Divide and Conquer
Divide and Conquer Algorithms

1. Partition task into sub-tasks which are smaller instances of the same task
2. Recursively solve the sub-tasks
 - Each sub-task is only solved outright when the bottom (threshold) of the recursion is reached
3. Appropriately combine the results

Why Divide and Conquer?
- Can be an easier way to approach solving large problems
- Can be faster - but not always
 - Critical point! Some examples coming
Depth log base depends on how split and potential overlap in splits
O(n) splits – n-1 for full binary tree where n is # of elements in task
 - Do not always need to split all the way to one element per leaf, but often do
O(n) combines – may not need any (e.g. binary search)
Actual problem solving work may be done at split time, at the tree leaves, at combine time, or any combination of these three
Efficiency gains occur if the problem solving work can actually be simplified based on the split/merge paradigm
Grading n exams

- Non DC time required?
Non DC time required? – nG where G is time to grade 1 exam: $O(n)$

Divide and Conquer? – Feels more manageable, etc.

Any overall speed-up on exam grading?
Non DC time required? – \(nG \) where \(G \) is time to grade 1 exam: \(O(n) \)

Divide and Conquer? – Feels more manageable, etc.

Any overall speed-up on exam grading?
 - No. Although note potential parallelism

Some overhead to split (dividing) and combine (re-stacking) the exams
 - \(n \) splits each being \(O(1) \) gives \(O(n) \) but splits are very fast operations compared to \(nG \)

Divide and conquer version still \(O(n) \)
Non DC time required?
Non DC time required? – n^2 using some bubble sort variation: $O(n^2)$

- Divide and Conquer?
- Splitting is fast just like for grading exams
- No work at leaves – Each just has an "ordered" list of length 1 to return
 - Now have n lists of length 1 at the leaves – Fast to do but was it worth it?
Combining requires a merge of two ordered lists which is $O(n)$ compared to the $O(n^2)$ required to sort one list directly. The key to the speedup!!

- Note that at the first combination the lists are of length one so it is a $O(1)$ merge, but there are $n/2$ of those merges at the level, which adds up to a total of $O(n)$ work at that level.
- The lists double in size each level up, but the number of merges halves, so the work stays $O(n)$

Divide and conquer version is $O(n)$ at each of the $\log(n)$ levels for total of $O(n\log(n))$
Faster multiplication algorithm

The product of 2 complex numbers is

\[(a+bi)(c+di) = ac - bd + (bc+ad)i\]

which requires 4 multiplications

Carl Freidrich Gauss noted that this could be done with 3 multiplications (but a few more adds) because

\[bc + ad = (a+b)(c+d) - ac - bd\]

While this is just a constant time improvement for one multiplication, the savings becomes significant when applied recursively in a divide and conquer scheme
Assume x and y are n-bit numbers and n is a power of 2
- power of 2 is not essential, just makes explanation easier
First split x and y into halves $n/2$ bits long: x_L, x_R, y_L, y_R
\[
x \cdot y = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R) = 2^n x_L y_L + 2^{n/2}(x_L y_R + x_R y_L) + x_R y_R
\]
The 4 multiplies dominate the complexity, shifts and adds are $O(n)$
$T(n) = ?$
Assume x and y are n-bit numbers and n is a power of 2
- power of 2 is not essential, just makes explanation easier
First split x and y into halves $n/2$ bits long: x_L, x_R, y_L, y_R

$$x \cdot y = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R) = 2^n x_L y_L + 2^{n/2}(x_L y_R + x_R y_L) + x_R y_R$$

The 4 multiplies dominate the complexity, shifts and adds are $O(n)$

$T(n) = 4T(n/2) + O(n)$

Each multiply just a recursive call until leaves are reached at which level operations are $O(1)$

Since branching factor is 4, the # of leaf nodes is

$$4^{\text{depth}} = 4^{\log_2 n} = 4^{(\log_4 n)(\log_2 4)} = n^{\log_2 4} = n^2$$
- Complexity at leaf level?
Assume x and y are n-bit numbers and n is a power of 2
- power of 2 is not essential, just makes explanation easier
First split x and y into halves $n/2$ bits long: x_L, x_R, y_L, y_R

\[
x \cdot y = (2^{n/2}x_L + x_R)(2^{n/2}y_L + y_R) = 2^n x_L y_L + 2^{n/2}(x_L y_R + x_R y_L) + x_R y_R
\]
The 4 multiplies dominate the complexity, shifts and adds are $O(n)$

\[
T(n) = 4T(n/2) + O(n)
\]
Each multiply just a recursive call until leaves are reached at which level operations are $O(1)$
Since branching factor is 4, the # of leaf nodes is

\[
4^{\text{depth}} = 4^{\log_2 n} = 4^{(\log_4 n)(\log_2 4)} = n^{\log_2 4} = n^2
\]
- Complexity at leaf level?
- n^2 leaf nodes each with $O(1)$ complexity gives a leaf level complexity of $O(n^2)$
- What is complexity at top level? What is total complexity?
- Why isn't total complexity $n^2 \log n$?
Intuition: Geometric Series Review

- Why isn't complexity $n^2\log n$? Important concept here!
- Remember geometric series (HW# 0.2) for $c > 0$
 - $f(n) = 1 + c + c^2 + ... + c^n = (c^{n+1} - 1)/(c-1)$
 - if $c < 1$ then each term gets smaller and $f = \Theta(1)$, the first term
 - Since, $1 < f(n) = (1-c^{n+1})/(1-c) < 1/(1-c)$
 - example: if $c=.5$, then $1 + 1/2 + 1/4 + ... + 1/2^n < 2$
 - if $c > 1$ then $f = \Theta(c^n)$, which is the last term
 - Since, $(1/(c-1)) \cdot c^n < c^n < (c/(c-1)) \cdot c^n$
 - example: if $c=2$, then $1 + 2 + 4 + 8 + ... + 2^n < 2 \cdot 2^n$ and is $\Theta(2^n)$
 - if $c = 1$ then $f = \Theta(n)$, why?
- For geometric series (c is the geometric ratio)
 - If decreasing (ratio < 1) then complexity is $\Theta(\text{first term})$
 - If increasing (ratio > 1) then complexity is $\Theta(\text{last term})$
 - If unchanging (ratio = 1) then complexity is $\Theta(n = \text{number of terms})$
- Divide and Conquer tree analogy with complexity at levels
Assume $C(k)$ is the complexity (amount or work) at level k

- If starting from top level, $C(k)$ is decreasing then the total asymptotic work will be equal to that done at the top level, since all the other work done at lower levels is within a constant factor of the top level.

- If $C(k)$ increases with depth k then the total asymptotic work will be equal to that done at the leaf (bottom) level, since all the other work done at higher levels is within a constant factor of the leaf level.

- If $C(k)$ is the same at each level, then the total work is $C(k)\log n$
The tree has a branching factor of 4 and a depth of \(\log_2 n \).

At any level \(k \), there are \(4^k \) subproblems each of size \(n/2^k \). Why? (consider \(k = 0, 1, 2 \ldots \))

For each subproblem in the tree

\[
2^n x_{Ly} + 2^{n/2}(x_{Ly} + x_{Ry}) + x_{Ry}
\]

there is a linear amount of work done (splits going down and adds when combining)

Thus, the total time at each level is \(4^k O(n/2^k) = (4/2)^k O(n) = 2^k O(n) \)

- Geometric Series: \(O(n)(1 + c + c^2 + \ldots) = O(n)(2^0 + 2^1 + 2^2 + \ldots) \)

At level 0 time is \(O(n) \) (just the adds upon return) and at the leaf level time is \(2^{\log_2 n} O(n) = n O(n) = O(n^2) \)

Thus time is a geometric series from \(n \) to \(n^2 \) which increases by a factor of 2 at each level (ratio = 2, thus time increasing at each level) and the complexity is equal to that of the last term \(O(n^2) \).
Faster Multiply

- Now let's use Gauss's trick:
 \[xy = 2^n x_L y_L + 2^{n/2} (x_L y_R + x_R y_L) + x_R y_R \]
 \[x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R \]
 \[xy = 2^n x_L y_L + 2^{n/2} ((x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R) + x_R y_R \]
- Now have 3 multiplies and \(T(n) = 3T(n/2) + O(n) \)
- But this savings happens at every branch of the recursion tree, 4-ary vs a 3-ary tree – Key to speed-up in this case
- # of leaf nodes is \(3^{\log_2 n} = n^{\log_2 3} = n^{1.59} \)
- Thus time in the tree is a geometric series from \(n \) to \(n^{1.59} \) increasing by \(3/2 \) (ratio) at each level with the last term (leaf nodes) again dominating the complexity
- Complexity is \(O(n^{1.59}) \)
- Improved complexity class – Because we combined DC with Gauss trick to decrease tree arity
- Can we do an even faster multiply? - Yes - Next chapter
function $DC(x)$: answer // x is a data item initially of size n
if $||x|| < \text{threshold}$ then return $adhoc(x)$
decompose x into a sub-tasks $x_1, x_2 \ldots x_a$ of size n/b
for $i \leftarrow 1$ to a do $y_i \leftarrow DC(x_i)$
recombine the y_i’s to get a solution y for x
return y

Where:
$adhoc(x) = \text{is the basic sub-algorithm for small instances}$
$a = \text{the number of divisions at each level}$
$n/b = \text{the fraction of the whole for a sub-instance}$
threshold = size at which to stop dividing problem, when to stop?

What were these for the Gauss Multiply?
Master Theorem

Given: \[t(n) = at\left(\lceil n / b \rceil\right) + O(n^d) \]

Where \(a > 0, b > 1, d \geq 0 \) and

- \(a \) = number of sub-tasks that must be solved
- \(n \) = original task size (variable)
- \(n/b \) = size of sub-instances
- \(d \) = polynomial order of work at each node (leaf/partitioning/recombining)

This theorem gives big O complexity for most common DC algorithms.
Proof/Intuition of the Master Theorem

- For simplicity assume n is a power of b (only a constant factor difference from any n)
- Height of the recursion tree is $\log_b n$
- Branching factor is a, thus there are a^k subtasks at the (k^{th}) level of the tree, each task of size n/b^k
- Total work at k^{th} level is thus $a^k \cdot O(n/b^k)^d$ ($\#\text{tasks} \cdot (\text{task size})^d$)

 \[= O(n^d) \cdot (a/b^d)^k \text{ Work/level} \cdot (\text{geometric ratio})^k \]

- Note that $(a/b^d)^k$ as k goes from 0 (root) to leaf ($\log_b n$) is a geometric series with ratio a/b^d.
- The geometric ratio a/b^d shows to what extent work is increasing/decreasing at each level. The big-O sum of such a series is
 - The first term of the series if the ratio is less than 1
 - k (number of terms in the series) if the ratio is 1
 - The last term of the series if the ratio is greater than 1
Master Theorem Example/Intuition

- Assume \(n = 4, a = 4, b = 2 \)
- We'll consider \(d = 1, 2, \) and \(3 \)
 - total combining/pre-partitioning work at each node is \(O(n), O(n^2), \) or \(O(n^3) \)
- Total work at \(k^{th} \) level is \(a^k \cdot O(n/b^k)^d = \# \text{tasks} \cdot (\text{task size})^d \)
 \[= O(n^d) \cdot (a/b^d)^k = \text{Work/level} \cdot (\text{geometric ratio})^k \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Number of tasks (a^k)</th>
<th>Task size (n/b^k)</th>
<th>Total work at level (k) for (d = 1) (a/b^d = 2)</th>
<th>Total work at level (k) for (d = 2) (a/b^d = 1)</th>
<th>Total work at level (k) for (d = 3) (a/b^d = .5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4</td>
<td>(4 = 1 \cdot 4^1)</td>
<td>(16 = 1 \cdot 4^2)</td>
<td>(64 = 1 \cdot 4^3)</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>(8 = 4 \cdot 2^1)</td>
<td>(16 = 4 \cdot 2^2)</td>
<td>(32 = 4 \cdot 2^3)</td>
</tr>
<tr>
<td>(2 = \log_b n)</td>
<td>16</td>
<td>1</td>
<td>(16 = 16 \cdot 1^1)</td>
<td>(16 = 16 \cdot 1^2)</td>
<td>(16 = 16 \cdot 1^3)</td>
</tr>
<tr>
<td>(\log_b n)</td>
<td>(O(n^{\log_b a}) = n^2)</td>
<td># of leaf nodes work/leaf = (n^{d} = 1^{d})</td>
<td>(O(n^{d\log n}) = n^{2\log n}) (work/level) \cdot #levels</td>
<td>(O(n^{d}) = n^{3}) Main complexity at root node</td>
<td></td>
</tr>
</tbody>
</table>
Proof/Intuition of the Master Theorem

\[t(n) = at(\lfloor n/b \rfloor) + O(n^d) \]

\[
t(n) = \begin{cases}
O(n^d) & \text{if } \frac{a}{b^d} < 1 \iff d > \log_b a \\
O(n^d \log n) & \text{if } \frac{a}{b^d} = 1 \iff d = \log_b a \\
O(n^{\log_b a}) & \text{if } \frac{a}{b^d} > 1 \iff d < \log_b a
\end{cases}
\]

- Total work at level \(k \) is \(a^k \cdot O(n/b^k)^d = O(n^d) \cdot (a/b^d)^k \)
 - If \(a/b^d < 1 \) (i.e. \(a < b^d \)) then complexity is dominated by root node: \(O(n^d) \)
 - \(a/b^d = .5 \): \(n^d + n^d/2 + n^d/4 \ldots n^d/2^{\log_b n} = n^d (1 + 1/2 + 1/4 + \ldots + 1/2^{\log_b n}) < 2n^d \)
 - If \(a/b^d = 1 \) then all \(\log_b n \) levels of tree take equal time \(O(n^d) \) giving a total complexity of \(O(n^d \log n) \)
 - if \(a/b^d > 1 \) then complexity is dominated by the leaf level: \(n^d \cdot (a/b^d)^{\log_b n} \)

\[
n^d \left(\frac{a}{b^d} \right)^{\log_b n} = n^d \left(\frac{a^{\log_b n}}{(b^{\log_b n})^d} \right) = n^d \left(\frac{a^{\log_b n}}{n^d} \right) = a^{\log_b n} = a^{(\log_a n)(\log_b a)} = n^{\log_b a}
\]
The convex hull of a set of Q points is the smallest convex polygon P for which each point is either on the boundary of P or in its interior.
Convex Hull

- Basic Algorithm
 - n points
 - n^2 edges (possible parts of hull)
Convex Hull

- Basic Algorithm
 - n points
 - n^2 edges (possible parts of hull)
 - Test for each edge
 - Total brute force time?
Convex Hull – Divide and Conquer

- Sort all points by x-coordinate – $n \log n$
- Divide and Conquer
 - Find the convex hull of the left half of points
 - Find the convex hull of the right half of points
 - Merge the two hulls into one
- All the work happens at the merge and that is where we have to be smart
Convex Hull

- If divide and conquer
 - How much work at merge
 - Can just pass back Hull and can drop internal nodes at each step, thus saving a large constant factor in time. (but not sufficient for project)
 - Hull can still have $O(n)$ points.
 - At merge can test all hull points to see which points/edges are part of the new merged hull
 - Complexity? Do relation and master theorem.
Master Theorem

Given:

\[t(n) = a \cdot t(\lceil n/b \rceil) + O(n^d) \]

Where \(a > 0, \ b > 1, \ d \geq 0 \) and

- \(a \) = number of sub-tasks that must be solved
- \(n \) = original task size (variable)
- \(n/b \) = size of sub-instances
- \(d \) = polynomial order of work at each node (leaf/partitioning/recombining)

Then:

\[t(n) = \begin{cases}
O(n^d) & \text{if } \frac{a}{b^d} < 1 \Leftrightarrow d > \log_b a \\
O(n^d \log n) & \text{if } \frac{a}{b^d} = 1 \Leftrightarrow d = \log_b a \\
O(n^{\log_b a}) & \text{if } \frac{a}{b^d} > 1 \Leftrightarrow d < \log_b a
\end{cases} \]

This theorem gives big O complexity for most common DC algorithms.
Convex Hull

- **If divide and conquer**
 - How much work at merge
 - Can just pass back Hull and can drop internal nodes at each step, thus saving a large constant factor in time. (but not sufficient for project)
 - Hull can still have $O(n)$ points.
 - At merge can test all hull points to see which points/edges are part of the new merged hull
 - Complexity? Still $O(n^3)$. But can get a big constant factor improvement. How?
Convex Hull

- If divide and conquer
 - How much work at merge
 - Can just pass back Hull and can drop internal nodes at each step, thus saving a large constant factor in time. (but not sufficient for project)
 - Hull can still have $O(n)$ points.
 - At merge can test all hull points to see which points/edges are part of the new merged hull
 - Complexity? Still $O(n^3)$. But can get a big constant factor improvement. How?
Can we merge faster?
- Note new hull will be a subset of the old hull edges plus 2 new edges
- An improved approach is to just consider current hull edges. This is $O(n)$ edges rather than testing all possible edges which is $O(n^2)$.
- All (and only) current edges still legal with opposite hull will remain
- Complexity of this step?
Can we merge faster?

- Note new hull will be a subset of the old hull edges plus 2 new edges
- An improved approach is to just consider current hull edges. This is $O(n)$ edges rather than testing all possible edges which is $O(n^2)$.
- All (and only) current edges still legal with opposite hull will remain
- Complexity of this step?
- Leaving 4 points which must be end-points of tangent lines to create the merged convex hull.
Can we merge faster?
 - Then just appropriately connect the 4 points, adding the 2 needed edges for the merge
 - Total complexity? Do relation and master theorem.
Convex Hull

- Can we do even a smarter merge to get even faster?
Convex Hull – Divide and Conquer

- Hint: Keep the hulls ordered clockwise or counterclockwise
 - Merging ordered hulls can be faster (like with merge sort)
- From one point (e.g. left-most) to each other point, clockwise order will be by decreasing slopes
Merging Hulls

- First find the edges which are upper and lower tangent
 - A common tangent of two simple convex polygons is a line segment in the exterior of both polygons intersecting each polygon at a single vertex

- Then remove hull points that are cut off
 - Other internal points should already have been removed by this time
Finding Tangent Lines

- Start with the rightmost point of the left hull and the leftmost point of the right hull (maintain sorting)
- While the edge is not upper tangent to both left and right
 - While the edge is not upper tangent to the left, move counter clockwise to the next point on the left hull
 - Hint: Note that line is not upper tangent to the left if moving it up to the next point(s) on the left hull decreases slope of the tangent line
 - While the edge is not upper tangent to the right, move clockwise to the next point on the right hull
Finding Tangent Lines

- Start with the rightmost point of the left hull and the leftmost point of the right hull
- While the edge is not upper tangent to both left and right
 - While the edge is not upper tangent to the left, move counter clockwise to the next point on the left hull
 - Hint: Note that line is not upper tangent to the left if moving it up to the next point(s) on the left hull decreases slope of the tangent line
 - While the edge is not upper tangent to the right, move clockwise to the next point on the right hull
Finding Tangent Lines

- Start with the rightmost point of the left hull and the leftmost point of the right hull

- While the edge is not upper tangent to both left and right
 - While the edge is not upper tangent to the left, move counter clockwise to the next point on the left hull
 - Hint: Note that line is not upper tangent to the left if moving it up to the next point(s) on the left hull decreases slope of the tangent line
 - While the edge is not upper tangent to the right, move clockwise to the next point on the right hull
Finding Tangent Lines

- Start with the rightmost point of the left hull and the leftmost point of the right hull.

- While the edge is not upper tangent to both left and right:
 - While the edge is not upper tangent to the left, move counter clockwise to the next point on the left hull.
 - Hint: Note that line is not upper tangent to the left if moving it up to the next point(s) on the left hull decreases slope of the tangent line.
 - While the edge is not upper tangent to the right, move clockwise to the next point on the right hull.
Finding Tangent Lines

- Start with the rightmost point of the left hull and the leftmost point of the right hull
- While the edge is not upper tangent to both left and right
 - While the edge is not upper tangent to the left, move counter clockwise to the next point on the left hull
 - Hint: Note that line is not upper tangent to the left if moving it up to the next point(s) on the left hull decreases slope of the tangent line
 - While the edge is not upper tangent to the right, move clockwise to the next point on the right hull
Finding Tangent Lines

- Start with the rightmost point of the left hull and the leftmost point of the right hull
- While the edge is not upper tangent to both left and right
 - While the edge is not upper tangent to the left, move counter clockwise to the next point on the left hull
 - Hint: Note that line is not upper tangent to the left if moving it up to the next point(s) on the left hull decreases slope of the tangent line
 - While the edge is not upper tangent to the right, move clockwise to the next point on the right hull – What is complexity of merge and total alg - master
Some Hints

- Maintain clockwise (or counter clockwise) ordering when merging (natural if start that way).
- Handle the base cases ($n < 4$) properly
 - Get started with appropriately ordered hulls
- Need to be careful when accessing your hull data structure since it is really a circular list. If using an array then make sure indexes properly change between the 0 element and the last element when you are moving either clockwise or counterclockwise through the array.
- Review Project Description
 - Theoretical vs Empirical graph and proportionality constant
 - Podium Demo