Inductive Bias:
How to generalize on novel data
Non-Linear Tasks

- Linear Regression will not generalize well to the task below.
- Needs a non-linear surface – Could use one or our future models.
- Could also do a feature pre-process as with the quadric machine.
 - For example, we could use an arbitrary polynomial in \(x \).
 - Thus it is still linear in the coefficients, and can be solved with delta rule.

\[
Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \ldots + \beta_n X^n
\]

- What order polynomial should we use? – Overfit issues can occur.
Overfitting
Noise vs. Exceptions

Order 2
Order 10
Order 16
Order 20
Regression Regularization

- How to avoid overfit – Keep the model simple
 - For regression, keep the function smooth
 - Assume sample points are drawn from $f(x)$ with added noise

- Regularization approach: Model (h) selection
 - Minimize $F(h) = Error(h) + \lambda \cdot Complexity(h)$
 - Tradeoff accuracy vs complexity

- Ridge Regression (L2 regularization) – Minimize:
 - $F(w) = TSS(w) + \lambda \|w\|^2 = \sum (predicted_i - actual_i)^2 + \lambda \sum w_i^2$
 - Gradient of $F(w)$: $\Delta w_i = c(t - net) x_i - \lambda w_i$ (Weight decay)
 - Especially useful when the features are a non-linear transform from the initial features (e.g. polynomials in x)
 - Also when the number of initial features is greater than the number of examples
 - Lasso regression uses an L1 vs an L2 weight penalty: $-TSS(w) - \lambda \sum |w_i|$ and thus decay is just $-\lambda$ since derivative drops weight from the term
Hypothesis Space

- The Hypothesis space H is the set of all possible models h which can be learned by the current learning algorithm
 - e.g. Set of possible weight settings for a perceptron

- Restricted hypothesis space
 - Can be easier to search
 - May avoid overfit since they are usually simpler (e.g. linear or low order decision surface)
 - Often will underfit

- Unrestricted Hypothesis Space
 - Can represent any possible function and thus can fit the training set well
 - Mechanisms must be used to avoid overfit
Avoiding Overfit - Regularization

- Regularization: *any modification we make to learning algorithm that is intended to reduce its generalization error but not its training error*
- Occam’s Razor – William of Ockham (c. 1287-1347)
 - Favor simplest explanation which fits the data
- Simplest accurate model: accuracy vs. complexity trade-off. Find $h \in H$ which minimizes an objective function of the form:
 $$F(h) = \text{Error}(h) + \lambda \cdot \text{Complexity}(h)$$
 - Complexity could be number of nodes, size of tree, magnitude of weights, order of decision surface, etc. L2 and L1 common.
- More Training Data (vs. overtraining on same data)
 - Also Data set augmentation – Fake data, Can be very effective, Jitter, but take care…
 - Denoising – add random noise to inputs during training – can act as a regularizer
 - Adding noise to nodes, weights, outputs, etc. e.g. Dropout (discuss with ensembles)
- Most common regularization approach: *Early Stopping* – Start with simple model (small parameters/weights) and stop training as soon as we attain good generalization accuracy (before parameters get large)
 - Use a validation Set (next slide: requires separate test set)
- Will discuss other approaches with specific models
Stopping/Model Selection with Validation Set

- There is a different model h after each epoch.
- Select a model in the area where the validation set accuracy flattens.
 - When no improvement occurs over m epochs.
- The validation set comes out of training set data.
- Still need a separate test set to use after selecting model h to predict future accuracy.
- Simple and unobtrusive, does not change objective function, etc.
 - Can be done in parallel on a separate processor.
 - Can be used alone or in conjunction with other regularizers.
Inductive Bias

- The approach used to decide how to generalize novel cases
- One common approach is Occam’s Razor – The *simplest* hypothesis which *explains/fits* the data is usually the best
- Many other rationale biases and variations

\[
\begin{align*}
ABC & \Rightarrow Z \\
\overline{ABC} & \Rightarrow Z \\
AB\overline{C} & \Rightarrow Z \\
\overline{ABC} & \Rightarrow \overline{Z} \\
\overline{AB}C & \Rightarrow ?
\end{align*}
\]

- When you get the new input \(\overline{A} B C\). What is your output?
One Definition for Inductive Bias

Inductive Bias: Any basis for choosing one generalization over another, other than strict consistency with the observed training instances.

Sometimes just called the Bias of the algorithm (don't confuse with the bias weight in a neural network).

Bias-Variance Trade-off – Will discuss in more detail when we discuss ensembles.
Some Inductive Bias Approaches

- **Restricted Hypothesis Space** - Can just try to minimize error since hypotheses are already simple
 - Linear or low order threshold function
 - k-DNF, k-CNF, etc.
 - Low order polynomial

- **Preference Bias** – Prefer one hypothesis over another even though they have similar training accuracy
 - Occam’s Razor
 - “Smallest” DNF representation which matches well
 - Shallow decision tree with high information gain
 - Neural Network with low validation error and small magnitude weights
Need for Bias

2^n Boolean functions of n inputs

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>Class</th>
<th>Possible Consistent Function Hypotheses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Need for Bias

2^n Boolean functions of n inputs

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>Class</th>
<th>Possible Consistent Function Hypotheses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Need for Bias

2^n Boolean functions of n inputs

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>Class</th>
<th>Possible Consistent Function Hypotheses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0 0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0 0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0 0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>? 0 1</td>
</tr>
</tbody>
</table>
Need for Bias

2^n Boolean functions of n inputs

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>Class</th>
<th>Possible Consistent Function Hypotheses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1</td>
</tr>
</tbody>
</table>

Without an Inductive Bias we have no rationale to choose one hypothesis over another and thus a random guess would be as good as any other option.
Need for Bias

2^n Boolean functions of n inputs

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>Class</th>
<th>Possible Consistent Function Hypotheses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 1</td>
</tr>
</tbody>
</table>

Inductive Bias guides which hypothesis we should prefer? What happens in this case if we use simplicity (Occam’s Razor) as our inductive Bias?
Learnable Problems

- “Raster Screen” Problem
- Pattern Theory
 - Regularity in a task
 - Compressibility
- Don’t care features and Impossible states
- Interesting/Learnable Problems
 - What we actually deal with
 - Can we formally characterize them?
- Learning a training set vs. generalizing
 - A function where each output is set randomly (coin-flip)
 - Output class is independent of all other instances in the data set
- Computability vs. Learnability (Optional)
Computable and Learnable Functions

- Can represent any function with a look-up table (Addition)
 - Finite function/table – Fixed/capped input size
 - Infinite function/table – arbitrary finite input size
 - All finite functions are computable – Why?
 - Infinite addition computable because it has regularity which allows us to represent the infinite table with a finite representation/program

- Random function – outputs are set randomly
 - Can we compute these?
 - Can we learn these?
 - Assume learnability means we can get better than random when classifying novel examples

- Arbitrary functions – Which are computable?
- Arbitrary functions – Which are learnable?
Computability and Learnability – Finite Problems

- Finite problems assume finite number of mappings (Finite Table)
 - Fixed input size arithmetic
 - Random memory in a RAM
- Learnable: Can do better than random on novel examples
Computability and Learnability – Finite Problems

- Finite problems assume finite number of mappings (Finite Table)
 - Fixed input size arithmetic
 - Random memory in a RAM
- Learnable: Can do better than random on novel examples

Finite Problems
All are Computable

Learnable Problems:
Those with Regularity
Computability and Learnability – Infinite Problems

- Infinite number of mappings (Infinite Table)
 - Arbitrary input size arithmetic
 - Halting Problem (no limit on input size)
 - Do two arbitrary strings match
Computability and Learnability – Infinite Problems

- Infinite number of mappings (Infinite Table)
 - Arbitrary input size arithmetic
 - Halting Problem (no limit on input size)
 - Do two arbitrary strings match
No Free Lunch

- Any inductive bias chosen will have equal accuracy compared to any other bias over *all* possible functions/tasks, assuming all functions are equally likely. If a bias is correct on some cases, it must be incorrect on equally many cases.

- Is this a problem?
 - Random vs. Regular
 - Anti-Bias? (even though regular)
 - The “Interesting” Problems – subset of learnable?

- Are all functions equally likely in the real world?
Interesting Problems and Biases
More on Inductive Bias

- Inductive Bias requires some set of prior assumptions about the tasks being considered and the learning approaches available.
- Tom Mitchell’s definition: Inductive Bias of a learner is the set of additional assumptions sufficient to justify its inductive inferences as deductive inferences.
- We consider standard ML algorithms/hypothesis spaces to be different inductive biases: C4.5 (Greedy best attributes), Backpropagation (simple to complex), etc.
Which Bias is Best?

- Not one Bias that is best on all problems
- Our experiments
 - Over 50 real world problems
 - Over 400 inductive biases – mostly variations on critical variable biases vs. similarity biases
- Different biases were a better fit for different problems
- Given a data set, which Learning model (Inductive Bias) should be chosen?
Automatic Discovery of Inductive Bias

- Defining and characterizing the set of Interesting/Learnable problems
- To what extent do current biases cover the set of interesting problems
- Automatic feature selection
- Automatic selection of Bias (before and/or during learning), including all learning parameters
- Dynamic Inductive Biases (in time and space)
- Combinations of Biases – Ensembles, Oracle Learning
Dynamic Inductive Bias in Time

- Can be discovered as you learn
- May want to learn general rules first followed by true exceptions
- Can be based on ease of learning the problem
- Example: SoftProp – From Lazy Learning to Backprop
Dynamic Inductive Bias in Space
ML Holy Grail: We want all aspects of the learning mechanism automated, including the Inductive Bias

Just a Data Set or just an explanation of the problem

Automated Learner

Hypothesis

Input Features

Outputs
BYU Neural Network and Machine Learning Laboratory
Work on Automatic Discover of Inductive Bias

- Proposing New Learning Algorithms (Inductive Biases)
- Theoretical issues
 - Defining the set of Interesting/Learnable problems
 - Analytical/empirical studies of differences between biases
- Ensembles – Wagging, Mimicking, Oracle Learning, etc.
- Meta-Learning – A priori decision regarding which learning model to use
 - Features of the data set/application
 - Learning from model experience
- Automatic selection of Parameters
 - Constructive Algorithms – ASOCS, DMPx, etc.
 - Learning Parameters – Windowed momentum, Automatic improved distance functions (IVDM)
- Automatic Bias in time – SoftProp
- Automatic Bias in space – Overfitting, sensitivity to complex portions of the space: DMP, higher order features
Your Project Proposals

- See description in Learning Suite
 - Remember your example instance!

- Examples – Irvine Data Set to get a feel of what data sets look like
 - Stick with supervised classification data sets for the most part

- Tasks which interest you

- Too hard vs Too Easy
 - Data can be gathered in a relatively short time
 - Want you to have to battle with the data/features a bit
Learning accuracy depends on the data!
- *Is the data representative of future novel cases* - critical
- Relevance
- Amount
- Quality
 - Noise
 - Missing Data
 - Skew
- Proper Representation
- How much of the data is labeled (output target) vs. unlabeled
- Is the number of features/dimensions reasonable?
 - Reduction
Gathering Data

- Consider the task – What kinds of features could help
- Data availability
 - Significant diversity in cost of gathering different features
 - More the better (in terms of number of instances, not necessarily in terms of number of dimensions/features)
 - The more features you have the more data you need
 - Data augmentation, Jitter – Increased data can help with overfit – handle with care!
- Labeled data is best
- If not labeled
 - Could set up studies/experts to obtain labeled data
 - Use unsupervised and semi-supervised techniques
 - Clustering
 - Active Learning, Bootstrapping, Oracle Learning, etc.