Data Mining

- The Extraction of useful information from data
- The automated extraction of hidden predictive information from (large) databases
- KDD – Knowledge Discovery in Databases
- Business, Huge data bases, customer data, mine the data
 - Also Medical, Genetic, Astronomy, etc.
- Data sometimes unlabeled – unsupervised clustering, etc.
- Focuses on learning approaches which scale to massive amounts of data
 - and potentially to a large number of features
 - sometimes requires simpler algorithms with lower big-O complexities
Data Mining Applications

- Often seeks to give businesses a competitive advantage
- Which customers should they target
 - For advertising – more focused campaign
 - Customers they most/least want to keep
 - Most favorable business decisions
- Associations
 - Which products should/should not be on the same shelf
 - Which products should be advertised together
 - Which products should be bundled
- Information Brokers
 - Make transaction information available to others who are seeking advantages
Data Mining Foundation

- Based on advances made in Machine Learning, Statistics, Data Bases, and other computing disciplines
- And large data bases and fast computers which can deal with them
- Basically, a particular niche of machine learning applications
 - Focused on business and other large data problems
 - Focused on problems with huge amounts of data which needs to be manipulated in order to make effective inferences
Companies have large data warehouses of transactions
- Records of sales at a store
- On-line shopping
- Credit card usage
- Phone calls made and received
- Visits and navigation of web sites, etc…

Many/Most things recorded these days and there is potential information that can be mined to gain business improvements
- For better customer service/support and/or profits

Data Warehouse (DWH)
- Separate from the operational data (OLTP – Online transaction processing)
- Data comes from heterogeneous company sources
- Contains static records of data which can be used and manipulated for analysis and business purposes
- Old data is rarely modified, and new data is continually added
- OLAP (Online Analytical Processing) – Front end to DWH allowing basic database style queries
 - Useful for data analysis and data gathering and creating the task data base
The Big Picture: DBs, DWH, OLAP & DM

- Operational DBs
- Other sources

Extract Transform Load Refresh

Data Warehouse

OLAP Server

Serve

Analysis, Query, Reports, Create Data Base for Data mining

Data Storage

OLAP Engine

Front-End Tools

CS 478 - Data Mining
Recent Data Mining explosion based on:

- Data available – Transactions recorded in data warehouses
 - From these warehouses specific databases for the goal task can be created

- Algorithms available – Machine Learning and Statistics
 - Including special purpose Data Mining software products to make it easier for people to work through the entire data mining cycle

- Computing power available

- Competitiveness of modern business – need an edge
You will use this basic process in your group project

1. Identify and define the task (e.g. business problem)
2. Gather and Prepare the Data
 - Build Data Base for the task
 - Select/Transform/Derive features
 - Analyze and Clean the Data
3. Build and Evaluate the Model – Using training and test data
4. Deploy the Model and Evaluate business related Results
 - Data visualization tools
5. Iterate through this process to gain continual improvements – both initially and during life of task
 - Improve/adjust features and/or machine learning approach
Monitor, Evaluate, and update deployment
Group Projects

- Review timing and expectations
 - Progress Report
 - Time purposely available between Decision Tree and Instance Based projects to keep going on the group project
 - Gathering, Cleaning, Transforming the Data can be the most critical part of the project, so get that going early!!
 - Then plenty of time to try some different ML models and some iterations on your Features/ML approaches to get improvements
 - Final report and presentation

- Questions?
Association Analysis – Link Analysis

- Used to discover relationships in large databases
- Relationships represented as association rules
 - Unsupervised learning, any data set
- One example is market basket analysis which seeks to understand more about what items are bought together
 - This can then lead to improved approaches for advertising, product placement, etc.
 - Example Association Rule: \{Cereal\} ⇒ \{Milk\}

<table>
<thead>
<tr>
<th>Transaction ID and Info</th>
<th>Items Bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and (who, when, etc.)</td>
<td>{Ice cream, milk, eggs, cereal}</td>
</tr>
<tr>
<td>2</td>
<td>{Ice cream}</td>
</tr>
<tr>
<td>3</td>
<td>{milk, cereal, sugar}</td>
</tr>
<tr>
<td>4</td>
<td>{eggs, yogurt, sugar}</td>
</tr>
<tr>
<td>5</td>
<td>{Ice cream, milk, cereal}</td>
</tr>
</tbody>
</table>
Association Discovery

- Association rules are not causal, show correlations
- k-itemset is a subset of the possible items – {Milk, Eggs} is a 2-itemset
- Which itemsets does transaction 3 contain
- Association Analysis/Discovery seeks to find frequent itemsets

<table>
<thead>
<tr>
<th>TID</th>
<th>Items Bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{Ice cream, milk, eggs, cereal}</td>
</tr>
<tr>
<td>2</td>
<td>{Ice cream}</td>
</tr>
<tr>
<td>3</td>
<td>{milk, cereal, sugar}</td>
</tr>
<tr>
<td>4</td>
<td>{eggs, yogurt, sugar}</td>
</tr>
<tr>
<td>5</td>
<td>{Ice cream, milk, cereal}</td>
</tr>
</tbody>
</table>
Association Rule Quality

$t \in T$, the set of all transactions, and X and Y are itemsets

- Rule quality measured by support and confidence
 - Without sufficient support (frequency), rule will probably overfit, and also of little interest, since it is rare
 - Note $\text{support}(X \Rightarrow Y) = \text{support}(Y \Rightarrow X) = \text{support}(X \cup Y)$
 - Note that $\text{support}(X \cup Y)$ is support for itemsets where both X and Y occur
 - Confidence measures reliability of the inference (to what extent does X imply Y)
 - $\text{confidence}(X \Rightarrow Y) \neq \text{confidence}(Y \Rightarrow X)$
 - Support and confidence range between 0 and 1
 - Lift: Lift is high when $X \Rightarrow Y$ has high confidence and the consequent Y is less common. Thus lift suggests ability for X to infer a less common value with good probability

<table>
<thead>
<tr>
<th>TID</th>
<th>Items Bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{Ice cream, milk, eggs, cereal}</td>
</tr>
<tr>
<td>2</td>
<td>{Ice cream}</td>
</tr>
<tr>
<td>3</td>
<td>{milk, cereal, sugar}</td>
</tr>
<tr>
<td>4</td>
<td>{eggs, yogurt, sugar}</td>
</tr>
<tr>
<td>5</td>
<td>{Ice cream, milk, cereal}</td>
</tr>
</tbody>
</table>

\[
\text{support}(X) = \frac{|\{t \in T : X \subseteq t\}|}{|T|}
\]

\[
\text{support}(X \Rightarrow Y) = \frac{|\{t \in T : (X \cup Y) \subseteq t\}|}{|T|}
\]

\[
\text{confidence}(X \Rightarrow Y) = \frac{|\{t \in T : (X \cup Y) \subseteq t\}|}{|\{t \in T : X \subseteq t\}|}
\]

\[
\text{lift}(X \Rightarrow Y) = \frac{\text{confidence}(X \Rightarrow Y)}{\text{support}(Y)}
\]
Association Rule Discovery Defined

- User supplies two thresholds
 - \textit{minsup} (Minimum required support level for a rule)
 - \textit{minconf} (Minimum required confidence level for a rule)

Association Rule Discovery: Given a set of transactions \(T \), find all rules having support \(\geq \text{minsup} \) and confidence \(\geq \text{minconf} \)

- How do you find the rules?
- Could simply try every possible rule and just keep those that pass
 - Number of candidate rules is exponential in the size of the number of items

Standard Approaches - Apriori

- 1st find frequent itemsets (Frequent itemset generation)
- Then return rules within those frequent itemsets that have sufficient confidence (Rule generation)
 - Both steps have an exponential number of combinations to consider
 - Number of itemsets exponential in number of items \(m \) (power set: \(2^m \))
 - Number of rules per itemset exponential in number of items in itemset (\(n! \))
The support for the rule \(X \Rightarrow Y \) is the same as the support of the itemset \(X \cup Y \)
- Assume \(X = \{\text{milk, eggs}\} \) and \(Y = \{\text{cereal}\} \). \(C = X \cup Y \)
- All the possible rule combinations of itemset \(C \) have the same support (# of possible rules exponential in width of itemset: \(|C|!\))
 - \{milk, eggs\} \Rightarrow \{cereal\}
 - \{milk\} \Rightarrow \{cereal, eggs\}
 - \{eggs\} \Rightarrow \{milk, cereal\}
 - \{milk, cereal\} \Rightarrow \{eggs\}
 - \{cereal, eggs\} \Rightarrow \{milk\}
 - \{cereal\} \Rightarrow \{milk, eggs\}

Do they have the same confidence?

So rather than find common rules we can first just find all itemsets with support \(\geq \text{minsup} \)
- These are called frequent itemsets
- After that we can find which rules within the common itemsets have sufficient confidence to be kept
Support-based Pruning

- Apriori Principle: If an itemset is frequent, then all subsets of that itemset will be frequent
 - Note that subset refers to the items in the itemset
- If an itemset is not frequent, then any superset of that itemset will also not be frequent

Figure 6.3. An illustration of the Apriori principle. If \{c, d, e\} is frequent, then all subsets of this itemset are frequent.

Figure 6.4. An illustration of support-based pruning. If \{a, b\} is infrequent, then all supersets of \{a, b\} are infrequent.
Apriori: Breadth First Search

1: \{a, d, e\}
2: \{b, c, d\}
3: \{a, c, e\}
4: \{a, c, d, e\}
5: \{a, e\}
6: \{a, c, d\}
7: \{b, c\}
8: \{a, c, d, e\}
9: \{c, b, e\}
10: \{a, d, e\}

Example transaction DB with 5 items and 10 transactions

Minsup = 30%, at least 3 transaction must contain the itemset

For each itemset at the current level of the tree (depth k) go through each of the n transactions and update tree itemset counts accordingly

All 1-itemsets are kept since all have support $\geq 30\%$
Generate level 2 of the tree (all possible 2-itemsets)

Normally use lexical ordering in itemsets to generate/count candidates more efficiently
- (a,b), (a,c), (a,d), (a,e), (b,c), (b,d), …, (d,e)
- When looping through \(n \) transactions for (a,b), can stop if a not first in the set, etc.

Number of tree nodes will grow exponentially if not pruned

Which ones can we prune assuming \(\text{minsup} = .3 \)?
Generate level 2 of the tree (all possible 2-itemsets)

Use lexical ordering in itemsets to generate/count candidates more efficiently
- (a,b), (a,c), (a,d), (a,e), (b,c), (b,d), ..., (d,e)
- When looping through n transactions for (a,b), can stop if a not first in the set, etc.

Number of tree nodes will grow exponentially if not pruned

Which ones can we prune assuming minsup = .3?
Generate level 3 of the tree (all 3-itemsets with frequent parents)

Before calculating the counts, check to see if any of these newly generated 3-itemsets, contain an infrequent 2-itemset. If so we can prune it before we count since it must be infrequent

- A k-itemset contains k subsets of size $k-1$
- It's parent in the tree is only one of those subsets
- Are there any candidates we can delete?
Apriori: Breadth First Search

1: \{a, d, e\}
2: \{b, c, d\}
3: \{a, c, e\}
4: \{a, c, d, e\}
5: \{a, e\}
6: \{a, c, d\}
7: \{b, c\}
8: \{a, c, d, e\}
9: \{c, b, e\}
10: \{a, d, e\}

- The item sets \{b, c, d\} and \{b, c, e\} can be pruned, because
 - \{b, c, d\} contains the infrequent item set \{b, d\} and
 - \{b, c, e\} contains the infrequent item set \{b, e\}.
Apriori: Breadth First Search

1: \{a, d, e\}
2: \{b, c, d\}
3: \{a, c, e\}
4: \{a, c, d, e\}
5: \{a, e\}
6: \{a, c, d\}
7: \{b, c\}
8: \{a, c, d, e\}
9: \{c, b, e\}
10: \{a, d, c\}

- Only the remaining four item sets of size 3 are evaluated.
Apriori: Breadth First Search

1: \{a, d, e\}
2: \{b, c, d\}
3: \{a, c, e\}
4: \{a, c, d, e\}
5: \{a, e\}
6: \{a, c, d\}
7: \{b, c\}
8: \{a, c, d, e\}
9: \{c, b, e\}
10: \{a, d, c\}

- Minimum support: 30%, i.e., at least 3 transactions must contain the item set.
- Infrequent item set: \{c, d, e\}.
Apriori: Breadth First Search

1: \{a, d, e\}
2: \{b, c, d\}
3: \{a, c, e\}
4: \{a, c, d, e\}
5: \{a, e\}
6: \{a, c, d\}
7: \{b, c\}
8: \{a, c, d, e\}
9: \{c, b, e\}
10: \{a, d, c\}

- Generate candidate item sets with 4 items (parents must be frequent).
- Before counting, check whether the candidates contain an infrequent item set.
Frequent itemsets are: \{a,c\}, \{a,c,d\}, \{a,c,e\}, \{a,d\}, \{a,d,e\}, \{a,e\}, \{b,c\}, \{c,d\}, \{c,e\}, \{d,e\}

- The item set \{a, c, d, e\} can be pruned, because it contains the infrequent item set \{c, d, e\}.
- Consequence: No candidate item sets with four items.
- Fourth access to the transaction database is not necessary.
Frequent itemsets were: \{a,c\}, \{a,c,d\}, \{a,c,e\}, \{a,d\},
\{a,d,e\}, \{a,e\}, \{b,c\}, \{c,d\}, \{c,e\}, \{d,e\}

For each frequent itemset generate the possible rules and keep those with confidence \(\geq \) minconf

First itemset \{a,c\} gives possible rules
- \{a\} \(\Rightarrow\) \{c\} with confidence 4/7 and
- \{c\} \(\Rightarrow\) \{a\} with confidence 4/7

Second itemset \{a,c,d\} leads to six possible rules

Just as with frequent itemset generation, we can use pruning and smart lexical ordering to make rule generation more efficient
- Project? – Search pruning tricks (312) vs ML
Illustrative Training Set

Would if we had real valued data?
What are steps for this example?

Risk Assessment for Loan Applications

<table>
<thead>
<tr>
<th>Client #</th>
<th>Credit History</th>
<th>Debt Level</th>
<th>Collateral</th>
<th>Income Level</th>
<th>RISK LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bad</td>
<td>High</td>
<td>None</td>
<td>Low</td>
<td>HIGH</td>
</tr>
<tr>
<td>2</td>
<td>Unknown</td>
<td>High</td>
<td>None</td>
<td>Medium</td>
<td>HIGH</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>Low</td>
<td>None</td>
<td>Medium</td>
<td>MODERATE</td>
</tr>
<tr>
<td>4</td>
<td>Unknown</td>
<td>Low</td>
<td>None</td>
<td>Low</td>
<td>HIGH</td>
</tr>
<tr>
<td>5</td>
<td>Unknown</td>
<td>Low</td>
<td>None</td>
<td>High</td>
<td>LOW</td>
</tr>
<tr>
<td>6</td>
<td>Unknown</td>
<td>Low</td>
<td>Adequate</td>
<td>High</td>
<td>LOW</td>
</tr>
<tr>
<td>7</td>
<td>Bad</td>
<td>Low</td>
<td>None</td>
<td>Low</td>
<td>HIGH</td>
</tr>
<tr>
<td>8</td>
<td>Bad</td>
<td>Low</td>
<td>Adequate</td>
<td>High</td>
<td>MODERATE</td>
</tr>
<tr>
<td>9</td>
<td>Good</td>
<td>Low</td>
<td>None</td>
<td>High</td>
<td>LOW</td>
</tr>
<tr>
<td>10</td>
<td>Good</td>
<td>High</td>
<td>Adequate</td>
<td>High</td>
<td>LOW</td>
</tr>
<tr>
<td>11</td>
<td>Good</td>
<td>High</td>
<td>None</td>
<td>Low</td>
<td>HIGH</td>
</tr>
<tr>
<td>12</td>
<td>Good</td>
<td>High</td>
<td>None</td>
<td>Medium</td>
<td>MODERATE</td>
</tr>
<tr>
<td>13</td>
<td>Good</td>
<td>High</td>
<td>None</td>
<td>High</td>
<td>LOW</td>
</tr>
<tr>
<td>14</td>
<td>Bad</td>
<td>High</td>
<td>None</td>
<td>Medium</td>
<td>HIGH</td>
</tr>
</tbody>
</table>
Choose $MinSupport = .4$ and $MinConfidence = .8$

1-Itemsets (Level 1):
- (CH=Bad, .29) (CH=Unknown, .36) (CH=Good, .36)
- (DL=Low, .5) (DL=High, .5)
- (C=None, .79) (C=Adequate, .21)
- (IL=Low, .29) (IL=Medium, .29) (IL=High, .43)
- (RL=High, .43) (RL=Moderate, .21) (RL=Low, .36)
Running Apriori (II)

1-Itemsets = \{(DL=Low, .5); (DL=High, .5); (C=None, .79); (IL=High, .43); (RL=High, .43)\}

2-Itemsets = \{(DL=High + C=None, .43)\}

3-Itemsets = {}

Two possible rules:
- DL=High ⇒ C=None
- C=None ⇒ DL=High

Confidences:
- Conf(DL=High ⇒ C=None) = .86 Retain
- Conf(C=None ⇒ DL=High) = .54 Ignore
Association Analysis useful in many real world tasks
 – Not a classification approach, but a way to understand relationships in data and use this knowledge to advantage

Also standard classification and other approaches

Data Mining continues to grow as a field
 – Data and features issues
 ● Gathering, Selection and Transformation, Preparation, Cleaning, Storing
 – Data visualization and understanding
 – Outlier detection and handling
 – Time series prediction
 – Web mining
 – etc.