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Need for Optimization of Real-Valued Vectors

  • Weights for radial basis function networks

  • Attribute weights for instance-based learning

  • Weights for multilayer perceptrons

  • Many other problems also require a set of real-
valued quantities that yield high accuracy or result in 
good scores according to some other real-valued 
evaluation measure.

Genetic Algorithms

  • Used to find sets of values without necessarily 
knowing what the gradient is at each sampled point 
in the weight space.

  • Unfortunately have many sensitive parameters

  • Having many homogeneous individuals can waste 
computation.

Introduction



“Blocking Race” (BRACE) for Attribute Selection
Moore & Lee [1993]

BRACE Statistical Technique
  • Used to decide when sufficient statistical evidence 
has been gathered to determine whether one “model” 
is worse than (or at least no better than) another.
  • Used to choose between different:
    • learning models
    • parameter settings
    • hypotheses
    • etc.

Attribute Selection—Finding Binary Attribute Weights
  • Forward selection starts with no attributes and tries 
adding them in a greedy manner.
  • Backward elimination starts with all attributes and 
tries removing them.
  • Moore & Lee used a schemata search to avoid 
problems with forward selection and backward 
elimination.
  • The BRACE algorithm was used to decide when an 
attribute could be included or excluded.
  • Their algorithm had success in finding such binary-
valued weights, but does not support finding real-
valued weights.
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Real-Valued Schemata Search 
(RVSS)
  • Uses BRACE statistical technique to decide when to narrow search.
  • Performs a schemata search on real-valued quantities (called weights, 
though the technique can be used to search for good settings for almost any 
real-valued quantities for which there is a realiable evaluation function).

Overview of RVSS Algorithm
  • Requires:
    • Training set T of n training instances.
    • Evaluation function f(w) to evaluate a setting of weights.
  • Finds: a vector w of m weights w1...wm such that f(w) yields as high a 
value as possible.  

  • Begin with an initial range mini....maxi for each weight (e.g., 0...1)
  • Divide each range into d subranges (e.g., d=2)
  • For each iteration
    • Pick a random value for all of the weights within range mini....maxi

    • Optimize each weight individually:
        • Each subrange of the weight competes in a greedy search, i.e., several
values of one weight are tried while holding others constant.
        • If values in a subrange yield lower values for f(w) than another 
subrange,  the lower subrange is dropped from the race.
        • If two subranges seem nearly identical, the lower one is dropped.
        • If only one subrange remains then the max and min for the weight are 
narrowed to cover only the winning subrange.
        • This new smaller range is subdivided again unless the winning 
subrange is smaller than some threshold minWidth (e.g., .0001).

  • Once the ranges for all the weights are smaller than minWidth, the 
algorithm is finished.
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To begin each iteration,
  • Choose a random training instance t.
  • Choose random values for all weights.
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Optimize each weight, one at a time.
  • Choose a new random point in
     the first subrange, and evaluate
     the modified weight vector on t.
  • Use the corresponding point in
      all other subranges and evaluate.
  • Maintain statistics on the difference
      between the scores in each subrange.
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As time goes on, many corresponding pairs of weights are tested, 
and statistics are accumulated on the differences between f() at the 
two points.

RVSS
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• If one subrange yields significantly lower scores than another,
     then it can be dropped from the race.

• If two subranges are significantly similar,
     then the lower one can be dropped from the race.

• Both of these tests are made at once by seeing if:

Statistical Tests

P( µ < -γ ) < α
where
• µ is the true mean of the difference between scores yielded by 
weights in the two subranges
• γ is a small error term
• α is the probability of getting the observed mean by accident.

Given two distributions xi and yi, 1 ≤ i ≤ n, of two subranges x and y, 
let di = xi - yi be the difference between observed scores for x and y, and 
let d be the average difference over the n pairs of scores.

If d > 0, then x > y on average over the scores observed so far.
However, there is still a chance that y is really greater than x,
i.e., there is still some probability P that the true mean µ 
of the difference d is negative, (in fact, that it is less than -γ),
even though the average d of the values so far is positive.

By throwing out the lower of the two ranges, there is a therefore a 
probability P that the truly higher range will accidentally be thrown out.  
Thus, the lower range is not eliminated unless P < α, that is, 
if P( µ < -γ ) < α..

We never want to throw out the higher range, so when d<0,
x and y are switched do make d ≥ 0.



  With more data, the variance drops, and the area below -γ
becomes smaller than α.  Since it is extremely unlikely that x < y,
the lower range y can be dropped.
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  • -γ = -.5
  • α = .01
  • The average difference d = 0.5, so x > y on average.
  • The variance is large, however, so there is still a reasonable 
probability (perhaps 10% chance) that y is really greater than x.
  • Thus the lower range can not be eliminated without further 
statistical support.

Example 1:

Example 2:
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  The average difference is 0, and the variance is large, so one subrange 
may still be better than the other, and we do not know which would be 
larger, even if they are different.

  The average difference is 0, but the variance is small, so there is an 
extremely small chance that one range is better than the other by 
more than γ.  Thus the smaller range (or either one, if they d=0 
exactly) can be eliminated.

  Note that in examples 3 and 4, P(µ<0)=.5 no matter how 
small the variance gets, so testing for P(µ<-γ) is necessary to 
eliminate identical subranges.

Example 3:

Example 4:
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When only 1 subrange remains, the 
search space is narrowed to the 
winning range, which is subdivided 
into new subranges.

After several iterations on different 
training instances, statistical evidence 
may be sufficient to decide that one 
subrange can be eliminated from 
consideration.

For example, if Sub1>Sub2 (i.e., d > 0) 
and the variance is small, Sub2 can be 
eliminated.
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When subranges become small 
enough for a particular weight, that 
weight becomes fixed.

When all weights become fixed, the 
search is complete.
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Pseudo-code
LearnRVSS(T, alpha, gamma, minWidth):w[1..m]
In: training set T

alpha, the probability of an erroneous decision
gamma, a small allowable error
minWidth, the smallest width of weight range that is subdivided.

Out: w[1..m]

For i=1..m, r=1..d, and s=r+1..d
set num[i][r][s], sum[i][r][s] and sumSquared[i][r][s] to 0

While there are still weights left in the race
Let inst = a random instance from the training set T.
# Pick random weights:
For each weight i that is still in the race

let w[i]=random value in any one of its divisions that is still racing.
# Test individual weight settings
For each weight i that is still not permanently fixed

Pick a random value v in the range 0...1
For each range r of weight i that is still racing

Let w[i]=min[i][r]+width[i][r]*v
Let score[r]=f(w[1..m], inst), i.e., evaluate w[1..m] on training instance ‘inst’

For each range r=1..d of weight i that is still racing
For each other range s=(r+1)..d of weight i that is still racing

Add 1 to num[i][r][s]
Add (score[r]-score[s]) to sum[i][r][s]
Add (score[r]-score[s])2 to sumSquared[i][r][s]
Let avg = sum[i][r][s] / num[i][r][s]
Let var = (sumSquared[i][r][s]-2*sum[i][r][s]*avg+num[i][r][s]*avg*avg)

 / (num[i][r][s]-1)
Let t = (|avg|+gamma) / sqrt(var/num[i][r][s])
If t > TDistrib(alpha,n-1), (i.e., P(true_avg < -gamma) < alpha)

then if avg ≥ 0 then remove range s from the race
else remove range r from the race

If there are not at least two ranges still in the race for weight i
Set min[i]=min[i][winning r] and max[i]=max[i][winning r]
If the new width < minWidth

then set w[i]=(min[i]+max[i])/2, and fix it there permanently
Clear statistics for all weights to restart their races

EndWhile
Return w[1..m]



Dataset kNN kNN/RVSS
Anneal 90.5 9 2 . 0

Australian 83.3 83.3

Breast Cancer (Wi) 95.9 95.9

Bridges 5 4 . 3 50.6

Crx 83.9 83.9

Echocardiogram 93.2 93.2

Flag 59.6 59.6

Glass 5 0 . 5 49.5

Heart 83.3 83.3

Heart.Cleveland 77.2 77.2

Heart.Hungarian 8 2 . 6 82.3

Heart.Long Beach 71.0 7 2 . 0
Heart.More 74.4 74.4

Heart.Swiss 93.5 93.5

Hepatitis 83.9 8 5 . 2
Horse Colic 67.8 7 1 . 8

Image Segmentation 86.0 8 8 . 3
Ionosphere 83.7 8 6 . 0
Iris 82.0 9 0 . 7

Led-Creator 6 9 . 2 68.5

Led+17 68.5 6 9 . 2

Liver (Bupa) 55.1 55.1

Pima Indians Diabetes 70.4 70.4

Promoters 8 4 . 9 84.0

Sonar 7 9 . 3 78.8

Soybean (Large) 85.7 85.7

Vehicle 59.2 60.0

Voting 96.1 9 6 . 3
Vowel 56.6 7 4 . 2

Wine 92.2 9 3 . 3
Zoo 94.4 94.4

A v g 7 7 . 7 7 8 . 8

Applications of RVSS
RVSS was used to generate 
attribute weights for an 
instance-based learning system 
so as to be more robust in the 
presence of irrelevant attributes.

  • 4 irrelevant attributes added to 
each dataset.
  • 31 datasets from UCI machine 
learning databases.

Using RVSS-generated attribute 
weights yielded higher accuracy 
in 11 cases, and lower accuracy 
in only 6, with over 1% higher 
accuracy on average.

RVSS also applied to generating weights in a multilayer perceptron.
  • It reduced sum-squared error and improved generalization accuracy 
as the algorithm progressed
  • But it was not able to achieve the same level of accuracy as the error 
backpropagation training algorithm.



Conclusions
  • The real-valued schemata search (RVSS) algorithm extends the 
binary-valued schemata search described by Moore & Lee [1993] 
to real-valued domains.

  • It uses a “blocking race” (BRACE) statistical test to decide 
when one portion of the search space can be eliminated so as to 
narrow the search space.

  • The work presented here is still in its preliminary stages, but 
the RVSS algorithm has been applied with some success to 
weighting of input attributes in an instance-based learning 
algorithm.

Future work
  •  Adding the ability to back up and re-widen the search space.
  •  Direction on what values to use for the parameters:
        • α (the confidence with which decisions are made)
        • γ (the amount of allowable error in a decision), and
        • minWidth (the smallest range that is subdivided).
  •  Careful analysis of how many subranges to use.
  •  Identification of additional problems that could benefit from 
this technique, such as finding weights for radial basis function 
networks.
  •  Incorporation of the statistical tests into other techniques such 
as genetic algorithms.


