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Abstract

We try to give a helpful simple example that demonstrates a linear
SVM and then extend the example to a simple non-linear case to illustrate
the use of mapping functions and kernels.

1 Introduction

Many learning models make use of the idea that any learning problem can be
made easy with the right set of features. The trick, of course, is discovering that
“right set of features”, which in general is a very difficult thing to do. SVMs are
another attempt at a model that does this. The idea behind SVMs is to make use
of a (nonlinear) mapping function Φ that transforms data in input space to data
in feature space in such a way as to render a problem linearly separable. The
SVM then automatically discovers the optimal separating hyperplane (which,
when mapped back into input space via Φ−1, can be a complex decision surface).
SVMs are rather interesting in that they enjoy both a sound theoretical basis
as well as state-of-the-art success in real-world applications.

To illustrate the basic ideas, we will begin with a linear SVM (that is, a
model that assumes the data is linearly separable). We will then expand the
example to the nonlinear case to demonstrate the role of the mapping function
Φ, and finally we will explain the idea of a kernel and how it allows SVMs to
make use of high-dimensional feature spaces while remaining tractable.

2 Linear Example – when Φ is trivial

Suppose we are given the following positively labeled data points in <2:{(
3
1

)
,

(
3
−1

)
,

(
6
1

)
,

(
6
−1

)}
and the following negatively labeled data points in <2 (see Figure 1):{(

1
0

)
,

(
0
1

)
,

(
0
−1

)
,

(
−1

0

)}
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Figure 1: Sample data points in <2. Blue diamonds are positive examples and
red squares are negative examples.

We would like to discover a simple SVM that accurately discriminates the
two classes. Since the data is linearly separable, we can use a linear SVM (that
is, one whose mapping function Φ() is the identity function). By inspection, it
should be obvious that there are three support vectors (see Figure 2):{

s1 =
(

1
0

)
, s2 =

(
3
1

)
, s3 =

(
3
−1

)}
In what follows we will use vectors augmented with a 1 as a bias input, and

for clarity we will differentiate these with an over-tilde. So, if s1 = (10), then
s̃1 = (101). Figure 3 shows the SVM architecture, and our task is to find values
for the αi such that

α1Φ(s1) · Φ(s1) + α2Φ(s2) · Φ(s1) + α3Φ(s3) · Φ(s1) = −1
α1Φ(s1) · Φ(s2) + α2Φ(s2) · Φ(s2) + α3Φ(s3) · Φ(s2) = +1
α1Φ(s1) · Φ(s3) + α2Φ(s2) · Φ(s3) + α3Φ(s3) · Φ(s3) = +1

Since for now we have let Φ() = I, this reduces to

α1s̃1 · s̃1 + α2s̃2 · s̃1 + α3s̃3 · s̃1 = −1
α1s̃1 · s̃2 + α2s̃2 · s̃2 + α3s̃3 · s̃2 = +1
α1s̃1 · s̃3 + α2s̃2 · s̃3 + α3s̃3 · s̃3 = +1

Now, computing the dot products results in
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Figure 2: The three support vectors are marked as yellow circles.

Figure 3: The SVM architecture.
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2α1 + 4α2 + 4α3 = −1
4α1 + 11α2 + 9α3 = +1
4α1 + 9α2 + 11α3 = +1

A little algebra reveals that the solution to this system of equations is α1 =
−3.5, α2 = 0.75 and α3 = 0.75.

Now, we can look at how these α values relate to the discriminating hyper-
plane; or, in other words, now that we have the αi, how do we find the hyper-
plane that discriminates the positive from the negative examples? It turns out
that

w̃ =
∑

i

αis̃i

= −3.5

 1
0
1

+ 0.75

 3
1
1

+ 0.75

 3
−1

1


=

 1
0
−2


Finally, remembering that our vectors are augmented with a bias, we can

equate the last entry in w̃ with the hyperplane offset b and write the separating

hyperplane equation, 0 = wTx+ b, with w =
(

1
0

)
and b = −2. Solving for x

gives the set of 2-vectors with x1 = 2, and plotting the line gives the expected
decision surface (see Figure 4).

2.1 Input space vs. Feature space

3 Nonlinear Example – when Φ is non-trivial

Now suppose instead that we are given the following positively labeled data
points in <2: {(

2
2

)
,

(
2
−2

)
,

(
−2
−2

)
,

(
−2

2

)}
and the following negatively labeled data points in <2 (see Figure 5):{(

1
1

)
,

(
1
−1

)
,

(
−1
−1

)
,

(
−1

1

)}
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Figure 4: The discriminating hyperplane corresponding to the values α1 =
−3.5, α2 = 0.75 and α3 = 0.75.

Figure 5: Nonlinearly separable sample data points in <2. Blue diamonds are
positive examples and red squares are negative examples.
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Figure 6: The data represented in feature space.

Our goal, again, is to discover a separating hyperplane that accurately dis-
criminates the two classes. Of course, it is obvious that no such hyperplane
exists in the input space (that is, in the space in which the original input data
live). Therefore, we must use a nonlinear SVM (that is, one whose mapping
function Φ is a nonlinear mapping from input space into some feature space).
Define

Φ1

(
x1

x2

)
=


(

4− x2 + |x1 − x2|
4− x1 + |x1 − x2|

)
if
√
x2

1 + x2
2 > 2(

x1

x2

)
otherwise

(1)

Referring back to Figure 3, we can see how Φ transforms our data before
the dot products are performed. Therefore, we can rewrite the data in feature
space as {(

2
2

)
,

(
6
2

)
,

(
6
6

)
,

(
2
6

)}
for the positive examples and{(

1
1

)
,

(
1
−1

)
,

(
−1
−1

)
,

(
−1

1

)}
for the negative examples (see Figure 6). Now we can once again easily identify
the support vectors (see Figure 7):{

s1 =
(

1
1

)
, s2 =

(
2
2

)}
We again use vectors augmented with a 1 as a bias input and will differentiate

them as before. Now given the [augmented] support vectors, we must again find
values for the αi. This time our constraints are
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Figure 7: The two support vectors (in feature space) are marked as yellow
circles.

α1Φ1(s1) · Φ1(s1) + α2Φ1(s2) · Φ1(s1) = −1
α1Φ1(s1) · Φ1(s2) + α2Φ1(s2) · Φ1(s2) = +1

Given Eq. 1, this reduces to

α1s̃1 · s̃1 + α2s̃2 · s̃1 = −1
α1s̃1 · s̃2 + α2s̃2 · s̃2 = +1

(Note that even though Φ1 is a nontrivial function, both s1 and s2 map to
themselves under Φ1. This will not be the case for other inputs as we will see
later.)

Now, computing the dot products results in

3α1 + 5α2 = −1
5α1 + 9α2 = +1

And the solution to this system of equations is α1 = −7 and α2 = 4.
Finally, we can again look at the discriminating hyperplane in input space

that corresponds to these α.

w̃ =
∑

i

αis̃i
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Figure 8: The discriminating hyperplane corresponding to the values α1 = −7
and α2 = 4

= −7

 1
1
1

+ 4

 2
2
1


=

 1
1
−3


giving us the separating hyperplane equation y = wx+ b with w =

(
1
1

)
and

b = −3. Plotting the line gives the expected decision surface (see Figure 8).

3.1 Using the SVM

Let’s briefly look at how we would use the SVM model to classify data. Given
x, the classification f(x) is given by the equation

f(x) = σ

(∑
i

αiΦ(si) · Φ(x)

)
(2)

where σ(z) returns the sign of z. For example, if we wanted to classify the point
x = (4, 5) using the mapping function of Eq. 1,

f

(
4
5

)
= σ

(
−7Φ1

(
1
1

)
· Φ1

(
4
5

)
+ 4Φ1

(
2
2

)
· Φ1

(
4
5

))

= σ

−7

 1
1
1

 ·
 0

1
1

+ 4

 2
2
1

 ·
 0

1
1


= σ(−2)

8



Figure 9: The decision surface in input space corresponding to Φ1. Note the
singularity.

and thus we would classify x = (4, 5) as negative. Looking again at the input
space, we might be tempted to think this is not a reasonable classification; how-
ever, it is what our model says, and our model is consistent with all the training
data. As always, there are no guarantees on generalization accuracy, and if we
are not happy about our generalization, the likely culprit is our choice of Φ.
Indeed, if we map our discriminating hyperplane (which lives in feature space)
back into input space, we can see the effective decision surface of our model
(see Figure 9). Of course, we may or may not be able to improve generalization
accuracy by choosing a different Φ; however, there is another reason to revisit
our choice of mapping function.

4 The Kernel Trick

Our definition of Φ in Eq. 1 preserved the number of dimensions. In other
words, our input and feature spaces are the same size. However, it is often the
case that in order to effectively separate the data, we must use a feature space
that is of (sometimes very much) higher dimension than our input space. Let
us now consider an alternative mapping function

Φ2

(
x1

x2

)
=

 x1

x2

(x2
1+x2

2)−5

3

 (3)

which transforms our data from 2-dimensional input space to 3-dimensional
feature space. Using this alternative mapping, the data in the new feature
space looks like
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Figure 10: The decision surface in input space corresponding Φ2.


 2

2
1

 ,

 2
−2

1

 ,

 −2
−2

1

 ,

 −2
2
1


for the positive examples and

 1
1
−1

 ,

 1
−1
−1

 ,

 −1
−1
−1

 ,

 −1
1
−1


for the negative examples. With a little thought, we realize that in this case, all
8 of the examples will be support vectors with αi = 1

46 for the positive support
vectors and αi = −7

46 for the negative ones. Note that a consequence of this
mapping is that we do not need to use augmented vectors (though it wouldn’t
hurt to do so) because the hyperplane in feature space goes through the origin,

y = wx+b, where w =

 0
0
1

 and b = 0. Therefore, the discriminating feature,

is x3, and Eq. 2 reduces to f(x) = σ(x3).
Figure 10 shows the decision surface induced in the input space for this new

mapping function.
Kernel trick.

5 Conclusion

What kernel to use? Slack variables. Theory. Generalization. Dual problem.
QP.
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