exacerbated since top couple layers can usually learn any task
"pretty well" and thus the error to earlier layers drops quickly as
the top layers "mostly" solve the task

l if lower layers never get the opportunity to use their capacity to
improve results, they can just be stuck with their initial random
feature mapping

l Need a way for early layers to do effective work
l Instability of gradient in deep networks: Vanishing or exploding

gradient
– Product of many terms, which unless “balanced” just right, is unstable
– Either early or late layers stuck while “opposite” layers are learning

CS 270 – Deep Learning 8

CS 270 – Deep Learning 9

Vanishing/Exploding Gradient

….

• Error attenuation, long patient training with GPUs, etc
• Recent algorithmic improvements - Rectified Linear Units,
better weight initialization, normalization between layers, residual
deep learning, etc. – 1000’s of layers being effectively trained, will discuss later

Convolutional Neural Networks
l "Niche" networks built specifically for problems with low

dimensional (e.g. 2-d) grid-like local structure – e.g. Images
– Vision, Character recognition, Speech, Games, Images - where

neighboring features have high correlations (pixels, words, etc.), while
distant features (pixels, words) are less correlated

l Typically just uses raw features (e.g. pixels) with no preprocessing
– Natural images have the property of being stationary, meaning that the

statistics of one part of the image are the same as any other part
– While standard NN nodes take input from all nodes in the previous

layer, CNNs enforce that a node receives only a small set of features
which are spatially or temporally close to each other called receptive
fields from one layer to the next (e.g. 3x3, 5x5), thus enabling ability
to handle local 2-D structure.

l Can find edges, corners, endpoints, etc.
l Good for problems with local 2-D structure, but lousy for general learning

with abstract features having no prescribed feature ordering or locality

CS 270 – Deep Learning 10

CS 270 – Deep Learning 11

Convolutional Neural Networks

12

l Big Picture: Each feature map learns a different feature. Each node
in feature map has same translated receptive field (and weights)

l Brute force search to see if and where certain features exist
l Pooling/sub-sampling – Does the feature exist in a general area
l Final standard supervised layer with improved feature space

Convolutions
l Typical MLPs have a connection from every node in the

previous layer, and the net value for a node is the scalar dot
product of the inputs and weights (e.g. matrix multiply).
Convolutional nets are somewhat different:

– Nodes still do a scalar dot product from the previous layer, but with
only a small portion (receptive field) of the nodes in the previous layer
– Sparse representation

– Every node in a feature map has the exact same weight values from
the preceding layer – Shared parameters, tied weights, a LOT less
unique weight values. Regularization by having same weights looking
at lots of input positions (Convolutional filter – same weights)

– Each node has its shared weight convolution computed on a receptive
field slightly shifted, from that of its neighbor, in the previous layer –
Translation invariance.

– Each node’s convolution scalar (net value) is then passed through a
non-linear activation function (ReLU, tanh, sigmoid, etc.)

CS 270 – Deep Learning 13

Convolution Example

CS 270 – Deep Learning 14

CNN
l The 2-d planes of nodes (or their outputs) at subsequent

layers in a CNN are called feature maps
l Thus each feature map searches the full previous layer to

see if, where, and how often its feature occurs (precise
position less critical)
– The output will be high at each node in the map corresponding to a

receptive field where the feature occurs (e.g. edge, curve)
– Convolution layers search across all feature maps of the previous

layer
– Later layers can concern themselves with higher order

combinations of features and rough relative positions – e.g. eyes
next to each other with nose below

CS 270 – Deep Learning 15

Convolutional Example
0 padding = 1 and stride = 1

CS 270 – Deep Learning 16

Sub-Sampling (Pooling)
l Convolution and sub-sampling layers can be interleaved
l Sub/Down-sampling (Pooling) allows the number of features to be

diminished, and to pool information
– Pooling replaces the network output at a certain point with a summary statistic

of nearby outputs
– Max-Pooling common (Just as long as the feature is there, take the max, as

exact position is not that critical), also averaging, etc.
– Pooling smooths the data and reduces spatial resolution and thus naturally

decreases importance of exactly where a feature was found, just keeping the
rough location – translation invariance

– 2x2 pooling would do 4:1 compression, 3x3 9:1, etc.
– Convolution may increase number of feature maps per layer, pooling keeps

same number of reduced maps (one-to-one correspondence of convolution
map to pooled map) as the previous layer

– Less pooling layers common in recent architectures to allow more depth

CS 270 – Deep Learning 17

Max Pooling Example
(Sum or Average sometimes used)

CS 270 – Deep Learning 18

Max and Average Pooling
Non overlapping: Stride = 2

CS 270 – Deep Learning 19

Pooling (cont.)
l Common layers are convolution, non-linearity, then pool (repeat)
l Note that pooling/down-sampling decreases map sizes (unless pool

stride = 1, highly overlapped), making real deep nets more difficult.
Pooling is sometimes used only after multiple convolved layers and
sometimes not at all.

l At later layers pooling can make network invariant to more than just
translation – learned invariances

CS 270 – Deep Learning 20

CNN Training
l Trained with BP, with weight tying in each feature map

– Randomized initial weights throughout entire network, standard training on final
fully connected network

l Feature Maps
– Each feature map has one weight for each input and one bias
– Thus a feature map with a 5x5 receptive field (filter) would have a total of 26

weights, which are the same coming into each node of the feature map
– If a convolution layer had 10 feature maps with 5x5 receptive fields, then a total

of 260 unique weights would be trained in that layer (much less than an arbitrary
deep net layer without sharing)

– Calculate weight updates independently into each node but don’t update yet.
Average the weight updates over the tied weights and update each the same.

l Sub-Sampling (Pooling) Layer
– All elements of receptive field max’d, averaged, summed, etc. No trainable

weights necessary
l While all weights are trained, the structure of the CNN is currently

usually hand crafted with trial and error, including number of total
layers, number of receptive fields, size of receptive fields, size of sub-
sampling (pooling) fields, etc.

CS 270 – Deep Learning 21

CNN Hyperparameters
l Structure itself, number of layers, size of filters, number of

feature maps in convolution layers, connectivity between layers,
activation functions, final supervised layers, etc.

l Drop-out often used in final fully connected layers for overfit
avoidance – less critical in convolution/pooling layers which
already regularize due to weight sharing

l As is, the feature map would always decrease in volume which is
not usually desirable - Zero-padding avoids this and lets us
maintain up to the same volume

– Would shrink fast for large kernel/filter sizes and would limit the depth
(number of layers) in the network, smaller kernels common (3x3)

– Also allows the different filter sizes to fit arbitrary map widths
l Stride – Don’t have to test every location for the feature (i.e.

stride = 1), could sample more coarsely
– Another option (besides pooling) for down-sampling

CS 270 – Deep Learning 22

Zero-Pad = 1, Stride = 2

CS 270 – Deep Learning 23

Convolutional Example
Zero pad = 1 and stride = 1

CS 270 – Deep Learning 24

Note that the next
layer (top) is still
5x5 due to the
zero padding.
What size would
the next layer
have been without
zero padding?

Example – CNN MNIST Classification

25

l Roughly based on LeCun's original model. To help it all sink in:
l How many connections and trainable weights at each layer?

– MNIST data input is 28x28 pixels
– Stride = 1 for convolutions, and pooling is non-overlapping

 6 maps 16 maps 120 nodes

CS 270 – Deep Learning

Basic CNN Example

l Why 32x32 to start with? Actual characters never bigger than 28x28. Just padding the edges so
for example the top corner node of the feature map can have a pad of two up and left for its
feature map (since receptive field is 5x5). Same things happens with 14x14 to 10x10 drop from
S1 to C2.

l S1 and S2 non-overlapping and pool (max most common) – We include here the 4 unweighted
connections
– LeCun had a trainable weight and a bias in pool layer followed by a non-linearity, not really necessary and not

used these days
l C2: Connects to all preceding maps, but no zero-padding so maps decrease in size

– LeCun had each map connect to a subset of the preceding maps
l S2: Final number of extracted features to go to the MLP: (5*5)*16 = 400
l 419,538 total connections, with 51,902 trainable parameters 95% of which are in the final MLP.

Only 2572 trainable weights in CNN.
CS 270 – Deep Learning 26

Layer Trainable Weights per layer Total Connections
C1 (25+1)*6 = 156 156*28*28 = 122,304
S1 0 (LeCun had (1+1)*6 = 12) 4 (2x2 links) *6*14*14 = 4704
C2 (5*5*6+1)*16 = 2416 2416*10*10 = 241,600
S2 0 4 (2x2 links) *16*5*5 = 1600
N1 (5*5*16+1)*120 = 48,120 Same since fully connected MLP at this point
Output (120+1)*10 = 1210 Same

Convolutional Neural Networks

27

CNN Homework
l Assume a traditional CNN with an initial input image of 16x16,

followed by a convolutional layer with 8 feature maps using 5x5
receptor fields, followed by a max pooling layer with 2x2 receptive
fields, followed by a convolution layer with 10 feature maps using 3x3
receptor fields. Those outputs go straight into (no additional pooling
layer) a fully connected MLP with 20 hidden nodes followed by 3
output nodes for 3 possible output classes. Assume no zero-padding
and stride=1 for convolution layers, no overlap and no trainable
weights for the one pooling layer, and convolutional maps connect to
all maps in the previous layer. Sketch the network. For each layer state
a) What is the size of the maps in the layer (e.g. the input layer is
16x16), b) how many unique trainable weights are there per layer, and
c) total connections in the layer. Show your work and explain your
numbers in each case (similar to the previous slide).

CS 270 – Deep Learning 28

ILSVRC Image net Large Scale Vision
Recognition Competition

CS 270 – Deep Learning 29

RGB: 224 x 224 x 3 = 150,528 raw real valued features

CS 270 – Deep Learning 30

Increasing Depth

CS 270 – Deep Learning 31

Example CNNs Structures ILSVRC winners

• Note Pooling considered part of
the layer

• 96 convolution kernels (maps),
then 256, then 384

• Stride of 4 for first convolution
kernel, 1 for the rest

• Pooling layers with 3x3
receptive fields and stride of 2
throughout

• Finishes with fully connected
(fc) MLP with 2 hidden layers
and 1000 output nodes for
classes

Example CNNs Structures ILSVRC winners

32CS 270 – Deep Learning

CNN Summary
l High accuracy for image applications – Breaking all records and

doing it using just using just raw pixel features!
l Special purpose net –Works for images or problems with strong

grid-like local spatial/temporal correlation (Speech, games, etc.)
l Once trained on one problem (e.g. vision) could use same net

(often tuned) for a new similar problem – general creator of
vision features, pre-trained nets

l Unlike traditional nets, handles variable sized inputs
– Same filters and weights, just convolve across different sized image

and dynamically scale size of sub-sampling (pooling or increase strid
with convolutions), or # of nodes, to normalize

– Different sized images, different length speech segments, etc.
l Lots of hand crafting and CV tuning to find the right recipe of

receptive fields, layer interconnections, etc.
– Lots more Hyperparameters than standard nets, since the structures of

CNNs are more handcrafted
– CNNs getting wider and deeper with speed-up techniques (e.g. GPU,

ReLU, etc.) and lots of current research, excitement, and success

CS 270 – Deep Learning 33

Unsupervised Pre-Training
l Began the hype of Deep-Learning (2006)

– Before CNNs were fully recognized for what they could do
– Less popular at the moment for supervised learning, with recent

supervised success, but still at the core of many new research
directions

– Unsupervised Pre-Training uses unsupervised learning in the deep
layers to transform the inputs into features that are easier to learn by
a final supervised model

– Unsupervised training between layers can decompose the problem
into distributed sub-problems (with higher levels of abstraction) to be
further decomposed at subsequent layers

l Often not a lot of labeled data available while there may be
lots of unlabeled data. Unsupervised Pre-Training can take
advantage of unlabeled data. Can be a huge issue for some
tasks.

CS 270 – Deep Learning 34

Self Taught vs Unsupervised Learning

l When using Unsupervised Learning as a pre-processor to supervised
learning you are typically given examples from the same distribution
as the later supervised instances will come from

– Assume the distribution comes from a set containing just examples from a
defined set of possible output classes, but the label is not available (e.g. images
of car vs trains vs motorcycles)

l In Self-Taught Learning we do not require that the later supervised
instances come from the same distribution

– e.g., Do self-taught learning with any images, even though later you will do
supervised learning with just cars, trains and motorcycles.

– These types of distributions are more readily available than ones which just
have the classes of interest (i.e. not labeled as car or train or motorcycle)

– However, if distributions are very different…
l New tasks share concepts/features from existing data and statistical

regularities in the input distribution that many tasks can benefit from
– Can re-use well-trained nets as starting points for other tasks
– Note similarities to supervised multi-task and transfer learning

l Both unsupervised and self-taught approaches reasonable in deep
learning models

CS 270 – Deep Learning 35

Deep Net with Greedy Layer Wise Training

CS 270 – Deep Learning 36

ML Model

New Feature Space

Original Inputs

Supervised
Learning

Unsupervised
Learning

Greedy Layer-Wise Training

1. Train first layer using your data without the labels (unsupervised)
– Since there are no targets at this level, labels don't help. Could also use

the more abundant unlabeled data which is not part of the training set
2. Then freeze the first layer parameters and start training the second

layer using the output of the first layer as the unsupervised input
to the second layer

3. Repeat this for as many layers as desired
– This builds the set of robust features

4. Use the outputs of the final layer as inputs to a supervised
layer/model and train the last supervised layer(s) (leave early
weights frozen)

5. Unfreeze all weights and fine tune the full network by training
with a supervised approach, given the pre-training weight settings

CS 270 – Deep Learning 37

Greedy Layer-Wise Training
l Greedy layer-wise training avoids many of the problems of

trying to train a deep net in a supervised fashion
– Each layer gets full learning focus in its turn since it is the only

current "top" layer (no unstable gradient issues, etc.)
– Can take advantage of unlabeled data
– When you finally tune the entire network with supervised training

the network weights have already been adjusted so that you are in
a good error basin and just need fine tuning. This helps with
problems of

l Ineffective early layer learning
l Deep network local minima

l The two early landmark approaches
– Deep Belief Networks
– Stacked Auto-Encoders

CS 270 – Deep Learning 38

Auto-Encoders
l A type of unsupervised learning which discovers generic features of the

data
– Learn identity function by learning important sub-features
– Compression, etc. – Undercomplete |h| < |x|
– For |h| ≥ |x| (Overcomplete case more common in deep nets) use regularized

autoencoding: Loss function includes regularizer to make sure we don’t just
pass through the data (e.g. sparsity, noise robustness, etc.)

39

Stacked Auto-Encoders
l Bengio (2007) – After Deep Belief Networks (2006)
l Stack many (sparse) auto-encoders in succession and train them

using greedy layer-wise training
l Drop the decode output layer each time

40

Stacked Auto-Encoders
l Do supervised training (can now only used labeled

examples) on the last layer using final features
l Then do supervised training on the entire network to fine-

tune all weights

41

CS 270 – Deep Learning 42

Sparse Encoders
l Auto encoders will often do a dimensionality reduction

– PCA-like or non-linear dimensionality reduction
l This leads to a "dense" representation which is nice in terms of

parsimony
– All features typically have non-zero values for any input and the

combination of values contains the compressed information
l However, this distributed and entangled representation can often

make it more difficult for successive layers to pick out the salient
features

l A sparse representation uses more features where at any given
time many/most of the features will have a 0 value (ReLUs help)

– Thus there is an implicit compression each time but with varying nodes
– This leads to more localist variable length encodings where a particular

node (or small group of nodes) with value 1 signifies the presence of a
high-order feature (small set of bases)

– A type of simplicity bottleneck (regularizer)
– This is easier for subsequent layers to use for learning

CS 270 – Deep Learning 43

Sparse Representation
l For bases below, which is easier to see intuition for current

pattern - if a few of these are on and the rest 0, or if all
have some non-zero value?

l Easier to learn if sparse

CS 270 – Deep Learning 44

How do we implement a sparse Auto-
Encoder?

l Use more hidden nodes in the encoder
l Use regularization techniques which encourage sparseness

(e.g. a significant portion of nodes have 0 output for any
given input)
– Penalty in the learning function for non-zero nodes
– Weight decay
– etc.

l De-noising Auto-Encoder
– Stochastically corrupt training instance each time, but still train

auto-encoder to decode the uncorrupted instance, forcing it to de-
noise and learn conditional dependencies within the instance

– Improved empirical results, handles missing values well

CS 270 – Deep Learning 45

Stacked Auto-Encoders

l Concatenation approach (i.e. using both hidden features and
original features in final (or other) layers) can be better if not
doing fine tuning. If fine tuning, the pure replacement approach
works well.

l Always fine tune if there is a sufficient amount of labeled data
l For real valued inputs, auto-encode training is regression and

thus could use linear output node activations (thrown out after
anyways), still ReLU/non-linear at hidden which are final nodes

l Stacked Auto-Encoders empirically not quite as accurate as
DBNs (Deep Belief Networks)

– (with De-noising auto-encoders, stacked auto-encoders competitive
with DBNs)

– Not generative like DBNs, though recent work with de-noising auto-
encoders may allow generative capacity

CS 270 – Deep Learning 46

Deep Belief Networks (DBN)

l Geoff Hinton (2006) – Beginning of Deep Learning hype –
outperformed kernel methods on MNIST – Also generative

l Uses Greedy layer-wise training but each layer is an RBM
(Restricted Boltzmann Machine)

l RBM is a constrained
Boltzmann machine with
– No lateral connections between

hidden (h) and visible (x) nodes
– Symmetric weights
– Does not use annealing/temperature, but that is all right since each

RBM not seeking a global minima, but rather an incremental
transformation of the feature space

– Typically uses probabilistic logistic node, but other activations
possible

CS 270 – Deep Learning 47

RBM Sampling and Training
l Initial state typically set to a training

example x (can be real valued)
l Because of RBM, sampling is simple iterative back and forth process

– P(hi= 1|x) = sigmoid(Wix + ci) = 1/(1+e-net(hi)) // ci is hidden node bias
– P(xi= 1|h) = sigmoid(W'ih + bi) = 1/(1+e-net(xi)) // bi is visible node bias

l Contrastive Divergence (CD-k): How much contrast (in the statistical
distribution) is there in the divergence from the original training
example to the relaxed version after k relaxation steps

l Then update weights to decrease the divergence as in Boltzmann
l Typically just do CD-1 (Good empirical results)

– Since small learning rate, doing many CD-1 updates is similar to doing fewer
versions of CD-k with k > 1

– Note CD-1 just needs to get the gradient direction right, which it usually
does, and then change weights in that direction according to the learning rate

CS 270 – Deep Learning 48

Δwij = ε(h1, j ⋅ x1,i −Q(hk+1, j =1| xk+1)xk+1,i)
Δwij = ε(initial _h_ sample ⋅ initial _ x − final _h_ probabilty ⋅ final _ x _ sample)

CS 270 – Deep Learning 49

RBM Update Notes and Variations
l Example (based on HW with different values) and Homework
l Binomial unit means the standard MLP sigmoid unit
l Q and P are probability distribution vectors for hidden (h) and

visible/input (x) vectors respectively
l During relaxation/weight update can alternatively do updates

based on the real valued probabilities (sigmoid(net)) rather than
the 1/0 sampled logistic states

– Always use actual/binary values from initial x -> h
l Doing this makes the hidden nodes a sparser bottleneck and is a

regularizer helping to avoid overfit
– Could use probabilities on the h -> x and/or final x -> h

l in CD-k the final update of the hidden nodes usually uses the probability
value to decrease the final arbitrary sampling variation (sampling noise)

l Lateral restrictions of RBM allow this fast sampling

CS 270 – Deep Learning 50

RBM Update Variations and Notes

l Initial weights, small random, 0 mean, sd ~ .01
– Don't want hidden node probabilities early on to be close to 0 or 1,

else slows learning, since less early randomness/mixing? Note that
this is a bit like annealing/temperature in Boltzmann

l Set initial x bias values as a function of how often node is
on in the training data, and h biases to 0 or negative to
encourage sparsity

l Better speed when using momentum (~.5)
l Weight decay good for smoothing and also encouraging

more mixing (hidden nodes more stochastic when they do
not have large net magnitudes)

CS 270 – Deep Learning 51

Deep Belief Network Training

l Same greedy layer-wise approach
l First train lowest RBM (h0 – h1) using

RBM update algorithm (note h0 is x)
l Freeze weights and train subsequent

RBM layers
l Then connect final outputs to a

supervised model and train that model
l Finally, unfreeze all weights, and fine

tune as an MLP using the initial weights
found by DBN training

l Can do execution as just the tuned MLP
or as the RBM sampler with the tuned
weights

CS 270 – Deep Learning 52

During execution can iterate multiple times at the top RBM layer

Can use DBN as a Generative model to create sample x vectors
1. Initialize top layer to an arbitrary vector (commonly a training set vector)

l Gibbs sample (relaxation) between the top two layers m times
l If we initialize top layer with values obtained from a training example, then need

less Gibbs samples
2. Pass the vector down through the network, sampling with the calculated

probabilities at each layer
3. Last sample at bottom is the generated x vector (can be real valued if we use

the probability vector rather than sample)
Alternatively, can start with an x at the bottom, relax to a top value, then start from

that vector when generating a new x, which is the dotted lines version. More
like standard Boltzmann machine processing.

53CS 270 – Deep Learning

54

Middle for-loop samples from input up to current RBM layer
being updated – none for 1st layer, mean_field_computation
just a flag on whether to sample or use real valuesCS 270 – Deep Learning

DBN Execution
l After all layers have learned then the output of the last layer can

be input to a supervised learning model
l Note that at this point we could potentially throw away the

downward bias weights in the network as they will not actually
be used during the feedforward discriminative execution process
(as we did with the Stacked Auto Encoder)

– If we are relaxing M times in the top layer then we would still need the
downward weights for that layer

– Also if we are generating x values we would need all of them
l The final weight tuning is usually done as an MLP with

backpropagation, which only updates the feedforward weights
l Can do execution as just the tuned MLP or as the RBM sampler

with the tuned weights

CS 270 – Deep Learning 55

DBN Learning Notes
l RBM stopping criteria still in issue.
l Each layer updates weights so as to make training sample

patterns more likely (lower energy) in the free state (and
non-training sample patterns less likely).

l This unsupervised approach learns broad features (in the
hidden/subsequent layers of RBMs) which can aid in the
process of making the types of patterns found in the
training set more likely. This discovers features which can
be associated across training patterns, and thus potentially
helpful for other goals with the training set (classification,
compression, etc.)

l Note still pairwise weights in RBMs, but because we can
choose the number of hidden units and layers, we can
represent any arbitrary distribution

CS 270 – Deep Learning 56

MNIST

CS 270 – Deep Learning 57

DBN Project Notes
l To be consistent just use 28×28 (764) data set of gray scale

values (0-255)
– Normalize to 0-1
– Could try better preprocessing if want and helps in published

accuracies, but start/stay with this
– Small random initial weights

l Parameters
– Hinton Paper, others – do a little searching and e-mail me a reference

for extra credit points
– http://yann.lecun.com/exdb/mnist/ for sample approaches

l Straight 200 hidden node MLP does quite good ~98%
– Rough Hyperparameters - LR: ~.05-.1, Momentum ~.5

l Best class DBN results: ~98.5% - which is competitive
– About half students never beat MLP baseline
– Can you beat the 98.5%?

CS 270 – Deep Learning 58

http://yann.lecun.com/exdb/mnist/

Deep Learning Project Past Experience
l Structure: ~3 hidden layers, ~500ish nodes/layer, more nodes/layers

can be better but training is longer
l Training time:

– DBN: ~10 epochs with the 60K set, small LR ~.005 often good
– Can go longer, does not seem to overfit with the large data set
– SAE: Can saturate/overfit, ~3 epochs good, but will be a function of your de-

noising approach, which is essential for sparsity, use small LR ~.005, long
training – up to 50 hours, got 98.55

l Larger learning rates often lead to low accuracy for both DBN and SAE

l Sampling vs using real probability value in DBN
– Best results found when using real values vs. sampling
– Some found sampling on the back-step of learning helps
– When using sampling, probably requires longer training, but could actually

lead to bigger improvements in the long run
– Typical forward flow non-sampled during execution, but could do some

sampling on the m iterations at the top layer. Some success with back-step at
the top layer iteration (most don't do this at all)

– We need to try/discover better variations

CS 270 – Deep Learning 59

Deep Learning Project Past Experience

l Note: If we held out 50K of the dataset as unsupervised,
then deep nets would more readily show noticeable
improvement over BP

l A final full network fine tune with BP always helps
– But can take 20+ hours

l Key take away – Most actual time spent training with
different parameters. Thus, start early, and then you will
have time to try multiple long runs to see which variations
work. This does not take that much personal time, as you
simply start it with some different parameters and go away
for a day. If you wait until the last few days, there is no
time to do these experiments.

CS 270 – Deep Learning 60

DBN Notes

l Can use lateral connections in RBM (no longer RBM) but
sampling becomes more difficult (intractable,
approximation such as MCMC) – ala standard Boltzmann
requiring longer sampling chains.
– Lateral connections can capture pairwise dependencies allowing

the hidden nodes to focus on higher order issues. Can get better
results.

l Conditional and Temporal RBMs – allow node
probabilities to be conditioned by some other inputs –
context, recurrence (time series changes in input and
internal state), etc.

CS 270 – Deep Learning 61

Discrimination with Deep Belief Networks
l Discrimination approaches with DBNs (Deep Belief Net)

– Use outputs of DBNs as inputs to supervised model (i.e. just an
unsupervised preprocessor for feature extraction)

l Basic approach we have been discussing
– Train a DBN for each class. For each clamp the unknown x and

iterate m times. The DBN that ends with the lowest normalized free
energy (softmax variation) is the winner.

– Train just one DBN for all classes, but with an additional visible unit
for each class. For each output class:

l Clamp the unknown x, relax, and then see which final state has lowest
free energy – no need to normalize since all energies come from the
same network.

l See http://deeplearning.net/demos/

CS 270 – Deep Learning 62

http://deeplearning.net/demos/

More Efficient Deep Learning
l Recent success in doing supervised deep learning with

extensions which diminish the effect of early learning
difficulties (unstable gradient, etc.)

l Patience (now that we know it can be worth it), faster
computers, and use of GPUs/TPUs

l More efficient activation functions (e.g. ReLU) in terms of both
computation and avoiding f '(net) saturation

– Also can be helpful to have 0 mean activations at each level, so
sigmoid is frowned upon these days. If you want a saturating
activation function, tanh is often preferred.

l Speed up and regularization approaches
l Improved Hyperparameters
l Batch Normalization – re-normalize activations at each layer
l Residual Nets

CS 270 – Deep Learning 63

Rectified Linear Units

l f(x) = Max(0,x) More efficient gradient propagation, derivative is 0 or
constant, just fold into learning rate

– Helps f '(net) issue, but still left with other unstable gradient issues
l More efficient computation: Only comparison, addition and

multiplication.
– Leaky ReLU f(x) = x if x > 0 else ax, where 0 ≤ a <= 1, so that derivate is not 0

and can do some learning for net < 0 (does not “die”).
– Lots of other variations

l Sparse activation: For example, in a randomly initialized network, only
about 50% of hidden units are activated (having a non-zero output)

l Learning in linear range easier for most learning models
CS 270 – Deep Learning 64

Speed up variations of SGD
l Use mini-batch rather than single instance for better gradient estimate

– Helpful if using GD variation more sensitive to bad gradient, and
especially for parallel implementations

l Momentum (i.e. Adaptive learning rate) approaches are important
since anything to speed-up learning is helpful

– Standard Momentum
l Note the these approaches already do an averaging of grading also making mini-

batch less critical
– Nesterov Momentum – Calculate point you would go to if using normal

momentum. Then, compute gradient at that point. Do normal update using
that gradient and momentum.

– Rprop – Resilient BP, if gradient sign inverts, decrease the node’s individual
LR, else increase it – common goal is faster in the flats, there are variants that
backtrack a step, etc.

– Adagrad – Scale LRs inversely proportional to sqrt(sum(historical values)) –
LRs with smaller derivatives are decreased less

– RMSprop – Adagrad but uses exponentially weighted moving average, older
updates basically forgotten

– Adam (Adaptive moments) –Momentum terms on both gradient and squared
gradient (1st and 2nd moments) – update based on both

CS 270 – Deep Learning 65

Regularization – Dropout Common

l For each instance drop a node (hidden or input) and its connections with
probability p and train

l Final net just has all averaged weights (actually scaled by 1-p since that
better matches the expected values at training time)

l As if ensembling 2n different network substructures
l Lots of variations – Dropconnect, etc.

CS 270 – Deep Learning 66

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Improved Initial Hyperparameter Settings

l Deep networks are more sensitive than shallow networks to
hyperparameter settings

l More critical for deep learning in order to get more balanced
learning across all layers

l Smaller LRs – patience
l To encourage sparsity sometimes initial biases set negative or

more initial 0 weights are interspersed
l Initial weights – initialize a little larger in effort to find a

balance which learns well across all layers. Common is to select
initial weights from a uniform distribution between

– -c/root(node fan-in), c/root(node fan-in) (c = 1 Xavier, c = 2 He)
– -c/root(node fan-in + fan-out), c/root(node fan-in + fan-out)

l Can do Gaussian distribution with above as variances
l Lots of other variations and current work

CS 270 – Deep Learning 67

Batch Normalization (2015)
l Rather than just guess initial parameters to maintain learning balance,

renormalize activations at each layer to maintain balance
l Just like it is critical to normalize our initial features, we consider each

layer to be a new feature set which can also be normalized
l We like 0-mean and unit variance inputs (standard 1st layer

normalization), we can just re-normalize the net value (less commonly the
activation value) for each input dimension k at each layer

l Think of each net value as a new feature. Want mean and variance of that
activation for the entire data set. Changing! Approximate the empirical
mean and variance over a mini-batch of instances.

l Goes beyond standard normalization by allowing scaling and shifting of
the normalized values with 2 learnable weights per input, γ and β, to attain
the final batch normalization (allows recovery of initial or any needed
function)

CS 270 – Deep Learning 68

69

Batch Normalization [Ioffe and Szegedy,
2015]

• Note: Dropped k for
simplicity

• γ and β learned as part of
gradient descent

• At test time BatchNorm
layer functions
differently:

• The mean/std are not
computed based on a
batch. Instead, we use
empirical means of
values found during
training

• (e.g. can be estimated
during training with
running averages)

Batch Normalization

CS 270 – Deep Learning 70

l Typically normalize before the non-linearity (e.g. ReLU)
l Allows larger LR (faster learning), improves gradient flow and reduces

dependence on initialization
l Doubles the layers, giving more learnable parameters

Layer Normalization (2016)

l Shortly after batch normalization (Ba, Kiros, and Hinton)
l Rather than normalize a single feature across a batch,

normalize the net value of each feature across the layer
(the width of the feature vector)

l No need of a batch, do normalization for each instance
l Exact same at learning and execution time
l More common for Recurrent neural networks and

transformers

CS 270 – Deep Learning 71

Deep Residual Learning

l Residual Nets – 100s of layers
l 2015 ILSVRC winner

– CNN
– Also used Batch Normalization

l Learns the residual mapping with respect to the identity –
i.e. the difference (residual) between the current input and
the goal mapping

l Simple concept which tends to make the function to be
learned simpler across depth

CS 270 – Deep Learning 72

Deep Residual Learning

Deep	Residual	Learning

• Plaint	net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

any	two
stacked	layers

0

a(0)

weight	layer

weight	layer

relu

relu

a 0 is	any	desired	mapping,

hope	the	2	weight	layers	fit	a(0)

CS 270 – Deep Learning 73

Deep Residual Learning

Deep	Residual	Learning

• b 0 is	a	residual mapping	w.r.t.	identity

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

• If	identity	were	optimal,
easy	to	set	weights	as	0

• If	optimal	mapping	is	closer	to	identity,
easier	to	find	small	fluctuations

weight	layer

weight	layer

relu

relu

0

a 0 = b 0 + 0

identity
0

b(0)

CS 270 – Deep Learning 74

Deep Residual Learning
7x7	conv,	64,	/2

pool,	/2

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	128,	/2

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	256,	/2

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	512,	/2

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

avg	pool

fc	1000

7x7	conv,	64,	/2

pool,	/2

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	128,	/2

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	256,	/2

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	512,	/2

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

avg	pool

fc	1000

Network	“Design”

• Keep	it	simple

• Our	basic	design (VGG-style)
• all	3x3	conv	(almost)

• spatial	size	/2		=>	#	filters	x2	(~same	complexity	per	layer)

• Simple	design;	just	deep!

• Other	remarks:
• no	hidden	fc
• no	dropout

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

plain	net ResNet

CS 270 – Deep Learning 75

How many layers to add residuals, etc.? – Trial and error

Residual Nets

l Going from an x to an H(x) which is quite different from x
requires more learning, larger weights, etc.

l However, if H(x) is similar to x, and assuming we start
with small weights anyways, it takes a lot less updates to
learn it – Easier!

l Adding x to a later layer allows it to learn this simpler
mapping

l Also, if the net had already learned a particular feature, we
can just maintain that feature with 0 weights (since x will
be added to our 0 output from 0 weights), without having
to relearn it all the time – avoid "feature attrition”
– Less worry about too many layers, since need enough to learn, then

can retain it with residual (skip) connections

CS 270 – Deep Learning 76

Inception - Google
l "Network in a network" – CNN – Deeper

and Wider - GoogLeNet
l Could replace the basically linear

convolution with a more complex non-
linear network – e.g. MLP

l Basic Inception does different size
convolutions and combines results into one
output

l Reduces added complexity by first doing
dimensionality reduction with 1x1
convolution filters – 1 input from each
preceding feature map, reduced to 1 value

CS 270 – Deep Learning 77

Xception
l Xception (extreme inception) decouples spatial and cross-

channel correlations – channels only connected at extra
layers of 1x1 convolutional maps - wider

CS 270 – Deep Learning 78

Deep Generative Models

l Lots of research on generative models to create probabilistic
models of training data with ability to generate new images,
sentences, etc.

l Deconvolutional Neural Networks can generate images
(deconvolution)

CS 270 – Deep Learning 79

Neural Style Transfer

Neural Style Transfer
l Train on lots of images and styles
l CNN trained with two loss functions

– content and style

l Then supply any content and style image
l Creates new image of content, but in the

style of the style image 80

Neural Style Transfer

CS 270 – Deep Learning 81

Neural Style Transfer

CS 270 – Deep Learning 82

Deep Dreaming

CS 270 – Deep Learning 83

Generative Adversarial Networks GANs
(2014 Ian Goodfellow)

l Unsupervised in that no labels needed
l Generative networks which generate novel samples similar

to training samples (images, text, etc.)
l Discriminative net (adversary) must differentiate between

samples from the generative net and the training set
l Use loss feedback on discriminator net to create gradient

for both nets, until discriminator can no longer distinguish,
then can discard discriminator net – increasingly difficult
for humans to distinguish

l "Universal loss function" for lots of "difficult/creative"
applications

CS 270 – Deep Learning 84

GAN - Generative Adversarial Network

CS 270 – Deep Learning 85

GAN - Generative Adversarial Network

CS 270 – Deep Learning 86

GAN – Celebrity Data Set (2017)

CS 270 – Deep Learning 87

GAN 2.0 NVIDIA (2018) - Improved Face
Generator

CS 270 – Deep Learning 88

Edmond de Belamy
l Created by a GAN and sold at auction in 2018 for $432,500
l Note the author inscription – it is the GAN loss function

CS 270 – Deep Learning 89

2021
GauGan2:
Create your
own images
by sketching
or by just
typing in a
description
of the image
you want to
create

An output from GauGAN2 for the phrase "coast ripples cliffs."90

91

CS 270 – Deep Learning 92

CS 270 – Deep Learning 93

President Russel M Nelson:
“If we are to have any hope of sifting
through the myriad of voices and the
philosophies of men that attack truth, we
must learn to receive revelation.
In coming days, it will not be possible to
survive spiritually without the guiding,
directing, comforting, and constant
influence of the Holy Ghost.”

Real vs Fake?

CS 270 – Deep Learning 94

Deep Reinforcement Learning: Deep Q
Network – 49 Classic Atari Games

AlphaGo - Google DeepMind

CS 270 – Deep Learning 95

Alpha Go

l Reinforcement Learning with Deep Net learning the value and
policy functions

l Challenges world Champion Lee Se-dol in March 2016
– AlphaGo Movie – Netflix, check it out, fascinating man/machine

interaction!
l AlphaGo Master (improved with more training) then beat top

masters on-line 60-0 in Jan 2017
l 2017 – Alpha Go Zero

– Alpha Go started by learning from 1000's of expert games before
learning more on its own, and with lots of expert knowledge

– Alpha Go Zero starts from zero (Tabula Rasa), just gets rules of Go and
starts playing itself to learn how to play – not patterned after human
play – More creative

– Beat AlphaGo Master 100 games to 0 (after 3 days of playing itself)

CS 270 – Deep Learning 96

Alpha Zero

l Alpha Zero (late 2017)
l Generic architecture for any board game

– Compared to AlphaGo (2016 - earlier world champion with extensive
background knowledge) and AlphaGo Zero (2017)

l No input other than rules and self-play, and not set up for any
specific game, except different board input

l With no domain knowledge and starting from random weights,
beats worlds best players and computer programs (which were
specifically tuned for their games over many years)

– Go – after 8 hours training (44 million games) beats AlphaGo Zero
(which had beat AlphaGo 100-0) – 1000's of TPU's for training

l AlphaGo had taken many months of human directed training
– Chess – after 4 hours training beats Stockfish8 28-0 (+72 draws)

l Doesn't pattern itself after human play
– Shogi (Japanese Chess) – after 2 hours training beats Elmo

CS 270 – Deep Learning 97

CS 270 – Deep Learning 98

CS 270 – Deep Learning 99

CS 270 – Deep Learning 100

CS 270 – Deep Learning 101

CS 270 – Deep Learning 102

AlphaStar
l DeepMind considered "perfect information" board games

solved
l Next step was – Starcraft II - AlphaStar

– Considered a next "Grand AI Challenge"
– Complex, long-term strategy, stochastic, hidden info, real-time
– Beats best Pros - AlphaStar limited to human speed in

actions/clicks per minute – so just comparing strategy

CS 270 – Deep Learning 103

AlphaFold – Moved to Transformers,
World’s most accurate protein folding

CS 270 – Deep Learning 104

105CS 270 – Deep Learning

Recurrent Neural Networks

106CS 270 – Deep Learning

Recurrent Neural Networks

Unfolding Recurrent Net in Time
l Can consider an equivalent feedforward network unfolded

t steps in time
l Then can train it as if it was a regular feedforward network

– Backpropagation through Time (BPTT)
l Only difference is that the weights are tied (use average)
l Becomes a deep net in time –Has vanishing gradient issues

107CS 270 – Deep Learning

LSTM/GRU
l Long Short-Term Memory/Gated Recurrent Unit
l LSTM – (GRU is an LSTM subset) – More powerful RNN

– LSTM replaces the standard RNN nodes (A below) with a more
complicated LSTM node with more learnable parameters

– Train with BPTT but bigger k’s (a full sequence if not too large), or
some pretty big chunk (25-100) since LSTM lets us avoid the
vanishing gradient.

108CS 270 – Deep Learning

LSTM – Long Short-Term Memory

l LSTM unit can just plug in for a standard node in an RNN
l Adds a state memory plus input, forget, and output gates
l Vanishing/exploding gradient avoidance

– Cell value (state) has a self-feedback loop and can maintain its
value indefinitely. Has derivate 1 with no vanishing gradient.

– The cell value is multiplied by a forget gate output (0-1), which
decides when and how much to forget, giving much more power.

l LSTM unit has lots more parameters but still trained with
standard BP/SGD learning: typically BPTT
– Forget gates, etc. don’t know that is their job, but the capacity is

there during training to learn that job as the overall network
minimizes loss

– Capacity plus training finds a way to solve the problem, capacity
that wasn’t there with simple network nodes

CS 270 – Deep Learning 109

l Ct is cell state, ht is context/output. Forget, Input, and Output gates110

CS 270 – Deep Learning 111

Ct (state) and
ht (output
and/or
context) are
vectors.

Ct can be
maintained
as long as
needed.
Only
updated by
forget and
input gates,
which are
learned
functions.

l Output gate above finishes full LSTM node
– tanh normalizes C to h/x scale (between -1/1) before output gate

chooses what parts of state to pass on as output/context
l Gated Recurrent Unit (GRU) below combines C and h

– r: reset gate – How much of context ht-1 to use in standard tanh
– z: update gate - Combines forget and input gates

CS 270 – Deep Learning 112

Basic Cell value has a self-feedback loop
Does not forget until told (stable gradient)

CS 270 – Deep Learning 113

Element'wise
Summation//
Concatenation

Element'wise
multiplicationXt

ht'1

Ct'1 ht

Ct

0

σ
+

�

tanh

Inputs: outputs:

Input/vector

Memory/ from/
previous/block

Output/of/
previous/block

Memory/ from/
current/block

Output/of/
current/block

Nonlinearities:

Sigmoid

Hyperbolic/
tangent

Vector/operations:

Bias:

Xt

+ + + +
0 1 2 3

ht'1

Ct'1 Ct

ht

�

�

+

�σ σ σtanh

tanh

ht

114

CS 270 – Deep Learning 115

LSTM Variations
l Lots of node and structural variations
l Could replace any node in a deep network with LSTM node, but

typically just used for sequential problems - RNN (time or
space)

l Bidirectional LSTMS -Unlike conventional RNNs, bidirectional
RNNs utilize both the previous and future context, by
processing the data from two directions with two separate
hidden layers. One layer processes the input sequence in the
forward direction, while the other processes the input in the
reverse direction. The output of the current time step is then
learned using a combination of both layer's hidden vectors

l Stacked LSTMS - extra layers above (usually not many) can
capture latent info (e.g. different time scales)

CS 270 – Deep Learning 116

Transformers - GPT

l Replacing CNNs and RNNs in many cases
l Rather than use convolutional filters or recurrence to find

and track relationships they use attention
l We need short and long-distance relationships between

features (e.g. words, pixels, atoms, etc.). What does “it” in
a following sentence refer to?

l Initial paper – Google 2017 - “Attention is all you need”
l Immediately followed by lots of variations such as BERT

(Bidirectional Representations from Transformers)
l GPT 1-3 are basically the same 2017 Google model
l More parameters/weights make a huge difference

– GPT 2: 1.5B parameters, GPT 3 same basic architecture as GPT 2:
175B parameters

CS 270 – Deep Learning 117

Transformers Intro

l Long training (though with some improved efficiencies over
CNNs), high power hardware, and lots of training data – big
companies right now, Google, Nvidia, IBM, Microsoft, etc.
coming out with their own versions

– Now developing trillion parameter models
– Latest work is increasing the ability for models to learn faster and

better
l Large parameter sizes make them challenging to run locally
l Still not doing real reasoning, just finds patterns from lots of

data and mimics those
– Which is still pretty sweet
– Don’t overestimate current wisdom of content, but it will definitely

“appear” like great human style output
l A future goal is to learn more like humans with less data needed

CS 270 – Deep Learning 118

Seq2Seq (Sequence to Sequence)

l Encoder and Decoder was typically done with RNN
(LSTM/GRU) or CNN

l Encoded hidden layer vector representation (embeddings)
of current tokens (e.g. words)

l Represents meaning and context of the current token –
Final hidden layer (full meaning) passed to decoder
– Translating English to French

l Decoder unravels embedding to create the output sequence

CS 270 – Deep Learning 120

Transformers: “Attention is all you need”

CS 270 – Deep Learning 121

l Autoregressive – Just decide next word. Use the encoder
embedding and the words inferred so far by the decoder as
input to decide the next word

l For training, the next word is the current target

Transformer Flow

CS 270 – Deep Learning 122

l Full input sentence
entered (Tokens)

l Learns embedding
l Adds position
l Skip connections and

layer normalizations
l Weights how much

certain words/tokens in
the sequence are tied to
others

l Allows more distant
dependencies

l Self-Attention and
encoder-decoder
attention

l Masked on decoder so
only considers past
tokens

l Can also just use
Encoder and Decoder
models CS 270 – Deep Learning 123

Transformer

CS 270 – Deep Learning 124

l 512 value token vectors in 2017 Google version (hyperparameter, 11288 in GPT)
l All token vectors flow independently and in parallel through encoder/decoder and

only interact in the attention block
l Each token position has its own MLP with a single hidden layer with hidden nodes

usually 4x the inputs - 2048
l 6 encoder and decoder layers for original version, (hyperparameter, 12 for GPT)
l Make wide enough for longest sentence in data set, fixed token window (2k+) for

GPT

Attention Mechanism
l For n tokens, the attention block

basically builds nxn matrices measuring
the relative connectedness of all the
tokens

l Self attention (picture)
l Encoder-Decoder attention might have a

sentence in French on the left and the
response in English on the right
– All cells relating to tokens to the right of the

latest decoded word are masked to 0
l Builds matrix by doing a linear matrix

multiply of the token vectors and learned
arrays (Q, K, and V)

l Results are dynamic weights for relative
importance between tokens

CS 270 – Deep Learning 125

Attention Mechanism
l The incoming token vectors are multiplied by learned arrays

(the linear blocks in right part of image) to create Query, Key,
and Value arrays

– For self attention the V, K, and Q matrices are all the same
– For encoder-decoder attention: Q is the matrix of decoder token

vectors and, K=V=final token matrix output by the encoder
l In one scaled dot-product attention the “updated” Q, K, and V

arrays are begin used

CS 270 – Deep Learning 126

Initial Attention Multiplies
l X is our array of token vectors

(just 2 words in this example)
l For self attention multiply the

same token vector array X by 3
learned matrices WQ, WK, and WV

to get the updates arrays Q, K, and
V

– Rows must match columns of token
vectors

– We choose columns of W matrices
(and thus length of attention
vectors) as hyperparameter (3 here),
64 in 2017 Google version

l For encoder-decoder attention X
is from encoder for Q, and from
decoder for K and V

CS 270 – Deep Learning 127

1. Q, V, and K created through matrix multiples
2. Q*K calculates attention with dot product array multiplication
3. Scale divides by the square root of the size of the attention

vectors (8 in this case) and leads to more stable gradients
4. Softmax turns the attention array in probabilities
5. Multiply by V. The low probability scores from the softmax

basically nullify the irrelevant words for each word token

CS 270 – Deep Learning 128

CS 270 – Deep Learning 129

Multiple heads allow
learning of multiple
representations.
8 heads in 2017 version
96 in GPT3

Final Output
l Goes through all N

layers of the decoder
l Final linear layer is a

fully connected neural
network which goes
from the final vector to
real value for every
word in the vocabulary

l Softmax turns this into
a probability of each
word

l Add word with max
probability to the
output and then repeat
for the next word of
output

CS 270 – Deep Learning 130

Training
l Sentence to encode on left

(English)
l Decode target on right

(French)
l Shifted right so must predict

output at time i using only
inferred outputs at 1 … i-1.

l Target is the next word in the
output sequence

l During inference start with
full input sequence and empty
output sequence.

l Add inferred word each time
to output sequence which it
can now use to help infer next
word – Autoregressive

l Loss function – cross-entropy,
difference between the one-hot
rep of the target output word
and the softmax vector

CS 270 – Deep Learning 131

GPT (Generative Pre-trained Transformer)

l OpenAI– Some of the original Google authors, Elon Musk and
others fund, Microsoft funding and Partnership

l Decoder only transformer (just right side of transformer model
with the encoder-decoder attention head dropped)

l Autoregressive: Initialize with an initial sequence (the query), then
repeatedly output the next word

l Does not need labeled data! Finds associations while training
with large amounts of unlabeled data. Just uses next word in text
as target during training.

l GPT-2 1.5B, GPT-3 similar to GPT-2 but with 175 B parameters
l 800GB to store
l Pre-trained with a diverse corpus of unlabeled text datasets from

web scraping (WebText)
l No fine tuning necessary (Though you can for specific tasks)

CS 270 – Deep Learning 132

GPT-3 Architecture

l Always uses a fixed 2k word/token sequence (some can be
empty)

– What is a Taco? (This would be the first 4 words of decoder. It will
then Fill in the rest of the output one word at a time)

l Encoding – Each of 50,257 English words/tokens GPT-3 uses
has an integer code – one hot encode into 50K length vectors

l Encoder transforms tokens (words or subwords) into a 12,288
real-value vector embedding (meaning, etc.) from the
embedding weight matrix which is learned during training

l Thus, a 2k x 12288 matrix sequence
l For each token a positional encoding is calculated giving a 2k x

12288 positional encodings matrix
l These 2 matrices are summed and passed into the first layer

CS 270 – Deep Learning 133

GPT-3 - Continued
l 96x wide multi-head attention in each layer
l 12 layer decoder only transformer – Each layer includes layer

norms, skip connections, multi-head attention, and MLP
l Decode – Just take the final 12288 vector after going through all

the layers which represents the next word, and do the inverse
encoding (NN) back into original word codes. Since real valued
vector, use SoftMax to get final word probabilities and set the
next word to the highest word probability

– Or choose any of the high probability words if want variety
– Actually outputs probabilities for the following word of every one of

the 2K tokens, though next word is the one we concentrate on most
l Initialize with the query and start generating text
l Training: Small random weights (175B). Train with current

target being next word in the sequence of unlabeled training data
l As token windows get wider, attention matrices grow by the

square – GPT-3 uses Sparse Attention to be more efficient

CS 270 – Deep Learning 134

Sparse Attention
l As token window grows the attention matrices grow by the

square! Expensive and slow
l Most inter-word connections are about 0 so they are sparse

matrices and lots of savings possible
l GPT approach based on Big Bird (came after Bert)
l Has complexity O(n) rather than O(n2) for the arrays
l One of few differences (other than number of parameters)

between GPT-2 and GPT-3

CS 270 – Deep Learning 135

GPT/Transformer Advances

l GPT 3.5
– Adds RLHF (Reinforcement Learning from Human Feedback) - Turbo
– 4K token span (vs 2K for GPT 3)

l GPT 4
– Multi-modal: Images, voice as part of queries and responses
– ~1.7 Trillion parameters
– 32K token span

l Other large companies building competitive models (Google
Bard, Microsoft Bing, etc.)

l Pretty amazing, but still not doing deep understanding, rather an
amazingly complex statistical n-gram model – In language,
coding, etc., it models what humans have demonstrated in
training data. (i.e. Don’t expect it to give new wisdom yet)

CS 270 – Deep Learning 136

Transformers Conclusion

l Any applications with lots of examples with sequential
features
– Words in text
– Atoms in protein sequences
– Notes in songs

l NLP, Document generation and summarization
l Language Translation
l Computer Vision
l Audio and Speech Generation and Processing
l Computer Coding
l Biological sequence analysis
l Etc.

CS 270 – Deep Learning 137

Deep Learning Conclusion

l Much recent excitement, still much to be discovered
l Impressive results
l More work needed to understand how and why deep

learning works so well – How deep should we go?
l Potential for significant improvements
l Works well in features spaces with local correlations in

space and/or time – CNNs, RNNs, Transformers.
– Important research question: To what extent can we use Deep

Learning in arbitrary feature spaces?

CS 270 – Deep Learning 138

