Linear Programming

November 12, 2009

Parts of this introduction to linear programming were adapted from Chapter
29 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest
and Stein.

1 What is Linear Programming?

The first thing to know about linear programming is that it is “programming”
in the sense of trying to establish a plan or a schedule for something, rather
than programming in the sense of trying to write some code to solve a problem.
For example, a TV station has to solve the problem of deciding which shows to
air at which times. This is a programming problem.

The kind of programming we are going to study is linear. “Linear” indicates
that the constraints on the cost or profit of a decision are expressed as linear
combinations of variables. A linear combination is a sum of terms, each of which
is a constant-coefficient multiplied by a variable. The variables are raised to the
first power. In each constraint, the linear combination is less than, greater than
or equal to a constant.

In most cases, a linear programming problem will look something like this:

Maximize

T, — Do + 313
Subject to

T — T2 >3

To + 223 < 2

dx1 —2x90 + 23 > 7

The first equation is the objective function (which term should be familiar
to you from greedy algorithms) and the other inequalities are the constraints.
Another way to think about linear programming is as a constraint satisfaction
and optimization problem.

It is not hard to make up simple examples of linear programming problems
based on business problems. For example, suppose a furniture production com-
pany makes tables, chairs and window frames. The company can ask a price of
100 dollars for a table, 30 dollars for a chair and 35 dollars for selling a window
frame. The production of furniture requires paying a cost for supplies and labor.

objective func-
tion
constraints

The problem here is to decide how many tables, chairs and window frames to
make given the cost of each item. More concretely, if we let ¢ = the number of
tables produced, ¢ = the number of chairs produced, w = the number of window
frames produced, s = the total cost of supplies and [= the total cost of labor
then we want to maximize the income, less expenses:

100t + 30c + 35w — s — 1

subject to a set of equations that describe the cost of producing each item and
equations that describe how much money we have on hand for buying labor and
supplies. Suppose a table costs 20 dollars in supplies and 30 dollars in labor to
produce; then we would add the constraints

30t -1 =0
20t — s, =0

which require us to spend 30 dollars on labor for each table built and 20 dollars
on supplies for each table built. Similarly, suppose it costs 10 dollars in supplies
and 10 dollars in labor to make a chair and that it costs 15 dollars in supplies
and 5 dollars in labor to make a window frame. We would add the following
constraints:

10c—1.=0
10c — s, =0
15w —1, =0

Bw — Sy =0

We needed different cost variables for each item, so we go back and add them
in to the objective function and the constraint equations to get

Maximize

100t + 30¢ + 35w — 8¢ — S¢ — Sy — g — Lo — Ly
Subject to

30t—1; =0

20t — s =0

10c—-1.,=0

10c —s. =0

15w —1, =0

Bw — Sy =0

The final constraints are that we only have 400 dollars on hand to spend on
labor and 300 on supplies. Those constraints are easily expressed as

Iy + 1.+ 1, <400
St + Se + S < 300

We can now pass our linear programming problem off to our favorite solver and
find the most profitable way to program our furniture shop so as to maximize
profits. The most profitable way is represented by assignments of values to the
variables in the problem.

In the furniture problems, we tacitly assumed that ¢, c and w were integers.
That is, we assumed we could only make an integer number of tables, chairs and
window frames. This assumption makes sense for this problem. But for most
problems we will assume that all variables can have arbitrary real values.

One interesting thing about linear programming is that, compared to graph
formulations of problems, it is an entirely different way to think about a problem.
In the graph representation, the challenge is to define the contents of each node
in the graph, describe how child nodes are related to their parents and describe
an algorithm for exploring the graph. In linear programming, the challenge is
to formulate the problem as a set of equations and then solve them.

2 Solving Linear Programming Problems

In the next section, we will learn how to solve linear programming problems
using the simplex method. The simplex method is a greedy algorithm. Interest-
ingly, we can formulate the continuous (divisible) knapsack problem as a linear
programming problem and use the simplex method to derive an algorithm that
looks exactly like the greedy knapsack algorithm. First, we need some stan-
dardized forms for linear programming problems, so we examine those in this
section. This will simplify our discussion.

2.1 Standard Form Step #1

The standard form (after step #1) for a linear program is

Maximize Y77, ¢;x;
subject to
Z?:l A, < bi for i = 1, 2, coem
zj >0forj=1,2,...n

in which all variables range over the real numbers. Given a linear programming
problem, it is always possible to add variables and constraints to get the problem
into standard form (after step #1). We will assume all problems are in standard
form (after step #1) henceforth.

The standard form (after step #1) includes the optimization of the objective
function with n variables (x;...x,) using m constraint equations of n terms
each and a set of n non-negativity equations. It is often convenient (especially
when implementing a linear program solver) to represent the variables for the
linear programming problem in standard form (after step #1) as a matrix and
a pair of vectors. The standard form (after step #1) includes an m X n matrix
A containing the values of the a coefficients in the constraint equations, an n-
dimensional vector b contains the b; entries from the constraint equations, and
an n-dimensional vector ¢ contains the ¢; entries from the objective function.

If we use the matrix and vectors representation, then the standard form

standard form
(after step #1)

(after step #1) is

Maximize ¢z
subject to
Ax <b
x>0

in which ¢! is the transpose of ¢ (to get a single value for the objective function,
you just rotate ¢ 90 degrees and multiply the resulting 1 x n matrix by = (which
is an n by 1 matrix) to get a single scalar value) and 0 is the n-dimensional 0
vector (which is a vector containing 0 in every entry).

2.2 Standard Form Step #2

Standard form (after step #2) will allow us to assume that all linear program-
ming problems are in the same form. We care about standard form because it
is the form used in the simplex method. In standard form, the only inequalities
allowed are non-negativity constraints; the other constraints must be equalities.

Completing the conversion to standard form requires two additional changes.
First, a new variable, z is introduced to store the value of the objective func-
tion. Second, all of the constraint equations in standard form are rewritten as
equalities, rather than inequalities, with a new non-negativity constraint. So

the constraint .
Y aija; < b,
j=1

becomes the pair of constraints

n
s =bi — > i1 i T,
s> 0.

The important thing here is that the new pair of constraints is satisfied if and
only if the original constraint is satisfied. The variable s is called a slack
variable because it measures the difference, or slack, between the left and right
sides of the original constraint.

It is convenient to assume that the slack variable for constraint 4 is called
ZTn+s instead of s. So that the standard form is

n
Tnti = bi — 225 1 ai ;75
Tni 2 0.

Initially, the original variables participating in the (linear combinations of the)
constraints and the objective function are called the non-basic variables. The
slack variables comprise the basic variables. They are “basic” because they
stand alone on one side (the left-hand side in these notes) of each constraint.

slack variable

non-basic vari-
ables
basic variables

At this point, it is a good idea to do an example. We will begin with the
linear programming problem

Maximize 2z — 3x9 + 3x3
subject to
T+ w2 —23 <7
—X1 — T + I3 S -7
T — 2x9 + 223 < 4
Tr1,T2,T3 Z 0

The first thing to notice is that this linear programming problem has been
standardized up through standard form step #1. We want to convert it to
standard form. First, we will add the slack variables x4, x5, z¢ and change the
constraints to equalities.

Maximize 2z — 3x2 + 3x3

subject to
$4=7—.731—332+1‘3
$5:77+I‘1 +l’271’3
.’E6:4—IE1+2IE2—2IE3
T1,T2,T3,Tq,T5,Tg > 0

Finally, we add the z variable to track the value of the objective function.

z =211 — 3x9 + 313
I4:7—Z‘1—I2+I3
$5:77+ZE1 +£L’2*£L’3
£U6:4—(E1+2.’E2—2£C3
T1,T2,T3,T4,T5,Tg, 2 > 0

For later use in the Simplex method, we will want a more concise represen-
tation of a linear programming problem in standard form. Just like before, we concise repre-
will use the matrix A and the vectors b and ¢ to keep track of the coefficients sentation of
in the constraints (using A), the constant terms in the slack equations (using b) standard form
and the coefficients in the objective function (using ¢). But, we will also need to
know the indices for the basic variables and the indices for the non-basic vari-
ables!. The set B will contain the indices of the basic variables, and the set N
will contain the indices of the non-basic variables. Finally, the value v will be an
optional constant term in the objective function. The compact representation
for the above linear program in standard form is:

B = {4,5,6}

N = {1,2,3}

c = (2 -3 3)"
7

b= | -7
4

IDuring execution of the algorithm, the basic and non-basic variable sets will evolve

A = -1 -1 1

v = 0

Notice that the coefficients of A are the additive inverse (i.e., 5 be-
comes -5) of their representation in standard form.. In this example,
there is no constant term in the objective function so v is set to 0.

3 Simplex Algorithm

A simplex is a convex polygon and the simplex algorithm greedily visits the
vertices of the polygon. A convex polygon is a polygon in which the line segment
connecting any two points in the polygon is also contained in the polygon. For
example, a stop sign is a convex polygon while the ASB (an X-shaped building)
is not. For a specific linear programming problem, the simplex is formed by the
constraints.

The simplex algorithm operates in a manner similar to solving a linear system
using Gaussian elimination. Just in case you haven’t taken linear algebra or
don’t remember: in Gaussian elimination the system is repeatedly transformed
into an equivalent system until the structure of the resulting system yields an
easily extracted solution. The simplex algorithm iterates in a similar manner.

We associate each iteration of the algorithm with a basic solution. A basic
solution is obtained from the standard form of the linear programming prob-
lem by setting each non-basic variable to 0 and then computing the values of
the basic variables from the remaining equality constraints. A basic solution
corresponds to a vertex of the simplex. On each iteration of the algorithm, we
are going to convert the current standard form into a new equivalent standard
form whose basic solution is a different vertex of the simplex. The goal is to
move through the vertices to find the one that maximizes the objective function.
This is done by finding a non-basic variable that, when increased from 0, causes
an increase in the objective value. The amount by which we can increase the
non-basic variable is limited by the basic variables. In particular, we increase
the non-basic variable until one of the basic variables become zero. This in-
dicates that there is no more slack in the system (i.e., the difference between
the function and its constraining inequality is 0). At this point we rewrite the
standard form to exchange the chosen non-basic variable with the basic variable
that is now 0. This is a new basic solution and we repeat the process until
we cannot find a non-basic variable to increase that gives an increase in the
objective function.

3.1 Simplex Algorithm Example

An extended example will help see the process. Consider the following linear
program in standard form:

maximize 3x; + T2 + 23
subject to x1 + 22 + 3zs < 30
2r1 + 2x9 + bxgz < 24
4I1 + To + 2{E3 S 36
x1,r2,23 > 0

We begin by converting this into its equivalent standard from. Standard form
is useful for algebraic as well as algorithmic manipulation. We say that a con-
straint is tight for a particular setting of its non-basic variables if they cause
the constraint’s basic variable to become 0. Similarly, a setting of the non-basic
variables that would make a basic variable become negative violates that con-
straint. The slack variable thus represents how far away a constraint is from
being tight, and they help us determine the limit to which we can increase
non-basic variables without violating any constraints.

We convert to standard form by creating a slack variable for each constraint,
converting the inequality to equality constraints, and creating a variable for the
objective function. Note that we drop the non-negativity constraints since they
are implied by the standard form. The standard form of the problem is:

z = 3(E1 + r9 + 2%3
T4 = 30 — ryT — o — 3.%3
rs = 24 — 21‘1 — 2372 — 53’33
g — 36 — 41‘1 — To — 2333

T1, T2, T3%4,Ts5, Te > 0

A feasible solution to this system is any assignment of positive values to z1,
Z2, and z3 that yields positive values for x4, x5, and xg; thus, there are an
infinite number of feasible solutions to this system. We are interested in the
basic solution obtained by setting all the non-basic variables to zero (i.e., the
variables on the right-hand side of the equalities). The basic solution for our
example is (&7, @, @3, T4, T5, Tg) = (0,0,0,30,24,36), and it has an objective
value z = (3-0)+ (1-0)+(2-0) = 0. Note that the basic solution sets &; = b; for
each i € B. An iteration of the simplex algorithm rewrites the objective function
and constraint equations to create a different set of non-basic variables. This in
turn creates a new basic solution. The rewrite in no way changes the underlying
linear program that is being solved. Rather, it represents the movement from
one vertex to another in exploring the simplex. Note that it is possible that
the basic solution is not feasible during the first few iterations of the algorithm.
This is OK.

We reformulate the linear programming problem in an iteration of the al-
gorithm by picking a non-basic variable z. and increasing its value to see if it
increases the objective function value. If this is the case, then we continue to

feasible
tion

solu-

increase x. until a basic variable x; becomes 0. At this point, z. becomes basic
(i-e., it has a nonzero value) and x; becomes non-basic (i.e., it has a zero value).
We choose our non-basic value to increase by looking at the objective function.
If a non-basic variable exists in the objective function with a positive coefficient,
then we can select that variable as z. in our algorithm. Keep in mind that as we
increase x. other basic variables and our objective functions may also change.
The first basic variable to reach 0 becomes x;.

To continue with our example, notice that x; is a non-basic variable with a
positive coefficient in the objective function. We select this as the variable to
increase. As we increase x1, the variables x4, x5, and x¢ decrease. The non-
negativity constraint prevents us from increasing x; above 9 since xg becomes
negative at that point; thus, xg is our tightest constraint since it limits how
much we can increase 1. We now switch the roles of 21 and xg by solving the
third constraint for xq:

Teg — 36—4$1—$2—2$3

41’1 36—1’2 —2%3 — Tg

o= 9"y Ty

We now rewrite the other equations by writing z; in terms of xo, z3, and x4
using the above equation. Doing this for x4 gives us

xy = 30—2x1— 20— 323
_ _(o_ T2 _ T3 _ Te\
= 30 (94 2 4) T2 = 313
_ 9y _ 32 53 Te
4 2 4

We repeat this procedure for the remaining constraint and objective function
to rewrite our linear program in the following form:

— Z2 z3 _ 3ze
z = 27 + i + 2 1
AT S E
rg = 21 — @ - 55 4+ 7
x5 = 6 — 3% - dxz + F

The rewrite operation as shown above is called a pivot. A pivot takes the non-
basic variable x. called the entering variable and the basic variable x; called the
leaving variable and exchanges their roles in the linear program.

Pivoting rewrites that linear program into an equivalent form. The original
basic solution to our linear program was (0,0,0,30,24,36) with an objective
value of 0. The new basic solution to the linear program after the pivot is
(9,0,0,21,6,0) with an objective value of 27. This solution is feasible in our
linear program before the pivot, and it yields the same objective value.

Continuing the example, we now find a new non-basic variable to increase.
We do not want to increase xg since it has a negative coefficient. We can
attempt to increase either x5 or xz. Let us use x3. We can increase x3 to

% before the third constraint becomes negative, so the third constraint is the
tightest constraint. We pivot on z3 and =5 by solving for x3 on the right-hand
side of the third constraint and substituting it into the other equations to rewrite
the linear program to

— 1 a3 _ ms _ 1llze
S 2 g
x = 33 _ Tz 4 5 SZe.

4 1 1
AR W R S

- 2 4

_ 69 322 5z 9886
L o s T 1

There is still a non-basic variable in the objective function with a positive coef-
ficient. We increase this variable and pivot again to rewrite the linear program
as:

B
mo= 84 B4 & -k
mo- 4- W o- B g
1’4:18*%34’%

There are no other variables we can change to increase the objective value.
The basic solution to the linear program is (8,4,0, 18,0,0). The objective value
from this solution is 28. We can now return to our original linear programming.
The only variables in the original program are x1, x2, and x3. Using our basic
solution these variables are 1 = 8, 2 = 4, and 3 = 0. Notice that these values
give an objective value of 28 as expected. Note that our final solution assigns
integers to every variable; however, this will not always be the case.

3.2 Pivoting

Pivoting is a key, perhaps the key, operation in the simplex algorithm. The
pseudocode for the pivoting algorithm is given in Figure 1. The parameters
passed to the algorithm are the matrices, vectors and integers in the concise
representation of the standard form (the definition of the concise representation
is on page 5).

The pseudocode for the simplex algorithm is given in Figure 2. The basic
idea of the simplex algorithm is to choose a pair of entering and leaving variables.
The entering variable, e which is chosen on line 7, is a non-basic variable (i.e., its
index is in N) with a positive coefficient in the objective function (i.e., ¢, > 0).
The significance of the entering variable is that if we increase the value of the
entering variable then we can increase the value of the objective function and
that was our goal in the first place. Note that the algorithm, on line 7, doesn’t
give you any guidance on how to pick the entering variable. You just have to
pick one, of possibly many, non-basic variables in the objective function with
a positive coefficient. You may decide to pick the non-basic variable with the
biggest positive coeflicient, or you might use some other method.

The for-loop in lines 8 through 12 determines how much we can change the
value of the entering variable while allowing the basic variables (i.e., variables
with index in B) for each constraint to remain positive. In line 12, we pick the

Pivot (N, B, A,b,c,v,l,¢e)
// Compute coefficients for equation for the new basic variable .
// The variables with hats, like b,, will be the return values
Be = bl/al,e
for cach j € N — {e}

do Gej =ajj/aie
&e,l = 1/al,e
// Compute coefficients for the other constraints
for each i € B — {l}

do ZA77 = b7 — ai7el;e

for each j € N — {e}
do d@j = Q4 — ai’ede’j
di,l = _ai,ede,l

// Compute the objective function
D=v+ celA)e
for cach j € N — {e}

do ¢ = cj — Celie,j
¢ = 7cede,l
// Compute new basic and non-basic variable sets
N = (N - {e}) U1}
B=(B-{1)Ue)
return (N, B, A, b, ¢,0)

U S g g
©C 0T U W~ O © 0D TR W=

N DD
— O

[\
[\

Figure 1: The Pivot algorithm.

index of the basic variable with the tightest constraint (i.e., let I = i such that
0; is the smallest of the ds).

We repeat that process until either there are no more non-basic variables
with positive coefficients or we discover that the value of the objective function is
unbounded (line 14). After completing the pivot operations, the only remaining
task is to return the values of the nonzero basic variables.

The initial assumptions are made to simplify the project. We could have
InitializeSimplex put an arbitrary LP in standard form, but we will just assume
that this is done previously. In general, an LP may not have the origin as a
vertex. The origin could be inside or outside of the feasible region rather than
at a vertex. The more general approach of implementing the InitializeSimplex
algorithm would change the basis to make the origin a vertex if necessary. If
would also ensure that the first basic solution is feasible. These can be done
by just using another LP as a preprocess, so we will skip it — you can refer to
Section 7.6.3 of the text for more details on this issue.

10

1 // Previously convert the problem to standard form.

2 // We assume that the first basic solution is at the origin and is feasible.
3 // This is not true in general but makes our problem easier.

4 Simplex (A,b,c)

5 (N,B,A,b,c,v) = InitializeSimplex(A, b, ¢) //Initialize data structures
6 while there exists some j € N such that ¢; > 0

7 do choose an index e € N such that ¢, > 0 // e is entering variable
8 for each indexi € B

9 do if a;. >0

10 then (5z == bi/ai’e

11 else §; = o0

12 choose | € B such that §; is minimized // [is leaving variable
13 if 5[=

14 then return “unbounded”

15 else (N, B, A,b,c,v) = Pivot (N, B, A,b,c,v,l,e)

16 // set the non-basic variables to 0 and everything else to the optimal solution

17 fori=1ton

18 doifie B

19 then T; = bz
20 elsez; =0
21 return (Z1,Zo,...Ty)

Figure 2: The simplex algorithm.

4 Implementation Notes

There are a few small, but important details, in the implementation of the
simplex algorithm in Figure 2.

Recall that we decided that we could represent a linear programming prob-
lem in concise matrix form (defined on page 5) with the matrix A and the
vectors b and ¢ to keep track of the coefficients in the constraints (using A),
the constant terms in the slack equations (using b) and the coefficients in the
objective function (using c¢). But, we will also need to know the indices for
the basic variables and the indices for the non-basic variables. The set B will
contain the indices of the basic variables and the set N will contain the indices
of the non-basic variables. Finally, the value v will be an optional constant term
in the objective function.

The first detail is that the a; ; entries in the A coefficient matrix are actu-
ally the negated values of the coefficients as they appear in the standard form
equations. Note that we did this in the example on page 6. This is because the
matrices work out to be

z=v+ EjeN CjTj
r; =b; — ZjeN Qi jT; forie B

and the a; ; terms are subtracted from the b; term in each equation.

11

The second detail is that the A array in the simplex algorithm should be
of size (n + m) x (n + m) rather than m x n. Recall that n is the number of
non-basic variables and m is the number of basic variables. Since each basic
variable is the left side of a constraint equation, and there is one row in A per
constraint, then you’d expect that there would only be m rows in A. But there
are n rows in A because any basic or non-basic variable can be pivoted into
a basic variable. When a formerly non-basic variable is pivoted into becoming
a basic variable, then the new basic variable becomes the left side of a new
constraint equation. In the algorithm, you need a simple and easy way to find
the new constraint equation for the new basic variable. The way this is done is
to keep the constraint equation for the basic variable with index i at row i of
A. Since any of the n + m variables can be a basic variable during the run of
the algorithm, you need n + m rows. Initially pad the extra cells with 0’s.

You also need n 4+ m columns because the coefficient for variable z; (which
might be 0 or might not be) in the constraint for variable x; needs a place to
stay which is also easy to find later. A pivot operation allows any variable to
end up in the constraints for any other variable so you need all n + m columns
in addition to all n + m rows.

Similarly, the ¢ and b vectors will contain n + m entries as well.

If you don’t get this right now, then you should probably work out an ex-
ample on paper before trying to code up the algorithm. Doing so will save you
a lot of time since you will be more likely to generate correct code.

12

