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Abstract

We investigate practical selection of hyper-parameters for support vector machines (SVM) regression (that is, 1-insensitive zone and
regularization parameter C). The proposed methodology advocates analytic parameter selection directly from the training data, rather than
re-sampling approaches commonly used in SVM applications. In particular, we describe a new analytical prescription for setting the value of
insensitive zone 1; as a function of training sample size. Good generalization performance of the proposed parameter selection is
demonstrated empirically using several low- and high-dimensional regression problems. Further, we point out the importance of Vapnik’s 1-
insensitive loss for regression problems with finite samples. To this end, we compare generalization performance of SVM regression (using
proposed selection of 1-values) with regression using ‘least-modulus’ loss ð1 ¼ 0Þ and standard squared loss. These comparisons indicate
superior generalization performance of SVM regression under sparse sample settings, for various types of additive noise.
q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This study is motivated by a growing popularity of
support vector machines (SVM) for regression problems
(Cherkassky & Mulier, 1998; Drucker, Burges, Kaufman,
Smola, & Vapnik, 1997; Kwok, 2001; Mattera & Haykin,
1999; Muller et al., 1999; Schölkopf, Bartlett, Smola, &
Williamson, 1998; Schölkopf, Burges, & Smola, 1999;
Schölkopf & Smola, 2002; Smola, Murata, Schölkopf, &
Muller, 1998; Smola & Schölkopf, 1998; Vapnik, 1998,
1999). Their practical success can be attributed to solid
theoretical foundations based on VC-theory (Vapnik, 1998,
1999), since SVM generalization performance does not
depend on the dimensionality of the input space. However,
many SVM regression application studies are performed by
‘expert’ users. Since the quality of SVM models depends on
a proper setting of SVM hyper-parameters, the main issue
for practitioners trying to apply SVM regression is how to
set these parameter values (to ensure good generalization
performance) for a given data set. Whereas existing sources

on SVM regression (Cherkassky & Mulier, 1998; Kwok,
2001; Mattera & Haykin, 1999; Muller et al., 1999;
Schölkopf et al., 1998, 1999; Smola et al., 1998; Smola &
Schölkopf, 1998; Vapnik, 1998, 1999) give some rec-
ommendations on appropriate setting of SVM parameters,
there is no general consensus and many contradictory
opinions. Hence, re-sampling remains the method of choice
for many applications. Unfortunately, using re-sampling for
(simultaneously) tuning several SVM regression parameters
is very expensive in terms of computational costs and data
requirements.

This paper describes simple yet practical analytical
approach to SVM regression parameter setting directly from
the training data. Proposed approach (to parameter selec-
tion) is based on well-known theoretical understanding of
SVM regression that provides the basic analytical form of
proposed (analytical) prescriptions for parameter selection.
Further, we perform empirical tuning of these analytical
dependencies using synthetic data sets. Practical validity of
the proposed approach is demonstrated using several low-
and high-dimensional regression problems.

Recently, several researchers (Smola & Schölkopf, 1998;
Vapnik, 1998, 1999) noted the similarity between Vapnik’s
1-insensitive loss function and Huber’s loss in robust
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statistics (Huber, 1964). In particular, Vapnik’s loss
function coincides with a special form of Huber’s loss aka
least-modulus (LM) loss (with 1 ¼ 0). From the viewpoint
of traditional robust statistics, there is a well-known
correspondence between the noise model and optimal loss
function (Schölkopf & Smola, 2002; Smola & Schölkopf,
1998). However, this connection between the noise model
and the loss function is based on (asymptotic) maximum
likelihood arguments (Smola & Schölkopf, 1998). It can be
argued that for finite-sample regression problems Vapnik’s
1-insensitive loss (with properly chosen 1-value) may yield
better generalization than other loss functions (known to be
asymptotically optimal for a particular noise density). In
order to test this assertion, we compare generalization
performance of SVM linear regression (with optimally
chosen 1) with robust regression using LM loss function
ð1 ¼ 0Þ and also with optimal least squares regression, for
several noise densities.

This paper is organized as follows. Section 2 gives a
brief introduction to SVM regression and reviews existing
methods for SVM parameter selection. Section 3 describes
the proposed approach for selecting SVM parameters.
Section 4 presents empirical comparisons. These com-
parisons include regression data sets with non-linear target
functions, corrupted with Gaussian noise, as well as non-
Gaussian noise. Section 5 presents extensive empirical
comparisons for higher dimensional linear regression
problems under different settings and noise models.
Section 6 describes noise variance estimation for SVM
regression. Finally, summary and discussion are given in
Section 7.

2. Support vector regression and SVM parameter
selection

We consider standard regression formulation under
general setting for predictive learning (Cherkassky &
Mulier, 1998; Hastie, Tibshirani, & Friedman, 2001;
Vapnik, 1999). The goal is to estimate unknown real-valued
function in the relationship:

y ¼ rðxÞ þ d ð1Þ
where d is independent and identically distributed (i.i.d.)
zero mean random error (noise), x is a multivariate input and
y is a scalar output. The estimation is made based on a finite
number of samples (training data): ðxi; yiÞ; ði ¼ 1;…; nÞ: The
training data are i.i.d. samples generated according to some
(unknown) joint probability density function (pdf)

pðx; yÞ ¼ pðxÞpðylxÞ ð2Þ
The unknown function in Eq. (1) is the mean of the output
conditional probability (aka regression function)

rðxÞ ¼
ð

ypðylxÞdy ð3Þ

A learning method (or estimation procedure) selects the
‘best’ model f ðx;v0Þ from a set of approximating functions
(or possible models) f ðx;vÞ parameterized by a set of
parameters v [ V: The quality of an approximation is
measured by the loss or discrepancy measure Lðy; f ðx;vÞÞ;
and the goal of learning is to select the best model
minimizing (unknown) prediction risk:

RðvÞ ¼
ð

Lðy; f ðx;vÞÞpðx; yÞdx dy ð4Þ

It is known that the regression function (3) is the one
minimizing prediction risk (4) with the squared loss
function loss:

Lðy; f ðx;vÞÞ ¼ ðy 2 f ðx;vÞÞ2 ð5Þ
Note that the set of functions f ðx;vÞ; v [ V supported by a
learning method may or may not contain the regression
function (3). Thus, the problem of regression estimation is
the problem of finding the function f ðx;v0Þ (regressor) that
minimizes the prediction risk functional

RðvÞ ¼
ð
ðy 2 f ðx;vÞÞ2pðx; yÞdx dy ð6Þ

using only the training data. This risk functional measures
the accuracy of the learning method’s predictions of
unknown target function rðxÞ:

In SVM regression, the input x is first mapped onto an m-
dimensional feature space using some fixed (non-linear)
mapping, and then a linear model is constructed in this
feature space (Cherkassky & Mulier, 1998; Smola &
Schölkopf, 1998; Vapnik, 1998, 1999). Using mathematical
notation, the linear model (in the feature space) f ðx;vÞ is
given by

f ðx;vÞ ¼Xm
j¼1

vjgjðxÞ þ b ð7Þ

where gjðxÞ; j ¼ 1;…;m denotes a set of non-linear
transformations, and b is the ‘bias’ term.

Regression estimates can be obtained by minimization of
the empirical risk on the training data. Typical loss
functions used for minimization of empirical risk include
squared error and absolute value error. SVM regression uses
a new type of loss function called 1-insensitive loss
proposed by Vapnik (1998, 1999):

L1ðy; f ðx;vÞÞ
¼

0 if ly 2 f ðx;vÞl # 1

ly 2 f ðx;vÞl2 1 otherwise

(
ð8Þ

The empirical risk is:

RempðvÞ ¼
1
n
Xn

i¼1
L1ðyi; f ðxi;vÞÞ ð9Þ

Note that 1-insensitive loss coincides with LM loss and with
a special case of Huber’s robust loss function (Huber, 1964)
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when 1 ¼ 0 (Vapnik, 1998). Hence, we shall compare
prediction performance of SVM (with proposed 1-value)
with regression estimates obtained using LM loss ð1 ¼ 0Þ;
for various noise densities.

SVM regression performs linear regression in the high-
dimensional feature space using 1-insensitive loss and, at
the same time, tries to reduce model complexity by
minimizing kvk2: This can be described by introducing
(non-negative) slack variables ji; jpi i ¼ 1;…n; to measure
the deviation of training samples outside 1-insensitive zone.
Thus, SVM regression is formulated as minimization of the
following functional:

minimize
1
2
kvk2 þ C

Xn

i¼1
ðji þ jpi Þ

subject to

yi 2 f ðxi;vÞ2 b # 1þ jpi
f ðxi;vÞ þ b 2 yi # 1þ ji

ji; jpi $ 0

8>><
>>:

ð10Þ

where C is a positive constant (regularization parameter).
This optimization formulation can be transformed into the
dual problem (Vapnik, 1998, 1999), and its solution is
given by

f ðxÞ ¼
Xn

i¼1
ðai 2 ap

i ÞKðxi; xÞ þ b ð11Þ

where the dual variables are subject to constraints 0 # ai;
ap

i # C; and the kernel function Kðx; x0Þ is a symmetric
function satisfying Mercer’s conditions (Vapnik, 1998,
1999). The sample points that appear with non-zero
coefficients in Eq. (11) are called support vectors (SVs).

It is well known that SVM generalization performance
(estimation accuracy) depends on a good setting of hyper-
parameters C; 1 and the kernel parameters. The problem of
optimal parameter selection is further complicated by the fact
that SVM model complexity (and hence its generalization
performance) depends on all three parameters. Existing
software implementations of SVM regression usually treat
SVM hyper-parameters as user-defined inputs. In this paper
we focus on the choice of C and 1; rather than on selecting the
kernel function. Selecting a particular kernel type and kernel
function parameters is usually based on application-domain
knowledge and may reflect distribution of input ðxÞ values of
the training data (Chapelle & Vapnik, 1999; Schölkopf et al.,
1999; Vapnik, 1998, 1999). For example, in this paper we
show examples of SVM regression using radial basis
function (RBF) kernels where the RBF width parameter
reflects the distribution/range of x-values of training data.

Parameter C determines the trade off between the model
complexity (flatness) and the degree to which deviations
larger than 1 are tolerated in optimization formulation (10).
For example, if C is too large (infinity), then the objective is
to minimize the empirical risk (9) only, without regard to
model complexity part in the optimization formulation (10).

Parameter 1 controls the width of the 1-insensitive zone,
used to fit the training data (Cherkassky & Mulier, 1998;
Vapnik, 1998, 1999). The value of 1 can affect the number
of SVs used to construct the regression function. Larger 1-
value result in fewer SVs selected, and result in more ‘flat’
(less complex) regression estimates. Hence, both C and 1-
values affect model complexity (but in a different way).

Existing practical approaches to the choice of C and 1
can be summarized as follows:

† Parameters C and 1 are selected by users based on a
priori knowledge and/or user expertise (Cherkassky &
Mulier, 1998; Schölkopf et al., 1999; Vapnik, 1998,
1999). Obviously, this approach is not appropriate for
non-expert users. Based on the observation that SVs lie
outside the 1-tube and the SVM model complexity
strongly depends on the number of SVs, Schölkopf
et al. (1998) suggested that another parameter n (i.e.
the fraction of points outside the 1-tube) should be
controlled instead of 1: Under this approach, parameter
n has to be user-defined. Similarly, Mattera and Haykin
(1999) propose to choose 1-value so that the percen-
tage of SVs in the SVM regression model is around
50% of the number of samples. However, one can
easily show examples where optimal generalization
performances are achieved with the number of SVs
more or less than 50%.

† Kwok (2001) and Smola et al. (1998) proposed
asymptotically optimal 1 values which are proportional
to noise variance, in agreement with general sources on
SVM (Cherkassky & Mulier, 1998; Vapnik, 1998,
1999). The main practical drawback of such a proposal
is that it does not reflect sample size. Intuitively, the
value of 1 should be smaller for larger sample sizes
(when the data has the same level of noise).

† Selecting parameter C equal to the range of output
values (Mattera & Haykin, 1999). This is a reasonable
proposal, but it does not take into account possible
effect of outliers in the training data.

† Using cross-validation for parameter selection (Cher-
kassky & Mulier, 1998; Schölkopf et al., 1999). This
approach is very computation and data-intensive.

† Several researchers have recently presented a statisti-
cal interpretation of SVM regression (Smola &
Schölkopf, 1998; Hastie et al., 2001) where the loss
function used for empirical risk (9) is related to
particular type of additive noise in regression
formulation (1). Under this approach, the value of 1-
parameter can be optimally tuned for particular noise
density, whereas the C parameter is interpreted as a
traditional regularization parameter in formulation
(10), which is usually estimated by cross-validation
(Hastie et al., 2001).

As evident from the above, there is no shortage of
(conflicting) opinions on optimal setting of SVM regression
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parameters. Under our approach (described next in
Section 3) we propose:

† Analytical selection of C parameter directly from the
training data (without resorting to re-sampling);

† Analytical selection of 1-parameter based on (known or
estimated) level of noise in the training data, and on the
(known) number of training samples.

In addition, empirical evidence presented later in this
paper suggests the importance of 1-insensitive loss for
finite-sample estimation, in the sense that SVM regression
(with proposed parameter selection) achieves superior
prediction performance compared to other (robust) loss
functions, for different noise densities.

3. Proposed approach for parameter selection

Selection of parameter C. Following Mattera and Haykin
(1999), consider standard parameterization of SVM solution
given by Eq. (11), assuming that the 1-insensitive zone
parameter has been (somehow) chosen. Also suppose,
without loss of generality, that the SVM kernel function is
bounded in the input domain. For example, RBF kernels
(used in empirical comparisons presented later in Section 4)
satisfy this assumption:

Kðxi; xÞ ¼ exp 2
kx 2 xik

2

2p2

 !
ð12Þ

where p is the width parameter.
Under these assumptions, one can relate the value of C to

the range on response values of the training data.
Specifically, referring to Eq. (11), note that the regulariz-
ation parameter C defines the range of values 0 # ai; ap

i #

C assumed by dual variables used as linear coefficients in
SVM solution (11). Hence, a ‘good’ value for C can be
chosen equal to the range of output (response) values of
training data (Mattera & Haykin, 1999). However, such a
selection of C is quite sensitive to possible outliers (in the
training data), so we propose instead the following
prescription for regularization parameter:

C ¼ maxðl�y þ 3syl; l�y 2 3sylÞ ð13Þ
where �y and sy are the mean and the standard deviation of
the y values of training data. Proposed selection of C given
by Eq. (13) coincides with prescription suggested by
Mattera and Haykin (1999) when the data has no outliers,
but yields better C-values (in our experience) when the data
contains outliers.

Selection of 1. It is well-known that the value of 1 should
be proportional to the input noise level, that is 1/ s
(Cherkassky & Mulier, 1998; Kwok, 2001; Smola et al.,
1998; Vapnik, 1999). Here we assume that the standard
deviation of noise s is known or can be estimated from data

(practical approaches to noise estimation are discussed later
in Section 6). However, the choice of 1 should also depend
on the number of training samples: intuitively, larger sample
sizes should yield smaller 1-values. Precise nature of such a
dependency can be derived using a combination of simple
statistical arguments followed by empirical tuning/verifica-
tion, as discussed next. First, let us try to relate the value of 1
to an empirical distribution of ‘errors’ di ¼ ŷi 2 yi; ði ¼
1;…; nÞ observed for a given training data set of size n:
Consider the sample mean of these errors:

d̂ ¼ 1
n
ðd1 þ d2 þ · · · þ dnÞ ð14Þ

Random variable d̂ can be interpreted as empirical estimate
of noise observed (or derived) from available training data
set of size n: Hence, the choice of 1 should depend on the
variance of d̂: In order to estimate the variance of d̂; recall
that component errors di in expression (14) all have zero
mean and variance s2 (where s2 is the variance of additive
noise in regression formulation (1)). According to the
Central Limit Theorem, the sample mean (14) is (approxi-
mately) Gaussian with zero mean and variance s2=n: Hence,
it seems reasonable to set the value of 1 proportional to the
‘width’ of the distribution of d̂ :

1 ,
sffiffi
n

p ð15Þ

Based on a number of empirical comparisons, we found
that Eq. (15) works well when the number of samples is
small, however, for large values of n prescription (15) yields
1-values that are too small (practically zero). Hence, we
propose the following (empirical) dependency:

1 , s
ffiffiffiffiffiffi
ln n

n

r
ð16Þ

We do not have specific theoretical justification for factor
ln n in the above expression, other that this factor typically
appears in analytical bounds used in VC theory (Vapnik,
2001). Based on the empirical tuning, we found the
following practical prescription for 1 :

1 ¼ 3s
ffiffiffiffiffiffi
ln n

n

r
ð17Þ

This expression provides good performance for various data
set sizes, noise levels and target functions for SVM
regression. Expression (17) will be used in all empirical
comparisons presented in Sections 4 and 5.

4. Experimental results for non-linear target functions

This section presents empirical comparisons for non-
linear regression, first with Gaussian noise, and then with
non-Gaussian noise.
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4.1. Results for Gaussian noise

First, we describe the experimental procedure used for
comparisons, and then present the empirical results.

Training data. Simulated training data ðxi; yiÞ; ði ¼
1;…nÞ; where x-values are sampled on uniformly spaced
grid in the input space, and y-values are generated according
to statistical model (1), i.e. y ¼ rðxÞ þ d: Different types of
the target functions rðxÞ are used. The y-values of training
data are corrupted by additive noise d with zero mean and
standard deviation s: We used Gaussian noise (for
comparisons presented in this section) and several non-
Gaussian symmetric noise densities (for results presented in
Section 4.2). Since SVM approach is not sensitive to a
particular noise distribution, we expect to observe good
generalization performance with different types of noise, as
long as an optimal value of 1 (reflecting standard deviation
of noise s) has been used.

Test data. The test inputs are sampled randomly
according to uniform distribution in x-space.

Kernel function. RBF kernel functions (12) are used in all
experiments, and the kernel width parameter p is appro-
priately selected to reflect the input range of the training/test
data. Namely, for univariate problems, RBF width par-
ameter is set to p , ð0:1–0:5Þ p rangeðxÞ: For multivariate
d-dimensional problems the RBF width parameter is set so
that pd , ð0:1–0:5Þ where all d input variables are pre-
scaled to [0,1] range. Such values yield good SVM
performance for various regression data sets.

Performance metric. Prediction risk is defined as the
mean squared error (MSE) between SVM estimates and the
true values of the target function for test inputs.

Note that regression estimates themselves are random,
since they are obtained using random (finite) training data.
Our initial comparisons (in this section) are made for such
random estimates obtained using a single random realiz-
ation of training data. This is done mainly for illustration
purposes (i.e. visual comparison of regression estimates
obtained by different methods for the same training data
set). Later, more representative comparisons (in Sections

4.2 and 5) use regression estimates obtained using many
(100) realizations of training data with the same statistical
characteristics (i.e. number of samples, noise level, noise
distribution, etc.). Such comparisons are presented in tables
showing prediction risk (MSE) averaged over 100 realiz-
ations of random training data.

The first set of results show how SVM generalization
performance depends on the proper choice of SVM
parameters for univariate sinc target function:

rðxÞ ¼ a
sinðxÞ

x
x [ ½210; 10	 ð18Þ

The following values of a : 1; 10; 0:1;210;20:1; were
used to generate five data sets using small sample size ðn ¼
30Þ with additive Gaussian noise (with different noise levels
s shown in Table 1). For these data sets, we used RBF
kernels with width parameter p ¼ 3: Table 1 shows:

Table 1
Results for univariate sinc function (small sample size): Data Set 1–Data
Set 5

Data
Set

a Noise
level ðsÞ

C-selection 1-selection Prediction
risk

%SV

1 1 0.2 1.58 0 0.0129 100
0.2 0.0065 43.3

2 10 2 15 0 1.3043 100
2.0 0.7053 36.7

3 0.1 0.02 0.16 0 1.03 £ 1024 100
0.02 8.05 £ 1025 40.0

4 210 0.2 14.9 0 0.0317 100
0.2 0.0265 50.0

5 20.1 0.02 0.17 0 1.44 £ 1024 100
0.02 1.01 £ 1024 46.7

Fig. 1. Comparison of SVM estimate using proposed parameter selection
versus using least-modulus loss, for Data Set 1 (sinc target function, 30
samples).

Fig. 2. Proposed 1-values versus optimal 1-values (providing smallest
prediction risk) for Data Set 1 for different number of training samples
ðn ¼ 30; 50;…; 150Þ:V. Cherkassky, Y. Ma / Neural Networks 17 (2004) 113–126 117



(a) Parameter values C and 1 (using expressions proposed
in Section 3) for different training sets.

(b) Prediction risk and percentage of support vectors
(%SV) obtained by SVM regression with proposed
parameter values.

(c) Prediction risk and %SV obtained using LM loss
function ð1 ¼ 0Þ:

We can see that the proposed method for choosing 1 is
better than LM loss function, as it yields lower prediction
risk and better (more sparse) representation.

Visual comparisons (for univariate sinc function, Data
Set 1) between SVM estimates using proposed parameter
selection and using LM loss are shown in Fig. 1, where the
solid line is the target function, the ‘ þ ’ denotes training
data, the dotted line is an estimate using LM loss and the
dashed line is the SVM estimate using proposed parameter
settings.

The accuracy of expression (17) for selecting the value of
1 as a function of the number of training samples ðnÞ is
demonstrated in Fig. 2. Fig. 2 shows the proposed 1-values
versus optimal 1-values (obtained by exhaustive search) for

Fig. 3. Prediction risk as a function of SVM parameters. Results obtained using Data Set 1 (small sample size, sinc target function): (a) prediction risk and (b)
percentage of SVs as a fraction of training data.

V. Cherkassky, Y. Ma / Neural Networks 17 (2004) 113–126118



Data Set 1 with noise level s ¼ 0:2 (see Table 1), for
different number of training samples.

Dependence of prediction risk as a function of chosen C
and 1-values for Data Set 1 (i.e. sinc target function, 30
training samples) is shown in Fig. 3(a). Fig. 3(b) shows the
%SV selected by SVM regression, which is an important
factor affecting generalization performance. Visual inspec-
tion of results in Fig. 3(a) indicates that the proposed choice
of 1; C yields good/near optimal performance in terms of
prediction risk. Also, one can clearly see that C-values
above certain threshold have only minor effect on the
prediction risk (see Fig. 3(a)). As evident from Fig. 3(b),

small 1-values correspond to higher percentage of support
vectors, whereas parameter C has rather negligible effect on
the percentage of SV selected by SVM method.

Fig. 4 shows prediction risk as a function of chosen C
and 1-values for sinc target function for Data Set 2 and
Data Set 3. We can see that the proposed choice of C
yields optimal and robust C-values corresponding to
SVM solutions in flat regions of prediction risk.

In order to investigate the effect of the sample size (on
selection of 1-value), we generated 200 training samples
using univariate sinc target function (as in Data Set 1) with
Gaussian noise ðs ¼ 0:2Þ: Fig. 5 shows the prediction risk as

Fig. 4. Prediction risk as a function of SVM parameters (small sample size): (a) results obtained using Data Set 2 and (b) results obtained using Data Set 3.

V. Cherkassky, Y. Ma / Neural Networks 17 (2004) 113–126 119



a function of SVM parameters for this data set (large sample
size). According to proposed expression (13) and (17), the
value of 1 is 0.1, and C is 1.58, which is consistent with
the results shown in Fig. 5. For these values of 1 and C; the
prediction risk is 0.0019, which compares favorably with
SVM using LM loss ð1 ¼ 0Þ where the prediction risk is
0.0038. Similarly, the proposed method compares favorably
with selection 1 ¼ 0:8485s proposed by Kwok (2001). For
this data set, Kwok’s method yields 1 ¼ 0:17 and the
prediction risk is 0.0033. According to Schölkopf and
Smola (2002) asymptotically optimal 1 ¼ 0:612s; which
yields 1 ¼ 0:12 and the prediction risk 0.0022 (for this data
set). The reason that our approach to 1-selection gives better
results is that all previously proposed methods for selecting
1-value (Kwok, 2001; Schölkopf & Smola, 2002; Smola
et al., 1998) do not depend on sample size.

Next we show results of SVM parameter selection for
multivariate regression problems. The first data set is
generated using two-dimensional sinc target function.

rðxÞ ¼
sin

ffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
ffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q ð19Þ

defined on a uniform square lattice [25,5]2, with response
values corrupted with Gaussian noise (s ¼ 0:1 and s ¼ 0:4;
respectively). The number of training samples is 169, and
the number of test samples is 676. The RBF kernel width
parameter p ¼ 2 is used. The proposed approach selects the
following values C ¼ 1:16 and 1 ¼ 0:05 (for s ¼ 0:1) and
1 ¼ 0:21 (for s ¼ 0:4). Table 2 compares SVM estimates
(with proposed parameter selection) and estimates obtained
using LM loss, in terms of prediction risk and the percentage
of SV chosen by each method.

Finally, consider higher dimensional additive target
function

rðxÞ ¼ 10 sinðpx1x2Þ þ 20ðx3 2 0:5Þ2 þ 10x4 þ 5x5 ð20Þ

where x-values are distributed in hypercube [0,1]5. Output
(response) values of training samples are corrupted by
additive Gaussian noise (with s ¼ 0:1 and s ¼ 0:2).
Training data size is n ¼ 243 samples (i.e. 3 points per
each input dimension). The test size is 1024. The RBF
kernel width parameter p ¼ 0:8 is used for this data set. The
proposed method yields the value of C ¼ 34 and the value
of 1 ¼ 0:045 for s ¼ 0:1 and 1 ¼ 0:09 for s ¼ 0:2:
Comparison results between the proposed methods for
parameter selection with the method using LM loss function
are shown in Table 3. Clearly, the proposed approach gives
better performance in terms of prediction risk and
robustness.

4.2. Results for non-Gaussian noise

Next we present empirical results for regression
problems with non-Gaussian additive symmetric noise
in the statistical model (1). The main motivation is to

Fig. 5. Prediction risk as a function of SVM parameters (for Data Set 1: sinc target function, large sample size).

Table 2
Comparison of the proposed method for 1-selection with least-modulus loss
ð1 ¼ 0Þ for two-dimensional sinc target function data sets

Noise level 1-selection Prediction risk %SV

s ¼ 0:1 0 0.0080 100
Proposed 0.0020 62.7

s ¼ 0:4 0 0.0369 100
Proposed 0.0229 60.9
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demonstrate practical advantages of Vapnik’s 1-insensi-
tive loss versus other (robust) loss functions. Specifically,
we perform empirical comparisons between SVM
regression (with proposed parameter selection) versus
SVM regression using LM loss ð1 ¼ 0Þ; for several finite-
sample regression problems.

We consider three types of non-Gaussian noise

† Student’s t-distribution noise
† Uniform distributed noise
† Laplacian noise.

Univariate sinc target function is used for comparisons:

rðxÞ ¼ sinðxÞ=x x [ ½210; 10	
Training sample size n ¼ 30: The x values are sampled on a
uniformly spaced grid in the input space. RBF kernels with
width parameter p ¼ 3 are used for this data set. According
to proposed expressions (13) and (17), C ¼ 1:6; 1 ¼ 0:1 (for
s ¼ 0:1), 1 ¼ 0:2 (for s ¼ 0:2), 1 ¼ 0:3 (for s ¼ 0:3). The
comparison results show prediction risk obtained using
SVM regression and using LM loss, on the same data sets. In
order to perform more meaningful comparisons, all
comparison results are averaged using 100 random
realizations of the training data.

First, consider Student’s t-distribution for noise.
Several experiments have been performed using various
degrees of freedom (DOF) (40, 50, 100) for generating t-
distribution. Empirical results indicate superior perform-
ance of the proposed method for SVM parameter
selection, in comparison with LM loss regression. Table
4 shows comparisons with regression estimates obtained
using LM loss for Student’s noise (with 100 DOF) for
different noise levels s: Second, consider uniform distribution for the additive

noise. Table 5 shows comparison results for different noise
levels s: These results indicate superior performance of
SVM method with proposed selection of 1:

Finally, we show comparison results for Laplacian noise
density. Smola et al. (1998) suggest that for this noise
density model, the LM loss should be used. We compare
the proposed approach for choosing 1 with the LM loss
method. Empirical results in Table 6 indicate that for this
data set, the LM loss ð1 ¼ 0Þ yields better prediction
accuracy than SVM loss with proposed parameter selection,
in agreement with Smola et al. (1998).

5. Empirical results for linear regression

In this section we present empirical comparisons for
several linear regression estimators using three representa-
tive loss functions: squared loss, LM and 1-insensitive loss
with selection of 1 given by Eq. (17). Our goal is to
investigate the effect of a loss function on the prediction
accuracy of linear regression with finite samples. Even
though SVM regression has been extensively used for
regression applications (Schölkopf et al., 1999), its success
is mainly due to remarkable ability of SVM models to
handle non-linear high-dimensional problems. However,
there is little consensus and understanding of the importance
of 1-insensitive loss itself for standard linear regression
estimation. The only existing study (Drucker et al., 1997)
showing empirical comparisons between SVM and ordinary
least squares (OLS) for linear regression makes rather
indefinite conclusions. This study applies SVM and OLS to
a linear regression problem with 30 input variables, where

Table 3
Comparison of the proposed method for 1-selection with least-modulus loss
ð1 ¼ 0Þ for high-dimensional additive target function

Noise level 1-selection Prediction risk %SV

s ¼ 0:1 0 0.0443 100
Proposed 0.0387 86.7

s ¼ 0:2 0 0.1071 100
Proposed 0.0918 90.5

Table 4
Comparison results (mean of 100 realizations) of SVM with proposed 1-
selection versus least-modulus loss ð1 ¼ 0Þ for t-distribution of noise (with
100 degrees of freedom)

Noise level 1-selection Prediction risk

s ¼ 0:1 0 0.003
Proposed 0.003

s ¼ 0:2 0 0.015
Proposed 0.014

s ¼ 0:3 0 0.031
Proposed 0.029

Table 6
Comparison results (mean of 100 realizations) of SVM with proposed 1-
selection versus least-modulus loss ð1 ¼ 0Þ for Laplacian noise

Noise level 1-selection Prediction risk

s ¼ 0:1 0 0.003
Proposed 0.004

s ¼ 0:2 0 0.010
Proposed 0.015

s ¼ 0:3 0 0.019
Proposed 0.030

Table 5
Comparison results (mean of 100 realizations) of SVM with proposed 1-
selection versus least-modulus loss ð1 ¼ 0Þ for uniform noise

Noise level 1-selection Prediction risk

s ¼ 0:1 0 0.005
Proposed 0.004

s ¼ 0:2 0 0.020
Proposed 0.013

s ¼ 0:3 0 0.042
Proposed 0.022
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regression estimates are obtained from 60 noisy training
samples, and concludes that at high noise levels SVM is
better than OLS, but at low noise levels OLS is better than
SVM. This study is rather sketchy since it uses a single data
set for regression comparisons, and does not describe any
systematic procedure for selecting the value of 1:

This section presents comparisons between three differ-
ent methods, SVM, LM regression and OLS, for linear
regression with finite samples. To make such comparisons
‘fair’, we use (in this section) SVM regression implemen-
tation with large (infinite) C-values in formulation (10).
Hence, such SVM formulation becomes equivalent to
minimization of 1-insensitive loss for the training data,
without penalization (regularization) term. This enables
meaningful comparisons between SVM and other formu-
lations/loss functions (e.g. least squares) which do not use
the regularization term.

All comparisons for different methods are shown for three
representative unimodal noise densities: Gaussian, Lapla-
cian and Uniform. The goal (of comparisons) is to gain better
understanding of relative advantages/limitations of different
methods for linear regression: optimal least squares (OLS),
LM and SVM regression. Note that SVM method has a
tunable parameter 1 selected via analytical prescription (17)
for all comparisons presented in this paper. Alternatively,
optimal selection of 1 can be done using re-sampling
methods. We empirically compared the re-sampling
approach (via cross-validation) and analytical approach for
selecting the value of 1; and found no significant difference in
terms of prediction accuracy of SVM estimates.

Training data. Simulated training data ðxi; yiÞ; ði ¼
1;…; nÞ with random x-values uniformly distributed in
the input space, and y-values generated according to Eq. (1).
Target function is high-dimensional

rðxÞ ¼ 4x1 þ4x2 þ3x3 þ3x4 þ2x5 þ x6 þ · · ·þ x20;
x[ ½0;1	20

ð21Þ

Sample size. Various training sample sizes ðn¼
30;40;50Þ are used to contrast relative performance of
different methods under large sample settings and sparse
sample settings. The distinction can be quantified using the
ratio of the number of samples (sample size) to the number
of input variables.

Additive noise. The following types of noise were used:
Gaussian noise, uniform noise and Laplacian noise. Notice
that squared loss is (asymptotically) optimal for Gaussian
noise and LM loss is (asymptotically) optimal for Laplacian
noise density. We also varied the noise level (as indicated by
different signal-to-noise ratio (SNR) values) for high-
dimensional data, in order to understand the effect of noise
level on methods’ performance. SNR is defined as the ratio
of the standard deviation of the true (target function) output
values over the standard deviation of the additive noise.

Experimental protocol. For a given training sample with
specified statistical properties (sample size, noise level/type,

etc. as defined above) we estimate parameters of regression
via minimization of the empirical risk using three different
loss functions, i.e. standard square loss, modulus loss and 1-
insensitive loss (with proposed selection of 1-value). The
quality of each model is evaluated as its prediction
accuracy, or MSE. This quantity is measured using large
number of independent test samples uniformly distributed in
the input space. Specifically, 2000 test samples were used to
estimate the prediction risk. Since the model itself depends
on a particular (random) realization of training sample (of
fixed size), its (measured) prediction accuracy is also a
random variable. Hence, we repeat the experimental
procedure (described above) with many different realiz-
ations of training data (100 runs) and show average
prediction accuracy (risk) for methods’ comparison.
Graphical presentation of prediction accuracy (risk) for
three estimation methods uses the following labels: OLS
(for ordinary least squares method), LM (for least-modulus
method) and SVM (for SVM with 1-insensitive loss using
proposed optimal selection of 1). Notice that LM method is
a special case of SVM with 1-insensitive loss (with 1 ¼ 0).

Next we show comparisons for high-dimensional target
function (21). Results shown in Fig. 6 are intended to
illustrate how methods’ prediction performance depends on
the sparseness of training data. This is accomplished by
comparing prediction risk (MSE) for data sets with
different sample sizes (n ¼ 30; 40 and 50) under the
same SNR ¼ 2. Results in Fig. 6 indicate that SVM
method consistently (for all types of noise) outperforms
other methods under sparse settings, i.e. for 30 samples
when the ratio n=d is smaller than 2. However, for 50
samples, when this ratio is larger than 2, we approach
large-sample settings, and the methods’ performance
becomes similar. The distinction between sparse setting
and large-sample setting is not very clear cut as it also
depends on the noise level. That is why comparisons in
Fig. 6 are shown for a given (fixed) SNR value for all data
sets. Next we show comparisons for the same high-
dimensional target function (21) under sparse setting
(n ¼ 30 samples) for different noise levels
(SNR ¼ 1,3,5,7) in order to understand the effect of
noise level on methods’ performance (shown in Fig. 7).

Results in Fig. 7 clearly show superiority of SVM
method for large noise levels; however, for small noise
levels SVM does not provide any advantages over OLS.
Note that MSE results in Fig. 7 are shown on a logarithmic
scale, so that the difference in prediction performance
(MSE) for different methods at high noise levels (SNR ¼ 1)
is quite significant (i.e. of the order of 100% or more).

6. Noise variance estimation

The proposed method for selecting 1 relies on the
knowledge of the standard deviation of noise s: The
problem, of course, is that the noise variance is not known
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a priori, and it needs to be estimated from training data
ðxi; yiÞ; ði ¼ 1;…; nÞ:

In practice, the noise variance can be readily estimated
from the squared sum of residuals (fitting error) of

the training data. Namely, the well-known approach of
estimating noise variance (for linear models) is by fitting
the data using low bias (high-complexity) model (say
high-order polynomial) and applying the following
formula to estimate noise (Cherkassky & Mulier, 1998;
Cherkassky, Shao, Mulier, & Vapnik, 1999; Hastie et al.,

Fig. 6. Prediction accuracy versus sample size n ¼ 30; 40, 50 for high-
dimensional linear regression, SNR ¼ 2 (a) Gaussian noise, (b) Uniform
noise, and (c) Laplacian noise.

Fig. 7. Prediction accuracy versus SNR (1, 3, 5, and 7) for high-dimensional
linear regression, n ¼ 30; (a) Gaussian noise, (b) Uniform noise, and (c)
Laplacian noise.
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2001).

ŝ2 ¼ n
n 2 d

·
1
n
Xn

i¼1
ðyi 2 ŷiÞ2 ð22Þ

where d is the ‘degrees of freedom’ (DOF) of the high-
complexity estimator and n is the number of training
samples. Note that for linear estimators (i.e. polynomial
regression) DOF is simply the number of free parameters
(polynomial degree); whereas the notion of DOF is not
well defined for other types of estimators (Cherkassky &
Mulier, 1998).

We used expression (22) for estimating noise variance
using higher-order algebraic polynomials (for univariate
regression problems) and k-nearest-neighbors regression (for
multivariate problems). Both approaches yield very accurate
estimates of the noise variance; however, we only show the
results of noise estimation using k-nearest-neighbors
regression. In k-nearest-neighbors method, the function is
estimated by taking a local average of the training data.
Locality is defined in terms of the k data points nearest the
estimation point. Accurate estimates of the model complex-
ity (DOF) for k-nearest neighbors are not known, even
though an estimate d ¼ n=k is commonly used (Hastie et al.,
2001). Cherkassky and Ma (2003) recently introduced new
(more accurate) estimate of model complexity:

d ¼ n=ðn1=5kÞ ð23Þ
This estimate of DOF for k-nearest-neighbors regression
provides rather accurate noise estimates when used in
conjunction with Eq. (22). Combining expressions (22) and
(23), we obtain the following prescription for noise variance
estimation via k-nearest-neighbor’s method:

ŝ2 ¼ n1=5k
n1=5k 2 1

·
1
n
Xn

i¼1
ðyi 2 ŷiÞ2 ð24Þ

Typically, small values of k (in the 2 – 6 range)
corresponding to low-bias/high variance estimators should
be used in formula (24). In order to illustrate the effect of
different k-values on the accuracy of noise variance
estimation, we use three-dimensional figure showing esti-
mated noise as a function of k and n (number of training
samples). Fig. 8 shows noise estimation results for univariate
sinc target function corrupted by Gaussian noise with noise
variance s2 ¼ 0:36: For example, for n ¼ 30; k ¼ 3; the
noise variance estimate is ŝ2 ¼ 0:34: It is evident from Fig. 8
that k-nearest-neighbor method provides robust and accurate
noise estimates with k-values chosen in a (2–6) range.

Since accurate estimation of noise variance does not
seem to be affected much by specific k-value, we performed
noise estimation experiments using k-nearest-neighbor
method (with k ¼ 3) with different target functions,
different sample size and different noise levels. In all
cases, we obtained accurate noise estimates. However, here
we only show noise estimation results obtained using the
univariate sinc target function for different levels of true
noise variance 0.01, 0.04, 0.09, 0.16, 0.25, 0.36, 0.49, 0.64.
Fig. 9 shows the scatter plot of noise level estimates
obtained via Eq. (24) for 10 independently generated data
sets (for each true noise level). Results in Fig. 9 correspond
to the least favorable experimental set-up for noise
estimation (that is, small number of samples n ¼ 30 and
large noise levels).

Empirical results presented in this section show how to
estimate (accurately) the noise level from available training
data. This underscores practical applicability of the
proposed expression (17) for 1-selection. In fact, empirical
results (not shown here due to space constraints) indicate
that SVM estimates obtained using estimated noise level for
1-selection yield similar prediction accuracy (within 5%) to

Fig. 8. Using k-nearest-neighbors method for estimating noise variance for univariate sinc function with different k and n values when the true noise variance is
0.36.
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SVM estimates obtained using known noise level, for data
sets in Sections 4 and 5.

7. Summary and discussion

This paper describes practical recommendations for
setting meta-parameters for SVM regression. Namely the
values of 1 and C parameters are obtained directly from the
training data and (estimated) noise level. Extensive
empirical comparisons suggest that the proposed parameter
selection yields good generalization performance of SVM
estimates under different noise levels, types of noise, target
functions and sample sizes. Hence, the proposed approach
for SVM parameter selection can be immediately used by
practitioners interested in applying SVM to various
application domains.

Our empirical results suggest that with the proposed
choice of 1; the value of regularization parameter C has only
negligible effect on the generalization performance (as long
as C is larger than a certain threshold determined
analytically from the training data). The proposed value of
C-parameter is derived for RBF kernels; however, the same
approach can be applied to other kernels bounded in the
input domain. For example, we successfully applied
proposed parameter selection for SVM regression with
polynomial kernel defined in [0,1] (or [21,1]) input
domain. Future related research may be concerned with
investigating optimal selection of parameters C and 1 for
different kernel types, as well as optimal selection of kernel
parameters (for these types of kernels). In this paper (using
RBF kernels), we used fairly straightforward procedure for a
good setting of RBF width parameter independent of C and

1 selection, thereby conceptually separating kernel par-
ameter selection from SVM meta-parameter selection.
However, it is not clear whether such a separation is
possible with other types of kernels.

Another contribution of this paper is demonstrating the
importance of 1-insensitive loss function for generalization
performance. Several recent sources (Hastie et al., 2001;
Smola & Schölkopf, 1998) assert that an optimal choice of
the loss function (i.e. LM loss, Huber’s loss, quadratic loss,
etc.) should match a particular type of noise density
(assumed to be known). However, these assertions are
based on asymptotic proofs. Our empirical comparisons
suggest that SVM loss (with proposed 1) outperforms other
commonly used loss functions (squared loss, LM loss) for
linear regression under sparse sample settings. These
findings seemly contradict an opinion that a given loss
function is statistically ‘optimal’ for particular noise density
(Hastie et al., 2001; Smola & Schölkopf, 1998). This
contradiction can be explained by noting that statistical
optimality proofs are based on asymptotic arguments.
Indeed, our experimental results in Figs. 6 and 7 show
that under large sample settings (low noise, large sample
size), a given loss function clearly favors a particular noise
density (according to statistical theory); however, for finite
(small) samples SVM loss gives better results. Intuitively,
superior performance of 1-insensitive loss for finite-sample
problems can be explained by noting that noisy data samples
which are very close to the true target function should not
contribute to the empirical risk. This idea is formally
reflected in Vapnik’s loss function, whereas Huber’s loss
function assigns squared loss to samples with accurate
(close to the truth) response values. Conceptually, our
findings suggest that for finite-sample regression problems

Fig. 9. Scatter plot of noise estimates obtained using k-nearest-neighbors method ðk ¼ 3Þ for univariate sinc function for different noise levels. Results are
obtained using 10 independent data sets with n ¼ 30 samples, for each noise level.
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we only need the knowledge of noise level (for optimal
setting of 1), instead of the knowledge of noise density. In
other words, optimal generalization performance of
regression estimates depends mainly on the noise variance
rather than noise distribution. The noise variance itself can
be estimated directly from the training data, i.e. by fitting
very flexible (high-variance) estimator to the data. Alter-
natively, one can first apply LM regression to the data, in
order to estimate noise level.

Further research in this direction may be needed, to gain
better understanding of the relationship between optimal
loss function, noise distribution and the number of training
samples. In particular, an interesting research issue is to find
the minimum number of samples beyond which a
theoretically optimal loss function (for a given noise
density) wound indeed provide superior generalization
performance.
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