CS 312: Algorithm Analysis- Homework Assignment #15

Show all work neatly.

Question 1: (4) Knapsack without repetition

Use dynamic programming to fill a knapsack <u>without</u> repetition having a maximum weight capacity of 10 units with a load of maximum value from the following objects:

Object	Weight	Value
А	1	1
В	2	7
С	5	11
D	6	21
Е	7	31

Your answer should include:

- a table with solutions to sub-problems
- the value of the optimal load
- the objects to be included in the optimal load (show back-pointers in the table)

Question 2: (3) You are given five matrices with the following dimensions:

- M₁: 20 x 5
- M₂: 5 x 10
- M₃: 10 x 12
- M₄: 12 x 6
- M₅: 6 x 25

You wish to compute the product of the matrix chain $M_1 M_2 M_3 M_4 M_5$. What is the optimal (minimal) number of scalar multiplications required to compute this product? Use dynamic programming to compute the answer and show your work.

Question 3: (3) For the following graph, step through Floyd's algorithm (Floyd-Warshall), showing the **D** matrix at each step, and report the resulting shortest paths between all pairs of vertices.

