A thorough derivation of back-propagation
for people who really want to understand it
by: Mike Gashler, September 2010

Define the problem:
Suppose we have a 5-layer feed-forward neural network. (I intentionally made it big so that certain
repeating patterns will be obvious.) :

I will refer to the input pattern as “layer 0”. Thus, layer 1 is the first hidden
layer in the network in feed-forward order. Layer 5 is the output layer.

yi; 1s the output of layer i, node j. So, Yo, is input j into the network. ys ; is
output j of the network. f; is the activation function used in layer 7.

w;;k 1s the weight that feeds into layer 7, node j, from node & of the previous
layer. x;; is the net value that feeds into layer 7, node ;. So,

Tij = Y WijkYi—1,k and y; j = f(x;;). f! is the derivative of f;.

Our goal is to compute the partial derivative of the sum-squared error with
respect to the weights. (We'll skip the explanation of why sum-squared error is
the maximum likelihood estimator given the assumption of Gaussian noise.) .
For this example, we will arbitrarily compute the gradient for the weight feeding into layer 1, node 7
from layer O (the input layer), node 3.

A Quick Calculus review:
There are really only two big concepts from calculus that you need to remember. The first is the chain

of(x) f(a)x
dy Ay

“the derivative of the function times the derivative of the inside”. The second thing you need to

remember is that constant terms can be dropped from a derivative. For example, if y is a function of z,

. : : 0 0
and x is not a function of z, then you can do this: M — %Y You'll also need to remember

0z 0z

basic algebra, but I will not review that in this document.

rule. To take the derivative of a function, do this: . You might remember this as

Okay, let's begin:
8% >t — ys)”

1. Given.
Ownrs

In English, this means “the partial derivative of the sum-squared-error with respect to the weight to
layer 1 node 7, from layer 0 node 3. In order to implement it (efficiently), we need to get rid of the “0*
symbol. So, we're going to do a bunch of math in order to get it out of the formula.

>t = ys:)0(t — ysi)

(9’(1)173

— > (ti — ys:)Oysi
Ow173

_ =it — ysi)0f5(xsi)

Ow1rs

2. Apply the chain rule. =

3. Simplify. =

4. Expand a term.

— > (ti — ysi) f5(@54) 0254

5. Apply the chain rule. =

Owirs
6. Expand a term. _ 24 Y5i) f5(25:)0 3 WsijYa;
Ow17s
7. Simplify. — 24 Ysi) f5(@5i) 22 ; Wsij Oy
Ow173
- (i — Yss ! i . za .
8. Expand a term. = 24 Ysi) f5 (@51 Zg Wsij 0 f4(4;)
Ow17s
— 23t = ysi) f5(@se) 205 weig fa(wag) D0p wajnOfs(2sk)

9. Repeat steps 5 through 8. =
Owi7s

10. Repeat steps 5 through 8.
=i = ysa) fa(@si) D05 wsi fa(@ag) 3o g wajn f3(@sk) 2o wak0 fa(za)

8w173

11. It should be clear that we could keep doing this (repeating steps 5 through 8) for an arbitrarily deep
network. But now we're approaching the layer of interest, so we'll slow down again. Now we'll apply
the chain rule (as in step 5.)

— 22t = ysa) f5(50) D25 wsij fa(@ag) Doy wajn f3(Tr) D2) wak f5(x21) Ozt

Ow17s

12. Expand a term (as in step 6).

_ 2~ ysi) f (@) 20 Wiy fa(@ag) 2oy wage fa(ar) 22y wani fo(220)0 3, WatmYim

Ow17s

13. Simplify. (All of the terms in the summation over m evaluate to constants, except when m=7.)

— it = ysi) f5(250) D25 wsij fa(@ag) Dop wagn f3(w3n) D) wake f3(x21)Owarryrz

Ownrs

14. Simplify (as in step 7).
=it = ysa) 5 (wsi) D0 wsig fa(@ag) D0y wagn f3(@3k) D2 Wkt fo(war)wardyir

Ownrs

15. Expand a term (as in step 8).

=22t = ysi) f5(w50) D5 wsij fa(@ag) Doy wajn f3(Tsr) D) wak f3(xar)warr 0 f1(w17)

dwi73
16. Apply the chain rule (as in step 5).

_ - > it — ysi) f5(@si) D2 wsij fa(®ag) Doy wagn f3(xsr) D2; wak f3(xar)war f1(217)0w17

Ow173

17. Expand a term (as in step 6).

=22t — ysi) f5(5i) 205 wsis f4(@a;) Dop wajn f5(x36) Do) wake fo(@a)warr f1(217)0 32, witnyon

Owirs

18. Simplify. (All of the terms in the summation over » evaluate to constants, except when n=3.)

=22t = ysi) f5(w50) D25 wsij fa(wag) Do wajn f5(T3k) D0 wak f5(x20)waur f1(217)0wi73Yo0s
dw1r3

19. Simplify.
= =Y (ti = ysi) f5(w5i) Y wsi fa(wa) D wagn f3(wsr) Y wan fo(zar)warr f1(@17)yos
i J %)

20. We now have a formula to compute the gradient with respect to a certain weight. We could simply
use this formula to compute the gradient for all of the weights, but that would involve a lot of
redundant computation. To implement it efficiently, we need to cache the redundant parts of the
formula. So, let e5; = (¢; — ys:) fi(x5,). This is a value that we will cache because we'll use it again
when computing the gradient for other weights. This is referred to as the “error” term on the nodes in
the output layer.

== esi Y wsij fi(xa;) Y waje f5(wse) Y wae f(war)warr f1(x17)y0s
i j k]
21. Let eq; = >, esiwsij f4(24;). (Now we're computing the “error term” of a node in a hidden layer.)

== ea; > wak f5(wsk) Y wap f(war)warr f1(€17)y0s
i k .

22. Let ez, =) _; eajwajr f5(23k). (This is just repeating step 21 to compute the “error terms” in the

next layer.)

== esk > wap fo(wa)war f{(x17)yos
k !
23. Let eg; = >, esxwsk fo(x2r). (This is repeating step 21 again for the next layer.)

= - Z eqrwarr f1(217)Yo3
!

24. Let er7 = Y, eqqwayr f1(z17). (This is repeating step 21 again, but only for a particular node.)

= —e€17Yo03

And thus we see that the gradient of the error with respect to a particular weight in a neural network is
simply the negative error of the node into which that weight feeds times the value that feeds in through
the weight. If you implement steps 20 and 21, you will find that you have implemented back-
propagation. All that remains is to discuss how we update weights. Since the gradient points in the
direction that makes error bigger, we want to subtract the gradient direction from the weights. Also, it
would be too big of a step if we subtracted the whole gradient, so we multiply it by a learning rate in
order to take small steps.

Okay, now let's compute the gradient with respect to the inputs (instead of the weights), just for fun.

05>, (ti — ysi)?

1. Given.

Yos
2. Chain rule. - Yo (ti — ysi)O(ti — ysi)
9Yos
3. Simplify. _ 22t — Y5i)9ysi
Iyos
4. Expand. - _ > it — y5i) 0 f5(x50)
IyYos

—) £) _

5. Chain rule. = > i(ti = ysi) f5(251) 025
yos
6. Expand. — 2 Ysi) [5(25:)0 D WsijYa;
Iyos

— 23t — ysi) f5 (@5 FWs;0Yaj

7. Simplify. — >3t — ysi) f5(wsi) D25 wsijOya;
Iyos
8. Expand. - 24 Ysi) f5 (5)23 Ws;0fa(x4;)
Iyos

—2i(t = ysa) f5(@se) 225 wsij f1(wa;) D0y wajn0fs(wsk)

9. Steps 5-8. =
Iyos

— 2t = ysi) 5 (wsi) 225 wsig f1(way) Dog wagn f3(wsk) D wamOfa(war)

10. Steps 5-8. =
yos

11. Steps 5-8.
=it = ysa) (i) 205 wsig fa@ag) Dog wajn f3(@sk) D0 wak f3(21) 3o, waim O f1(@1m)
§ Iyos

12. Chain rule.
=223t = ysi) f5(ws0) 205 wsij fal@ag) Dop wajn f3(w3n) Do) wskr fo(x1) Do, woim f1(21m) 0T 1

o5
13. Expand.
=22t = ysi) f5(w50) D5 wsig fa(wa) Do wajn f5(T3k) D2 w3kt f5(211) D2, Watm f1(T1m)0 D2, WimnYon
9Yos

14. Simplify.
=it =) f5(ws0) 205 waig f4(ag) Dok wagn f3(@sk) Do wak fo(211) Do, waim f1(%1m) Owimsyos
o5

15. Simplify.

- Zz(tz - ysz‘)fg/,(xsz‘) Ej w5ijfi($4j) Zk w4jkfg’,($3k) Zz wSklfé(xu) Zm w2lmf{ (xlm)w1m5ay05
9Yos

16. Simplify.
= — Y (b —ysi) fi(wsi) Y wsis fi(wa) D wagn f5(war) D wam f3(x10) D watm 1 (T 1m)Wims
7 J k l m

17. Now we just need to turn this into an algorithm. We can save ourselves a lot of work by observing
that this formula is almost identical to the one in step 19 of the derivation of back-propagation. We can,
therefore, use the work we've already done to jump to the following result:

= - § E1mWims
m

And thus we see that back-propagation computes an “error” term for each node in the network, and
these “error” terms are useful for computing the gradient with respect to either the weights or the
inputs. Further, by subtracting a small portion of that gradient, we can move the system closer to the
target values.

