
Backprop Example from Class

Dan Ventura

March 5, 2009

Abstract

Here are the weight updates according to Backpropagation for the
MLP example we presented in class. Note that for readability we some-
times round to three significant digits, but all calculations were done with-
out rounding.

1 The setup

Given the network shown in Figure 1, the training example (0.3, 0.7)→ 0, and
a learning rate η = 0.1, compute the weight updates 4w12, 4w13, 4w24, 4w25,
4w34, 4w35.

2 The Forward Pass

We will represent the network weights as two matrices, W1,W2 and input and
hidden unit activations as vectors and compute the forward activity of the net-
work as σ(W2σ(W1~x)). So, computing the innermost function, which gives us
the dot product of the inputs with the hidden layer weights gives

~y = W1~x =
[

0.23 −0.79
0.1 0.21

] [
0.3
0.7

]
=

[
−0.484
0.177

]
We then squish this to yield the output vector for the hidden layer nodes (here,
we apply the σ() function to each member of the vector, yielding another vector
of the same dimension):

~z = σ(~y) = σ(
[
−0.484
0.177

]
) =

[
0.38130803
0.54413484

]
This vector ~z = σ(W1~x) acts as inputs to the output layer, and the process is
repeated to compute the final network output:

~a = W2~z =
[
−0.12 −0.88

] [
0.381
0.544

]
=

[
−0.5245956

]

1



and finally, squishing again, we have the output of the network for the input
vector [0.3, 0.7]T :

~o = σ(~a) = σ(
[
−0.525

]
) =

[
0.37177825

]
3 Backward Error Propagation

Now, to compute weight updates, we compute error and propagate it backward
through the network, starting at the output layer. Recall that the weight update
equation is

4wji = ηδjxi

For the output layer,

δ1 = (t1 − o1)o1(1− o1) = (0− 0.372)0.372(1− 0.372) = −0.0868322

(remember that the minus sign that is produced by taking the derivative is
negated by the minus sign that results from going down the gradient) and using

Figure 1: Example network from in-class example. The inputs are shown; the
target output value is 0. Note that the sigmoid is applied at both the hidden
and output layer units.

2



this value, we can now compute weight updates for the output layer weights as
follows:

4w12 = ηδ1x2 = 0.1(−0.087)0.381 = −0.00331098

4w13 = ηδ1x3 = 0.1(−0.087)0.544 = −0.00472484

Notice that these updates (at least the direction of the updates) makes sense.
The output of the network (0.372) is larger than the target. Therefore, we want
to make it smaller. We make it smaller by making the weights coming into the
output node smaller, and therefore, our weight update is negative. Also, notice
that the update’s magnitude is very small; training an MLP with backprop is
slow (and this is with a relatively large learning rate).

Now, we compute the indirect errors at the hidden layers by propagating
the output δ values back. In this case, there is only a single output node, so we
have

4δ2 = δ1w12o2(1− o2) = (−0.087)(−0.12)(0.381)(1− 0.381) = 0.00245817

which allows us to compute the weight updates:

4w24 = ηδ2x4 = 0.1(0.002)0.3 = 0.0000737452

4w25 = ηδ2x5 = 0.1(0.002)0.7 = 0.000172072

and

4δ3 = δ1w13o3(1− o3) = (−0.087)(−0.88)(0.544)(1− 0.544) = 0.01895425

which allows us to compute the last two weight updates:

4w34 = ηδ3x4 = 0.1(0.019)0.3 = 0.000568627

4w35 = ηδ3x5 = 0.1(0.019)0.7 = 0.001326797

3


