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Define the problem:
Suppose we have a 5-layer feed-forward neural network. (I intentionally made it big so that certain 
repeating patterns will be obvious.)

I will refer to the input pattern as “layer 0”. Thus, layer 1 is the first hidden 
layer in the network in feed-forward order. Layer 5 is the output layer.

 is the output of layer i, node j. So,  is input j into the network.  is 
output j of the network.  is the activation function used in layer i.

 is the weight that feeds into layer i, node j, from node k of the previous 
layer.  is the net value that feeds into layer i, node j. So, 

 and .  is the derivative of .

Our goal is to compute the partial derivative of the sum-squared error with 
respect to the weights. (We'll skip the explanation of why sum-squared error is 
the maximum likelihood estimator given the assumption of Gaussian noise.) 
For this example, we will arbitrarily compute the gradient for the weight feeding into layer 1, node 7 
from layer 0 (the input layer), node 3.

A Quick Calculus review:
There are really only two big concepts from calculus that you need to remember. The first is the chain 

rule. To take the derivative of a function, do this: . You might remember this as 

“the derivative of the function times the derivative of the inside”. The second thing you need to 
remember is that constant terms can be dropped from a derivative. For example, if y is a function of z, 

and x is not a function of z, then you can do this: . You'll also need to remember 

basic algebra, but I will not review that in this document.

Okay, let's begin:

1. Given.

In English, this means “the partial derivative of the sum-squared-error with respect to the weight to 
layer 1 node 7, from layer 0 node 3. In order to implement it (efficiently), we need to get rid of the “ “ 
symbol. So, we're going to do a bunch of math in order to get it out of the formula.

2. Apply the chain rule.

3. Simplify.

4. Expand a term.



5. Apply the chain rule.

6. Expand a term.

7. Simplify.

8. Expand a term.

9. Repeat steps 5 through 8.

10. Repeat steps 5 through 8.

11. It should be clear that we could keep doing this (repeating steps 5 through 8) for an arbitrarily deep 
network. But now we're approaching the layer of interest, so we'll slow down again. Now we'll apply 
the chain rule (as in step 5.)

12. Expand a term (as in step 6).

13. Simplify. (All of the terms in the summation over m evaluate to constants, except when  m=7.)

14. Simplify (as in step 7).

15. Expand a term (as in step 8).

16. Apply the chain rule (as in step 5).

17. Expand a term (as in step 6).



18. Simplify. (All of the terms in the summation over n evaluate to constants, except when n=3.)

19. Simplify.

20. We now have a formula to compute the gradient with respect to a certain weight. We could simply 
use this formula to compute the gradient for all of the weights, but that would involve a lot of 
redundant computation. To implement it efficiently, we need to cache the redundant parts of the 
formula. So, let . This is a value that we will cache because we'll use it again 
when computing the gradient for other weights. This is referred to as the “error” term on the nodes in 
the output layer.

21. Let . (Now we're computing the “error term” of a node in a hidden layer.)

22. Let . (This is just repeating step 21 to compute the “error terms” in the 

next layer.)

23. Let . (This is repeating step 21 again for the next layer.)

24. Let . (This is repeating step 21 again, but only for a particular node.)

And thus we see that the gradient of the error with respect to a particular weight in a neural network is 
simply the negative error of the node into which that weight feeds times the value that feeds in through 
the weight. If you implement steps 20 and 21, you will find that you have implemented back-
propagation. All that remains is to discuss how we update weights. Since the gradient points in the 
direction that makes error bigger, we want to subtract the gradient direction from the weights. Also, it 
would be too big of a step if we subtracted the whole gradient, so we multiply it by a learning rate in 
order to take small steps.



Okay, now let's compute the gradient with respect to the inputs (instead of the weights), just for fun.

1. Given.

2. Chain rule.

3. Simplify.

4. Expand.

5. Chain rule.

6. Expand.

7. Simplify.

8. Expand.

9. Steps 5-8.

10. Steps 5-8.

11. Steps 5-8.

12. Chain rule.

13. Expand.

14. Simplify.

15. Simplify. 



16. Simplify.

17. Now we just need to turn this into an algorithm. We can save ourselves a lot of work by observing 
that this formula is almost identical to the one in step 19 of the derivation of back-propagation. We can, 
therefore, use the work we've already done to jump to the following result:

And thus we see that back-propagation computes an “error” term for each node in the network, and 
these “error” terms are useful for computing the gradient with respect to either the weights or the 
inputs. Further, by subtracting a small portion of that gradient, we can move the system closer to the 
target values.


