
In Proceedings of the 1997 Sian Ka’an International Workshop on Neural Networks and Neurocontrol.

Real-Valued Schemata Search Using Statistical Confidence

D. Randall Wilson1 and Tony R. Martinez2

1fonix Corporation
180 W. Election Road
Draper, UT 84020, USA
E-mail: WilsonR@fonix.com
WWW: http://axon.cs.byu.edu/~randy

2 Neural Network & Machine Learning
Laboratory
Computer Science Department
Brigham Young University
Provo, UT 84602, USA
E-mail: martinez@cs.byu.edu
WWW: http://axon.cs.byu.edu

Abstract. Many neural network models must be
trained by finding a set of real-valued weights that
yield high accuracy on a training set. Other
learning models require weights on input attributes
that yield high leave-one-out classification
accuracy in order to avoid problems associated with
irrelevant attributes and high dimensionality. In
addition, there are a variety of general problems for
which a set of real values must be found which
maximize some evaluation function. This paper
presents an algorithm for doing a schemata search
over a real-valued weight space to find a set of
weights (or other real values) that yield high values
for a given evaluation function. The algorithm,
called the Real-Valued Schemata Search (RVSS),
uses the BRACE statistical technique [Moore & Lee,
1993] to determine when to narrow the search
space. This paper details the RVSS approach and
gives initial empirical results.

1. Introduction
There are many situations in which it is

desirable to find a set of values that maximize
some evaluation measure. For example,
attribute weights for radial basis function
networks [Broomhead & Lowe, 1988] or
instance-based learning algorithms [Aha, Kibler
& Albert, 1991] can be used to reduce sensitivity
to irrelevant attributes if attribute weights can be
found that yield high leave-one-out classification
accuracy. Multilayer perceptrons [Rummelhart
& McClelland, 1986] are trained in such a way
as to yield high training set accuracy (as indicated
by low total sum-squared error) given a good set
of real-valued weights. Many other problems
also require a set of real-valued quantities that
yield high accuracy or result in good scores
according to some other real-valued evaluation
measure.

Genetic algorithms [Spears et al., 1993] can
be used to find sets of values without necessarily
knowing what the gradient is at each sampled
point in the weight space. However, genetic

algorithms have many parameters that affect how
successful they are in a particular domain. If not
tuned carefully, they can quickly generate a set of
homogeneous individuals that are very similar
and thus ignore much of the search space.

Moore & Lee [1993] presented an algorithm
called BRACE (“blocking race”) which is used to
determine when sufficient statistical evidence has
been gathered to determine whether one “model”
is worse than (or at least no better than) another.
The algorithm can be used in situations when it
is necessary to choose between two or more
learning models, parameter settings, hypotheses,
etc., and to know how much testing must be
done before one of the competitors can be
excluded from consideration.

Moore & Lee applied the BRACE algorithm
to the problem of attribute selection, using a
schemata search to avoid problems associated
with the more standard approaches of forward
selection and backward elimination [Miller,
1990]. Attribute selection involves deciding
which of the available attributes in a set of
training data should be used by a learning
algorithm. This problem is equivalent to
searching for a set of binary-valued attribute
weights for use in some other learning
algorithm. Their algorithm had success in
finding such binary-valued weights, but it is not
applicable to finding real-valued weights.

This paper presents a technique called the
Real-Valued Schemata Search (RVSS) for
doing a schemata search on a set of real-valued
quantities by using statistical techniques similar
to those used by BRACE in order to decide when
to narrow the search space. Though the
remainder of the paper refers to the real-valued
quantities as weights, the same technique can be
used to search for good settings for a wide variety
of real-valued quantities for which there is a
realiable evaluation function.

Section 2 presents the RVSS algorithm,
including how the real-valued search proceeds and
how statistical tests determine when to narrow
the search space. Section 3 discusses empirical
observations and further potential applications of
the algorithm. Section 4 provides conclusions
and suggestions for future research directions.

2. Real-Valued Schemata Search
This section presents a brief overview of the

Real-Valued Schemata Search (RVSS)
algorithm, followed by a more detailed
exposition of the algorithm.

Given a vector w of m weights w1...wm, an
evaluation function f (such as sum-squared error
of the outputs of a learning algorithm using the
weights in w), and a training set T of n training
instances, RVSS attempts to find values for the
weights such that f(w) yields as high a value as
possible. The maximum and minimum possible
values for each weight wi are denoted as maxi and
mini, respectively.

The RVSS algorithm begins with an initial
range mini....maxi for each weight, such as 0...1
or -1...1. It then divides each range into d
subranges, where d is a small number such as 2
or 4. (Overhead of the RVSS algorithm
increases by a factor of d2, so small values are
preferable.)

During each iteration, a random value is
picked for all of the weights, and then each
individual weight is optimized at a time. Each
subrange of the weight competes in a greedy
search to see if values in the subrange tend to
yield higher values for f(w) than other subranges.
Whenever a subrange is found (with high
confidence) to be no better than any other
subrange (i.e., significantly worse or
significantly similar), it is dropped from the race.
If only one subrange remains then the max and
min for the weight are narrowed to cover only the
winning subrange, and this new smaller range is
subdivided again unless the winning subrange is
smaller than some threshold minWidth (e.g.,
.0001), at which point the center of the winning
subrange is chosen as the permanent value for
this weight, and no further alternates are
considered. Once all the weights have been
permanently chosen, the algorithm is finished.

The remainder of this section provides a
more detailed explanation of the RVSS
algorithm, including a description of the
statistical tests needed to determine whether one
range is no better than another. The algorithm
proceeds as follows.

A random instance t is chosen from the
training set T. Random values are chosen for
each weight that is still in the race, with the
restriction that the random value for each weight
must be in one of the subranges that is still
racing. This becomes the “global” weight vector
w that will be used in testing each individual
weight.

Next, each individual weight wi is changed
to be a random value in each of its subranges r
that are still racing, while holding the values of
all other weights equal to the “global” vector
chosen above. The new weight vector is
evaluated on the training instance t using f(w),
and the result is saved as scorer. The value of wi

for each subrange r = 1...d is given by

w i,r = mini,r + widthi,r * vi (1)

where
• mini,r = mini + widthi * (r-1), and is the

minimum value of subrange r
• widthi,r = (maxi - mini) / d , and is the

width of subrange r
• vi is a random value, 0 ≤ vi < 1. While a

different value of vi are used for each
weight, the same value of vi is used for all
subranges of a single weight so that the
statistics are better correlated.

As an example, consider a weight wi with
mini=0, maxi=1. If d=2, the two ranges would be
0 to .5 and .5 to 1. If a random value v i is
chosen to be .4, then for the first subrange, wi,r

would be set to 0+.5*.4=.2, and for the second
subrange, the value would be .5+.5*.2=.7.

Once scorer has been found for all subranges
of a weight, these scores are used to update
statistics kept between each pair of subranges so
that the algorithm can determine when one
subrange can be dropped from the race.
Specifically, for each subrange r and each
subrange s > r of weight i, the following
statistics are kept:

• numi,r,s, the number of times the statistics
have been updated (which is equal to the
number of training instances that have
been processed since the race began or was
restarted)

• sumi,r,s, the sum of differences between
scores for subranges r and s

• sumSquaredi,r,s, the sum of the squares of
the differences.

For each training instance, num is incremented
by one, the difference scorer - scores is added to
s u m , and (s c o r e r - s c o r e s) 2 is added to
sumSquared. These quantities all start out at
zero, and are reset to zero whenever one subrange
wins its race and the race is restarted.

After these statistics are updated, they are
used to help determine if one or more subranges
can be dropped from the race. If one subrange
results in significantly lower scores than another,
it can be dropped from the race. Also, if two
ranges are significantly identical, the lower one
can be dropped from the race. Thus if we are
confident that one range is not higher than
another, it can be dropped.

This test can be made by seeing if

P(µ s,r < -γ) < α (2)

where µ s,r is the true mean of the difference
scorer - scores, γ is an error term indicating the
amount of allowable error (e.g., γ=.0001), and α

is the probability of getting the observed mean
by accident (e.g., α=.001, or 99.9% confident
that the observed mean could not have happened
by chance). If range s is actually better than
range r, then the average difference (i.e., the
observed mean, or sumi,r,s / numi,r,s) should be
positive, and once enough samples have been
seen, the probability of having a true mean less
than -γ will become very low. Once this
probability is smaller than α , we are
sufficiently confident that range s is not worse
than range r, and thus range r can be dropped.

If, on the other hand, the average difference
is negative, then we test to see if P(µ s,r > γ) <
α (or, equivalently, if P(-µs,r < -γ) < α). If this
is true, then there is very little chance that the
true mean is positive given the statistical
evidence that it is negative, and thus we conclude
with 100*(1-α)% confidence that range r is not
worse than range s, so s can be dropped from the
race.

To see the need for the error term γ, consider
what happens when the true mean is zero, i.e.,
the two ranges yield identical results. In this
case P(µ s , r < 0) will remain at about .5
indefinitely, while P(µ s,r < -γ) will drop as the
number of samples increases and the variance
decreases. Thus the introduction of this error
term allows the elimination of both worse
subranges and identical subranges.

In order to calculate these probabilities, a
student’s t-distribution can be used, with the
value of t set to:

t =
µ − (−γ)

var / n
=

sumi,r ,s / numi,r ,s + γ
var i,r ,s / numi,r ,s (3)

where vari,r,s is the variance of the observed
differences. (The absolute values are used to
handle the case where the mean is negative). The
variance of a set of values xi, i=1..n, is given as:

var =
xi − x()2

i=1

n

∑
n −1 (4)

which uses the average value of x during each
part of the summation. In order to process the
observed differences incrementally it is necessary
to rework the above formula using the following
derivation.

var =
xi − x()2

i=1

n

∑
n −1

=
xi

2 − 2 ⋅ xi ⋅ x + x()2

i=1

n

∑
n −1

=
xi

2 − 2 ⋅ x ⋅
i=1

n

∑ xi
i=1

n

∑ + x()2

i=1

n

∑
n −1

(5)

In terms of our three stored statistics, num, sum,
and sumSquared , the variance can thus be
expressed as

var = sumSquared − 2 ⋅ sum ⋅ avg + num ⋅ avg2

n −1
(6)

where avg = sum / num and is the running
average, or the average so far.

Once the value of t is found, an interpolated
table look-up is done to find t1-α,n-1, where (1-α) is
the confidence level, and n-1 is the number of
degrees of freedom. If t > t1-α ,n-1 then there is a
very small probability that the observed
difference is from chance (i.e., P<α), so the
difference is statistically significant and the lower
of the two sugranges can be thrown out.
Minimum necessary values of t1-α ,n-1 for several
values of α and n are given in the appendix of
this paper.

When all but one subrange has been thrown
out of the race for a weight, that weight’s range
is reduced to span only the winning subrange,
which is then subdivided into d smal le r
subranges. The statistics for this weight and all
other weights are then cleared (i.e., sumSquared,
sum, and num are all set to zero). If the new
smaller range is small enough (e.g., when the
width < minWidth = .0001), then the weight is
fixed at the center point of the new range, and is
no longer changed by the randomization for each
training instance, nor does the algorithm try any
further alternative values for the weight.

If, on the other hand, the probability P is
not less than α , the weight w i is reset to the
“global” random value picked above, and the
algorithm continues with the next weight. After
all weights have been tested, a new training
instance is chosen, new random weights are
chosen (except for those weights that have been
completely dropped from the race), and the
process repeats until the range of all of the
weights drops below minWidth, thus causing all
the weights to become fixed.

Figure 1 shows pseudo-code for this
algorithm. The algorithm takes three
parameters, a, g, and minWidth, in addition to a
training set and an evaluation function used to
evaluate a given weight vector on a single
training instance. It returns a weight vector
upon completion.

LearnRVSS(T, alpha, gamma, minWidth):w[1..m]
In: training set T

alpha, the probability of an erroneous decision
gamma, a small allowable error
minWidth, the smallest width of weight range that is subdivided.

Out: w[1..m]

For i=1..m, r=1..d, and s=r+1..d
set num[i][r][s], sum[i][r][s] and sumSquared[i][r][s] to 0

While there are still weights left in the race
Let inst = a random instance from the training set T.
Pick random weights:
For each weight i that is still in the race

let w[i]=random value in any one of its divisions that is still racing.
Test individual weight settings
For each weight i that is still not permanently fixed

Pick a random value v in the range 0...1
For each range r of weight i that is still racing

Let w[i]=min[i][r]+width[i][r]*v
Let score[r]=f(w[1..m], inst), i.e., evaluate w[1..m] on training instance ‘inst’

For each range r=1..d of weight i that is still racing
For each other range s=(r+1)..d of weight i that is still racing

Add 1 to num[i][r][s]
Add (score[r]-score[s]) to sum[i][r][s]
Add (score[r]-score[s])2 to sumSquared[i][r][s]
Let avg = sum[i][r][s] / num[i][r][s]
Let var = (sumSquared[i][r][s]-2*sum[i][r][s]*avg+num[i][r][s]*avg*avg)

 / (num[i][r][s]-1)
Let t = (|avg|+gamma) / sqrt(var/num[i][r][s])
If t > TDistrib(alpha,n-1), (i.e., P(true_avg < -gamma) < alpha)

then if avg ≥ 0 then remove range s from the race
else remove range r from the race

If there are not at least two ranges still in the race for weight i
Set min[i]=min[i][winning r] and max[i]=max[i][winning r]
If the new width < minWidth

then set w[i]=(min[i]+max[i])/2, and fix it there permanently
Clear statistics for all weights to restart their races

EndWhile
Return w[1..m]

Figure 1. Pseudo-code for RVSS learning algorithm.

3. Applications of RVSS
The Real-Valued Schemata Search algorithm

addresses a very general problem, i.e., that of
finding a vector of real values that yields a high
value on some evaluation function. Thus, its
applications are potentially quite numerous.

As an example of how this technique can be
used, we have modified an instance-based
learning algorithm [Wilson & Martinez, 1997]
such that it uses attribute weights generated by
RVSS in order to help it to be more robust in
the presence of irrelevant attributes and redundant
attributes. In experiments on 31 datasets from

the Machine Learning Database Repository at the
University of California Irvine [Merz & Murphy,
1996], four irrelevant input attributes were added
to each dataset, which can degrade generalization
accuracy [Wilson & Martinez, 1996]. For each
dataset, 10-fold cross-validation was used to
obtain the average generalization accuracy for a
k-nearest neighbor classifier with equal attribute
weights (i.e., all weights=1). An identical
classifier that used RVSS-generated attribute
weights was also tested, and the average accuracy
for each dataset for both of these algorithms is
given in Table I.

Dataset kNN kNN/RVSS

Anneal 90.5 9 2 . 0

Australian 83.3 83.3

Breast Cancer (Wi) 95.9 95.9

Bridges 5 4 . 3 50.6

Crx 83.9 83.9

Echocardiogram 93.2 93.2

Flag 59.6 59.6

Glass 5 0 . 5 49.5

Heart 83.3 83.3

Heart.Cleveland 77.2 77.2

Heart.Hungarian 8 2 . 6 82.3

Heart.Long Beach 71.0 7 2 . 0

Heart.More 74.4 74.4

Heart.Swiss 93.5 93.5

Hepatitis 83.9 8 5 . 2

Horse Colic 67.8 7 1 . 8

Image Segmentation 86.0 8 8 . 3

Ionosphere 83.7 8 6 . 0

Iris 82.0 9 0 . 7

Led-Creator 6 9 . 2 68.5

Led+17 68.5 6 9 . 2

Liver (Bupa) 55.1 55.1

Pima Indians Diabetes 70.4 70.4

Promoters 8 4 . 9 84.0

Sonar 7 9 . 3 78.8

Soybean (Large) 85.7 85.7

Vehicle 59.2 60.0

Voting 96.1 9 6 . 3

Vowel 56.6 7 4 . 2

Wine 92.2 9 3 . 3

Zoo 94.4 94.4

A v g 7 7 . 7 7 8 . 8

Table I. Example application of RVSS. Generalization
accuracy of a k-nearest neighbor classifier on with added

irrelevant attributes.

As can be seen from the table, the attribute
weights provided by the RVSS algorithm yielded
higher generalization accuracy than the non-
weighted scheme in 11 cases and lower accuracy
in only 6. Using the RVSS-generated weights
resulted in over 1% higher accuracy on average
than using fixed weights.

The RVSS technique was also applied
somewhat less successfully to the problem of
finding weights for multilayer perceptrons. The
weights generated by RVSS did yield higher
generalization accuracy and lower total sum-
squared error as the algorithm progressed, but the
algorithm was not able to achieve the levels of
accuracy attained by the backpropagation learning
algorithm.

However, there are many optimization
problems for which a robust algorithm such as
error backpropagation does not exist for tuning
parameters, weights, or other values. In such
situations there is still a potential for success
using the RVSS algorithm or variations thereof.

4. Conclusions
The real-valued schemata search (RVSS)

algorithm extends the binary-valued schemata
search described by Moore & Lee [1993] to real-
valued domains. It uses a “blocking race”
(BRACE) statistical test to decide when one
portion of the search space can be eliminated so
as to narrow the search space.

The work presented here is still in its
preliminary stages, but the RVSS algorithm has
been applied with some success to weighting of
input attributes in an instance-based learning
algorithm.

Future work necessary for the RVSS
algorithm includes:

• Incorporation of the ability to back up and
re-widen the search space,

• Direction on what values of α , γ, and
minWidth to use,

• Careful analysis of how many subranges to
use,

• Identification of additional problems that
could benefit from this technique, such as
finding weights for radial basis function
networks [Broomhead & Lowe, 1988], and

• Incorporation of the statistical tests into
other techniques such as genetic
algorithms.

References
Aha, David W., Dennis Kibler, Marc K. Albert, (1991).

“Instance-Based Learning Algorithms,” Machine
Learning, vol. 6, pp. 37-66.

Broomhead, D. S., and D. Lowe (1988). Multi-variable
functional interpolation and adaptive networks.
Complex Systems, Vol. 2, pp. 321-355.

Merz, C. J., and P. M. Murphy, (1996). UCI Repository of
Machine Learning Databases. Irvine, CA: University
of California Irvine, Department of Information and
C o m p u t e r S c i e n c e . I n t e r n e t :
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Moore, Andrew W., and Mary S. Lee, (1993). “Efficient
Algorithms for Minimizing Cross Validation Error,” In
Machine Learning: Proceedings of the Eleventh
International Conference, Morgan Kaufmann.

Rumelhart, D. E., and J. L. McClelland, Parallel Distributed
Processing, MIT Press, 1986.

Spears, William M., Kenneth A. De Jong, Thomas Bäck,
David B. Fogel, and Hugo de Garis, (1993). “An
Overview of Evolutionary Computation,” Proceedings
of the European Conference on Machine Learning, pp.
442-459.

Wilson, D. Randall, and Tony R. Martinez, (1996).
“Instance-Based Learning with Genetically Derived
Attribute Weights,” International Conference on
Artificial Intelligence, Expert Systems and Neural
Networks (AIE’96), pp. 11-14.

Wilson, D. Randall, and Tony R. Martinez, (1997).
“Distance Weighting and Confidence in Instance-
Based Learning,” submitted to Computat ional
Intelligence.

Appendix. Student’s t Distribution.

(1−α)
n - 1 0 . 6 0 . 7 0 . 8 0 . 9 0 . 9 5 0 . 9 7 5 0 . 9 9 0 . 9 9 5 0 . 9 9 9 0 . 9 9 9 5

1 0.325 0.727 1.376 3.078 6.314 12.710 31.820 63.660 318.300 636.600
2 0.289 0.617 1.061 1.886 2.920 4.303 6.965 9.925 22.330 31.600
3 0.277 0.584 0.978 1.638 2.353 3.182 4.541 5.841 10.220 12.940
4 0.271 0.569 0.941 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 0.267 0.559 0.920 1.476 2.015 2.571 3.365 4.032 5.893 6.859
6 0.265 0.553 0.906 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 0.263 0.549 0.896 1.415 1.895 2.365 2.998 3.499 4.785 5.405
8 0.262 0.546 0.889 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.261 0.543 0.883 1.383 1.833 2.262 2.821 3.250 4.297 4.781

1 0 0.260 0.542 0.879 1.372 1.812 2.228 2.764 3.169 4.144 4.587
1 1 0.260 0.540 0.876 1.363 1.796 2.201 2.718 3.106 4.025 4.437
1 2 0.259 0.539 0.873 1.356 1.782 2.179 2.681 3.055 3.930 4.318
1 3 0.259 0.538 0.870 1.350 1.771 2.160 2.650 3.012 3.852 4.221
1 4 0.258 0.537 0.868 1.345 1.761 2.145 2.624 2.977 3.787 4.140
1 5 0.258 0.536 0.866 1.341 1.753 2.131 2.602 2.947 3.733 4.073
1 6 0.258 0.535 0.865 1.337 1.746 2.120 2.583 2.921 3.686 4.015
1 7 0.257 0.534 0.863 1.333 1.740 2.110 2.567 2.898 3.646 3.965
1 8 0.257 0.534 0.862 1.330 1.734 2.101 2.552 2.878 3.611 3.922
1 9 0.257 0.533 0.861 1.328 1.729 2.093 2.539 2.861 3.579 3.883
2 0 0.257 0.533 0.860 1.325 1.725 2.086 2.528 2.845 3.552 3.850
2 1 0.257 0.532 0.859 1.323 1.721 2.080 2.518 2.831 3.527 3.819
2 2 0.256 0.532 0.858 1.321 1.717 2.074 2.508 2.819 3.505 3.792
2 3 0.256 0.532 0.858 1.319 1.714 2.069 2.500 2.807 3.485 3.767
2 4 0.256 0.531 0.857 1.318 1.711 2.064 2.492 2.797 3.467 3.745
2 5 0.256 0.531 0.856 1.316 1.708 2.060 2.485 2.787 3.450 3.725
2 6 0.256 0.531 0.856 1.315 1.706 2.056 2.479 2.779 3.435 3.707
2 7 0.256 0.531 0.855 1.314 1.703 2.052 2.473 2.771 3.421 3.690
2 8 0.256 0.530 0.855 1.313 1.701 2.048 2.467 2.763 3.408 3.674
2 9 0.256 0.530 0.854 1.311 1.699 2.045 2.462 2.756 3.396 3.659
3 0 0.256 0.530 0.854 1.310 1.697 2.042 2.457 2.750 3.385 3.646
4 0 0.255 0.529 0.851 1.303 1.684 2.021 2.423 2.704 3.307 3.551
5 0 0.255 0.528 0.849 1.298 1.676 2.009 2.403 2.678 3.262 3.495
6 0 0.254 0.527 0.848 1.296 1.671 2.000 2.390 2.660 3.232 3.460
8 0 0.254 0.527 0.846 1.292 1.664 1.990 2.374 2.639 3.195 3.415

1 0 0 0.254 0.526 0.845 1.290 1.660 1.984 2.365 2.626 3.174 3.389
2 0 0 0.254 0.525 0.843 1.286 1.653 1.972 2.345 2.601 3.131 3.339
5 0 0 0.253 0.525 0.842 1.283 1.648 1.965 2.334 2.586 3.106 3.310
i n f 0.253 0.524 0.842 1.282 1.645 1.960 2.326 2.576 3.090 3.291

Table II. Student t distribution. Each entry is t1-α,n-1 where α is the probability of
getting a value of t larger than the entry given n-1 degrees of freedom.

