
Feature Weighting Using Neural Networks
Xinchuan Zeng and Tony R. Martinez

Computer Science Department, Brigham Young University, Provo, Utah 84602
E-mail: zengx@axon.cs.byu.edu, martinez@cs.byu.edu

Abstract— In this work we propose a feature weighting method
for classification tasks by extracting relevant information from a
trained neural network. This method weights an attribute based
on strengths (weights) of related links in the neural network, in
which an important feature is typically connected to strong links
and has more impact on the outputs. This method is applied to
feature weighting for the nearest neighbor classifier and is tested
on 15 real-world classification tasks. The results show that it can
improve the nearest neighbor classifier on 14 of the 15 tested
tasks, and also outperforms the neural network on 9 tasks.

I. INTRODUCTION

The quality of features has a significant impact on the
performance of a learning algorithm for classification tasks.
The performance can be degraded if there are irrelevant or
redundant features, which are often inevitable for tasks whose
domains are not well understood.

The impact of features is particularly significant for the
class of instance-based learning algorithms, such as the nearest
neighbor algorithm [1] , in which the distance function is very
sensitive to the quality of features. How to improve the quality
of features has been one of the critical issues concerned in the
field of instance-based learning.

Various approaches have been proposed in the past to
address this issue. One strategy is feature selection that applies
a method to find irrelevant features and remove them from the
feature set before constructing a classifier. For example, Cardic
[2] applied a C4.5 decision tree to find relevant features by
keeping only those features that appear in the decision tree.
The set of the selected features is then fed into a nearest
neighbor classifier. Experiment on a lexical acquisition task
shows improvement using this method. John et. al. [3] applied
a cross-validation method to filter irrelevant features before
constructing ID3 and C4.5 decision trees. The experiment on
3 artificial datasets and 3 real-world datasets shows significant
reduction in the size of constructed decision trees as well as
slight improvement in accuracy.

The strategy used in this work is feature weighting, which
seeks to estimate the relative importance of each feature
(with respect to the classification task), and assign it a cor-
responding weight. When properly weighted, an important
feature would receive a larger weight than less important or
irrelevant features. Instead of making a binary decision on a
feature’s relevance (as applied by feature selection methods),
feature weighting uses a continuous value and thus has a finer
granularity in determining the relevance. It is more suitable for
tasks in which some attributes are more relevant than others.

Salzberg [4] proposed a method to weight features in the
system EACH (a variant of the nearest neighbor algorithm).

It is based on feedback of the performance in the training set.
When a training instance is correctly classified using leave-
one-out testing, the weights of matched features are incre-
mented by a fixed amount while the weights of mismatched
features are decremented by the same amount. The opposite
action is taken for a misclassified instance. Salzberg [4] found
that with a proper weight adjustment parameter, this method
is able to achieve improvement on classification performance.

Another feedback-based feature weighting method was pro-
posed by Aha [5] in the instance based learning algorithm IB4.
In this approach, the weight adjustment parameter is not fixed
but dependents on the class distribution, which is more robust
against skewed class distributions. Aha [5] reported improved
results using IB4 compared to the nearest neighbor algorithm
on tasks involving irrelevant features.

Ling et. al. [6] extended the work (a feature selection
method) of Cardic [2] to use a C4.5 decision tree to weight
features for the nearest neighbor classifier. The weight of a
feature depends on its node position in the tree, as well as
the number of training examples going through the node. The
algorithm was tested on an artificial dataset with irrelevant
features as well as on some real-world datasets. The results
show an improvement in performance by using this feature
weighting method over the feature selection method applied
in [2]. Other feature weighting methods can be found in a
review paper by Wettschereck et. al. [7].

In this work, we propose a feature weighting method that
is based on a trained neural network. In this method, the
importance of a feature is extracted from the strengths of
related links in a trained neural network. The rationale behind
this idea is that an important feature should have strong links
along the nodes correlated to this feature, because of its
influence on classification decisions. One advantage for using a
neural network for feature weighting is its rich expressiveness
in representing hypotheses (as shown by Hornik et.al. [8], a
neural network has the capacity of representing virtually any
function). This provides neural networks with the potential to
better capture the relevance of features related to classification.

This method is tested on 15 real-world datasets drawn from
UCI dataset repository. The results show its capability of
improving the performance of the nearest neighbor classifier
in 14 of the 15 tested datasets. It also performs better than
the neural network in 9 datasets. The results also show that
it is particularly effective in improving the nearest neighbor
classifier when there are irrelevant attributes in a dataset.

II. FEATURE WEIGHTING METHOD

The proposed feature weighting method is focused on
the procedure to extract information about the relevance of
features from a trained neural network. Given a training set S,
the first step is to train a multiplayer neural network using the
backpropagation algorithm. The learning rate is set to 0.2 and
the momentum is set to 0.5. The other parameters of the neural
network and training procedure are described as follows.

For a given training set S, it is randomly divided into two
subsets: a training set S1 (2/3 of S) and a holdout set S2

(1/3 of S). The network is trained on S1 and its accuracy is
estimated on S2. The purpose of the holdout set is to estimate
the accuracy on an independent dataset (instead of the training
set itself) in order to avoid over-fitting the training data.

The network is constrained to have one hidden layer. The
number of hidden nodes H is not pre-determined. Instead, it
is automatically determined by monitoring its accuracy on S2.
H is initially set to 1. After training for a fixed H (the training
procedure for a fixed H is explained in the next paragraph),
the network accuracy on the holdout set S2 is recorded. H is
then incremented by 1. This continues until finding the best H

by the following criterion: if H gives a best result while H+1
and H + 2 do not yield a better result, then H is considered
to be the best number of hidden nodes. After determining the
best H , the whole training set S (to better utilize available
training data) is applied to train a network with the fixed H
(starting from the saved initial weight settings for the best H).

For a fixed number of hidden nodes H , the accuracy on S2

is monitored after every N (=10) epochs. If after monitoring
M (= 20) times (i.e., N ×M = 200 epochs), there is still no
progress in training (no better accuracy on S2), then training
is stopped for the fixed number of hidden nodes H.

After the training, the feature weighting is extracted from
the trained network as follows. For an input node i, its feature
weight is given by

Wi =

H∑

j=1

O∑

k=1

|Vi,j × Vj,k| (1)

In the above equation, Wi is the feature weight for input node
i; Vi,j is the network weight (link strength) from input node
i to hidden node j, and Vj,k is the weight from hidden node
j to output node k; H is the number of hidden nodes and O

the number of output nodes. Each term in Eq. (1) represents
one path from input node i to output node k. through hidden
node j. The summation covers all possible forward paths from
input node i to all output nodes.

The rationale for using Eq. (1) to weight feature is that
if a feature is important, it will have more influence on the
output nodes by propagating forward through hidden nodes.
Such influence is reflected in the strengths of links along all the
related paths, and the purpose of Eq. (1) is to give a quantified
overall measure on such influence.

There is a slight difference for extracting feature weighting
for continuous and nominal features. For a continuous feature,
there is only one corresponding input node, and its feature

weight is just the same as the one given by Eq. (1). For a
nominal feature with T distinct values, there are T input nodes,
with each one corresponding to a different value of the nominal
feature. In this case, the feature weight is the average over the
T input nodes:

W =
1

T

T∑

t=1

Wt (2)

After extracting weights for all features using Eq. (1) and Eq.
(2), the weights are normalized such that their sum is equal
to the number of features N. They are then applied for the
nearest neighbor algorithm to calculate a weighted distance
between any two data instances.

For two given data instances with feature vectors x =
(x1, x2, ..., xN) and y = (y1, y2, ..., yN) , the weighted
distance between them is give by

d(x,y) =

N∑

i=1

Wi × h(xi, yj) (3)

In Eq. (3), h(xi, yj) is the difference between two feature
values xi and yj . It is calculated differently for continuous
and nominal features. For a continuous feature,

h(xi, yj) = |xi − yj | (4)

For a nominal feature,

h(xi, yj) = 1 (xi = yj)

= 0 (xi 6= yj) (5)

III. EXPERIMENT

This feature weighting method is evaluated on 15 real-world
datasets drawn form UCI machine learning dataset repository
[9]. Table 1 lists the properties of these datasets, including
number of continuous attributes (C), number of nominal
attributes (N), total number of attributes (Attr), number of
classes, and dataset size.

A stratified 10-fold cross-validation [10] is applied to esti-
mate the error rate. Each dataset is randomly partitioned into
10 equally sized folds, with stratification for each class (i.e.
instances with same class are evenly distributed across the 10
folds). In each run, nine of the ten folds are used as the training
set while the other fold is the test set. This repeats 10 times,
with a different fold as the test set each time. The reported
error rate for a dataset is the average over the 10 runs.

Three algorithms are evaluated: the baseline nearest neigh-
bor algorithm with constant feature weights (1-NN), a neu-
ral network trained with the backpropagation (BP), and the
nearest neighbor algorithm with weighted features by neural
network (BP-1-NN) as explained in the last section. The
results on the 15 datasets are shown in Table 2.

The results show that the nearest neighbor algorithm using
the proposed weighting method (BP-1-NN) performs better
than the baseline nearest neighbor algorithm (1-NN) in 14
of the 15 tested datasets (except Flag), showing a strong

TABLE I

PROPERTIES OF 15 DATASETS

Data Set C N Attr Class Size

Chess 0 36 36 2 3196

Flag 3 25 28 8 194

Glass 9 0 9 7 214

Horse 12 14 26 3 366

Hypthoid 7 18 25 2 3163

Iono 34 0 34 2 351

Iris 4 0 4 3 150

Letter 16 0 16 26 20000

Lymph 0 18 18 4 148

PageBlk 10 0 10 5 5473

Promot 0 57 57 2 106

SatImge 36 0 36 6 6435

Segment 19 0 19 7 2310

Vowel 10 0 10 11 990

Water 38 0 38 13 527

TABLE II

ERROR RATES (%) OF THE THREE ALGORITHMS

Data Set 1-NN BP BP-1-NN

Chess 9.5 1.2 1.1

Flag 39.7 35.4 40.1

Glass 29.9 39.7 29.0

Horse 33.9 35.5 31.4

Hypthoid 2.8 2.2 2.1

Iono 13.1 8.6 11.4

Iris 4.7 2.7 4.0

Letter 4.0 21.2 3.5

Lymph 18.1 20.8 16.1

PageBlk 4.1 3.6 3.7

Promot 19.9 10.5 12.2

SatImge 9.7 12.1 9.5

Segment 3.1 4.8 2.3

Vowel 1.4 23.5 0.8

Water 27.5 24.1 26.2

capability for the neural network to capture feature weighting
information.

In 9 datasets (Chess, Glass, Horse, Hypothoid, Letter,
Lymph, SatImage, Segment, Vowel), the nearest neighbor al-
gorithm with feature weighting (BP-1-NN) not only improves
the baseline nearest neighbor algorithm (1-NN), but also out-
performs the neural network itself (BP). In 7 datasets (Glass,
Horse, Letter, Lymph, SatImage, Segment, Vowel) among these
9 datasets, the baseline nearest neighbor algorithm (1-NN)
performs better than the neural network (BP). Yet 1-NN can
be further improved by using the feature weighting infor-
mation (BP-1-NN) provided by the neural network. In the
other 2 datasets (Chess, Hypothoid) of the 9 datasets, the

neural network (BP) performs better than the baseline nearest
neighbor algorithm (1-NN). However, feature weighting (BP-
1-NN) by a neural network is capable of not only improving
the nearest neighbor algorithm (1-NN) but also surpassing the
neural network (BP).

Note that for the datasets Letter and Vowel, the nearest
neighbor algorithm is significantly better than the neural
network (4.0% vs. 21.2% for Letter, and 1.4% vs. 23.5% for
Vowel). Such superior performance on these two datasets by
the nearest neighbor algorithm is quite interesting. The follow-
ing analysis on characteristics of the two datasets is helpful
in gaining insights on this phenomenon. The task for Vowel is
to classifying 11 vowels based on speech data collected from
15 different persons, where each person speaks each vowel
6 times. Thus within each vowel (class), there could exist
different clusters due to the distinct acoustic characteristic of
each individual speaker. While a neural network is likely to try
to form decision boundary for the whole class, it is much easier
for a nearest neighbor classifier to form a flexible boundary for
each cluster. For example, for a given test speech sample, the
nearest neighbor classifier would likely find the most similar
instance to be one of the 6 vowel utterances by the same
speaker. For the task Letter there is a similar characteristic:
there are 20 different fonts in each of 26 classes (letters), and
thus they are very likely to form font-based intra-class clusters.

Also note that for the datasets Letter and Vowel, the per-
formance of the nearest neighbor algorithm can be further
improved (from 4.0% to 3.5% for Letter, and from 1.4% to
0.8% for Vowel) by extracting the weighting information from
a neural network. Although the neural network itself is not
most suitable on these domains, it can still capture important
information on the relevance of features to help the nearest
neighbor algorithm. We observe in the experiment that for the
dataset Vowel, the magnitude of the highest weighted feature
by the neural network is about 5 times that of the lowest one,
while for Letter it is about 3 times. This implies that not all of
the original features are equally relevant to the classification
task, and in this case weighted features are preferred over
constant ones.

The results in Table 2 also show that in 6 datasets (Flag,
Iono, Iris, PageBlks, Promot, Water), BP outperforms both 1-
NN and BP-1-NN. In 5 of these 6 datasets (except Flag),
BP-1-NN outperforms 1-NN, showing that the weighting
information provided by a neural network is still helpful
to improve the nearest neighbor algorithm even though not
capable of outperforming the neural network itself. In the
dataset Flag, there are 28 attributes and 8 classes but only
194 instances. The sparseness of training data is likely an
contributing factor for the neural network’s inaccuracy in
estimating feature weighting.

To study how the three algorithms respond to irrelevant
attributes, we artificially add a certain number of (continuous)
irrelevant attributes to the dataset Vowel. The experimental
results are shown in Table 3. We can see that the nearest
neighbor algorithm without weighting is very sensitive to
irrelevant attributes, while the same algorithm with weighting

is more robust against irrelevant attributes. We observe in the
experiment that the magnitude of the weight of an irrelevant
feature estimated by the neural network is typically about
one tenth that of a relevant feature, and thus its impact is
significantly reduced. The results in the last two columns
also show that the slow degradation with irrelevant attributes
is closely correlated to the similar degradation displayed by
neural networks.

TABLE III

ERROR RATE (%) VS. IRRELEVANT ATTRIBUTES

Irrelv 1-NN BP BP-1-NN

0 1.4 23.5 0.8

1 7.6 23.6 1.2

2 24.1 24.9 2.1

3 31.4 25.7 2.9

4 42.4 25.8 3.2

5 49.3 28.5 4.8

10 67.1 34.4 8.5

15 76.4 35.3 18.5

20 79.0 40.8 21.4

IV. SUMMARY

In this work, we propose a neural network based feature
weighting approach to improve instance based learning algo-
rithms. After training a neural network, the weight of a feature
is extracted from the network based on link strengths among
related nodes. The main motive of using this approach is to
take advantage of neural network’s rich capacity to represent
hypotheses, as well as its ability to capture underlying regu-
larities inside datasets by forming internal representations.

The performance of this approach is tested on 15 real-world
datasets drawn from the UCI dataset repository. The results
show that the proposed weighting scheme not only improves
the nearest neighbor algorithm in 14 of the 15 tested datasets,
but also outperforms the neural network classifier itself in 9
datasets.

This approach is particularly useful for domains that are
suitable for instance based learning algorithms and when their
features are not of equal relevance, as demonstrated in the
example datasets Letter and Vowel. The results also show that
the proposed approach is robust against irrelevant attributes.

In the future we plan to explore different ways to extract
feature weighting information from neural networks. One
direction will be to study the effect of weighting schemes
that differ for different layers in a neural network. Another
direction is to improve the current feature weighting method
by identifying and reducing potential redundancy amongst
links in a neural network to achieve more accurate weighting
information.

REFERENCES

[1] T. M. Cover and P. E. Hart, “Nearest Neighbor Pattern Classification,”
IEEE Transactions on Information Theory, vol. 13, pp. 21–27, 1967.

[2] C. Cardic, “Using decision trees to improve case-based learning,” Pro-
ceedings of 1993 International Conference on Machine Learning, pp. 25–
32, 1993.

[3] G. H. John, R. Kohavi and K. Pfleger, “Irrelevant Features and the Subset
Selection Problem,” Proceeding of Eleventh International Conference on
Machine Learning, pp. 121–129, 1994.

[4] S. L. Salzberg, “A nearest hyper-rectangle learning method,” Machine
Learning, vol. 6, pp. 251–276, 1991.

[5] D. W. Aha, “Tolerating noisy, irrelevant, and novel attributes in instance-
based learning algorithms,” International Journal of Man-Machine Stud-
ies, vol. 36, pp. 267–287, 1992.

[6] C. X. Ling, J. J. Parry and H. Wang, “Setting attribute weights for
nearest neighbor learning algorithms using C4.5,” International Journal
of Pattern Recognition and Artificial Intelligence, vol. 11(3), pp. 405–415,
1997.

[7] D. Wettschereck, D. W. Aha, and T. Mohri, “A review and empirical
evaluation of feature weighting methods for a class of lazy learning
algorithms,” Artificial Intelligence Review, vol. 11, pp. 273–314, 1997.

[8] K. Hornik, M. Stinchcombe and H. White, “Multilayer feedforward
networks are universal approximator,” Neural Networks, vol. 2, pp. 359–
366, 1989.

[9] C. J. Merz and P. M. Murphy, UCI repository of machine learning
databases, http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1996.

[10] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone, Classification
and Regression Trees, Wadsworth International Group, 1984.

