Beyond Computational Intelligence to
Computational Creativity in Games

Dan Ventura
Computer Science Department
Brigham Young University
Provo, UT 84602
Email: ventura@cs.byu.edu

Abstract—This paper argues that computational creativity is
the logical next step in the evolution of game design; briefly
overviews what is meant by computational creativity and suggests
some ways in which it could augment contemporary games;
explores some initial ideas for its incorporation into the future
of gaming and game design; and argues for increased cross-
pollination and collaboration between the computational intel-
ligence and games research community and the computational
creativity research community.

I. INTRODUCTION

Computational intelligence has become the (near) future of
game design and development, and it is interesting to ask then
what might be the next logical step for the longer-term. Here,
it is argued that step is computational creativity (CC).

The computational intelligence and games (CiG) commu-
nity has facilitated the wide-spread adoption of procedural
content generation (PCG) and artificial intelligence (Al) into
game development and experience. Procedural generation of
content for games is increasingly allowing designers to focus
on higher-level concerns, while automatic generators produce
lower-level content such as textures, landscapes, buildings,
layouts, music, simple dialogues, etc. [1], [2]. Artificial in-
telligence is being used most commonly in the form of non-
player characters and other types of agents, but it has been
used in many other ways as well, including dynamic difficulty
balancing [3], [4], player experience modeling [5], [6], and
datamining of user behavior [7], [8].

Recently, it has been proposed that the games domain may
be the “killer app” for the nascent field of computational
creativity [9], and the arguments supporting this position are
rather compelling, enough so to suggest a reciprocal kind of
relationship—if games are the “killer app” for computational
creativity, then perhaps computational creativity is the future
of games. The beginnings of this idea have, in fact, been
suggested elsewhere [10], and the purpose here is to argue
for this evolution in the extreme. As the games community
has embraced computational intelligence as an integrated aug-
mentation device for the designer’s intelligence, this suggests
that the next possible step is to do the same thing for the
designer’s creativity. By embracing computational creativity,
game developers can build computational collaborators that
take real creative responsibility as a member of a team, and,

in the extreme, may build fully autonomous content- or game-
creation systems that are legitimate designers themselves.

The integration of CC philosophies and techniques into the
game design process is a natural next step in the computa-
tional intelligence and games evolution, allowing for greater
personalization of the gaming experience, novel and adaptable
system behaviors, and the transitioning of intelligence into
higher-level components of game creation. It can produce
a more immersive game-play experience (e.g. more robust
and believable NPC intelligence, personalized and adaptive
content), allow for the automatic creation of additional types of
game content (and eventually even complete complex games),
and make game creation more scalable by relieving the human-
creator bottleneck.

II. WHAT IS COMPUTATIONAL CREATIVITY?

Because the concept of creativity is very difficult, if not
impossible, to formalize and is likely, in fact, an essentially
contested concept [11], the field as a whole has agreed not to
argue (any longer) about what exactly it is but instead focuses
on building computationally creative systems. While this may
seem disingenuous, it should be noted that the broader field of
Al has dealt with a similar crisis of agreement cf. the meaning
of intelligence, and yet has still made remarkable discoveries
and inventions that everyone agrees are useful progress and
likely even constitute “intelligence” in some sense. It is in
this same hopeful spirit that the CC field has, in the last few
years adopted a circular description suggested by Colton and
Wiggins [12] as its stand-in for a proper definition:

[Computational creativity is] the philosophy, sci-
ence and engineering of computational systems
which, by taking on particular responsibilities, ex-
hibit behaviours that unbiased observers would
deem to be creative.

So, the goal is to build systems that do things that are creative.
This is pretty wide open, as almost any domain of endeavor
can be argued to require creativity to meet at least some of its
challenges, from the artistic to the scientific to the mundane.
Indeed, creativity is certainly an aspect of intelligence and is
likely at least part of the reason that human intelligence is
so robust. While, to date, computationally intelligent systems
have demonstrated and continue to demonstrate some remark-
able abilities, they are, at the same time, distinctly fragile, in

the sense that their domain of expertise is almost vanishingly
narrow. In contrast, humans demonstrate an impressively broad
general intelligence, and at least one thing that differentiates
human and computational intelligence seems to be creativity.

Perhaps the defining difference between computational in-
telligence and computational creativity is in the types of
problems to which they are applied; or possibly the difference
can be captured in the their approaches to solving these
problems. In the case of computational intelligence, problems
are usually framed as some type of optimization—the system
is trying to attain the highest accuracy, or maximize area under
the curve, or minimize losses, or maximize discounted future
reward, or win. Actually, perhaps the concept of winning could
be argued to be not quite optimization, in the sense that there
may be more than one winning strategy, and in fact, given
the case of an opponent strategy, the winning strategy may be
dynamic, but fixing opponent strategy, it is still largely a type
of optimization, or, possibly it is a form of satisficing, which is
simply a weaker form of optimization—it is just “optimizing”
for “good enough”. In contrast, the kinds of problems that
computational creativity addresses are of an entirely different
class. There is no such thing as a best song, or best theorem
or best design. One cannot maximize a piece of visual art
or a recipe or a poem. There are many interesting songs,
theorems, designs, paintings, recipes and poems, and the goal
is to find one or more of these. What constitutes a “solution”
for these types of “problems” might also be dynamic based
on environment, but even if such environmental factors can
theoretically be held constant, this is still nothing like an
optimization problem, at least in the traditional sense.

Instead, success is qualified (and sometimes possibly quan-
tified) with notions of novelty and utility. Whatever the domain
in question, a computationally creative system should produce
artifacts' that are novel and useful. Here, these qualities will
be defined as follows:

novelty: the quality of being new, original or unusual; this
is relative to the population of artifacts in the domain in
question and can apply in the personal or historical sense.

value: the importance, worth or usefulness of something; this
would typically be ascribed by practitioners of the domain
in question.

Note that these qualities are most commonly addressed with
respect to product; however, creativity often refers at least as
much to process as it does to product, and, in particular, it
has been argued that the (perception of the) process by which
a computational system produces artifacts is likely at least as
important as the artifacts produced [13].

To summarize, computational creativity deals with con-
structing artificial agents that produce artifacts that are judged
novel and useful by those that understand the domain in which
the agent works.

Inspiration/revelation/luck/serendipity/magic

4)

Aesthetic
Background .
knowledge Artifact
Teaching Interaction/
connection/ Artifact
causality/ generation
Learning dependencies Feedback
Intention/ Conce{ptuallz
ation
K Goals /
Influence
Fig. 1. An abstraction of a creative agent. The component internal mech-

anisms are meant to be likely necessary though possibly not sufficient.
No attempt here is made to accurately visualize the dependencies and
communication between these mechanisms. The agent communicates with
the environment in several ways, represented by labeled arrows entering or
leaving the agent (borrowed from [14]).

A. An Abstraction of the Creative Agent

Figure 1 offers a gross visualization of an abstract, archety-
pal CC agent. Such an agent is composed of multiple internal
mechanisms/processes, some of which include background
knowledge, an ability to learn, intentionality, an ability to
conceptualize, a sense of aesthetic and some method of
generating artifacts.

1) Background knowledge: can be encoded in a variety
of forms, including rules, associations, semantic networks,
iconic representations, prototypical artifacts, a model or set
of models (e.g. built from training examples), a database,
statistical information, etc.

2) Learning: typically happens by some appropriate ma-
chine learning technique such as training (deep or recurrent)
neural networks, building a (variable order) Markov model or
other form of graphical model, inducing decision trees, forests
or other forms of rules, nearest neighbor methods, etc.

3) Intentionality: can be effected by giving the system
goals such as the communicating of a concept, innovation (e.g.,
with respect to its background knowledge), utility (e.g., with
respect to some objective function), the accomplishment of
some task or the realization of some state, etc. More advanced
systems will typically have fewer, more abstract goals and will
generate their own concrete subgoals.

4) An aesthetic: can be encoded explicitly (e.g. as a fitness
function or a probability distribution over possible outcomes)
or implicitly (e.g. in the generative mechanism, etc.), should
likely be correlated with both background knowledge and what
is learned and should be dynamic in the sense of changing over
time in response to changes in either the internal or external
environment.

INote that the use of artifact here is abstract, and that, in particular, the
artifact produced might, in fact, itself be a process.

5) Conceptualization: includes the ability to represent, ma-
nipulate and invent concepts in the domain. What makes a
reasonable representation is certainly domain specific, with
examples including things like rule sets, statistical models,
vectors and mixed modalities. Conceptual representations
should be grounded in the domain, and can be quite specific,
with a simple mapping to an element of the domain (e.g.,
like the relationship between the genotype and phenotype
in evolutionary computation), or they can be quite abstract,
mapping to large subsets of the domain.

6) Generation: of artifacts can be accomplished with a
random process, an evolutionary mechanism, a grammar, a
generative model, etc. It is important to note that the use of
the term artifact here is meant in a very abstract sense, so that,
in particular, an artifact could be a concrete product, such as a
game level, a weapon, an NPC monster, etc.; a more complex
product such as a puzzle, a game mechanic, a narrative, etc.; an
abstract product like a strategy to be used by an NPC monster,
a quest to be assigned to a player, a level theme, etc., or even
a process, such as a method for generating a game level, an
aesthetic by which to evaluate a potential weapon design, or
a new goal to drive the system’s behavior.

Of course, in reality there are rarely crisp boundaries that
clearly differentiate these mechanisms/components, and some
of these are already very developed (in a computational sense)
in the computational intelligence and games community, but
some are still almost exclusively the purview of the human
designer. It is in the consideration, development and incorpo-
ration of these others by which the games community might
take a quantum leap forward.

In addition to these internal mechanisms, because the agent
exists in an environment, it interacts with the environment
in multiple ways, including being faught, presenting artifacts,
being inspired, receiving feedback and other influences.

7) Teaching: often comes in the form of a supervisory
signal derived from either structured or unstructured data
resources, many of which are now freely available on the
web; additional sources of supervisory signal can be obtained
through human-labeled examples, human or computational
reaction to queries, etc.

8) Presentation: of created artifacts is typically constrained
by domain (e.g., visual images, written or performed music, a
set of rules defining a strategy, a theorem and accompanying
proof, a recipe, a process, a game); if the output is intended
for human consumption, it obviously must be presented in a
form appreciable by humans. In addition, the presented artifact
can (and often should) be accompanied with some form of
framing information (e.g., a title, a backstory, instructions,
context, etc.)

9) Inspiration: is an ill-defined concept that encompasses
environmental stimuli that directly or indirectly affect the
agent’s creative process. The most obvious source of in-
spiration would typically be example artifacts produced by
others (e.g., for a musician, another musician’s composition);
however, inspiration may be found in artifacts from other
domains, outside advice, etc.

10) Feedback: may take the form of immediate and direct
(positive or negative) reinforcement with respect to a presented
artifact, or, it may take less direct forms, such as a collection
of survey responses, sale/resale value, citation or adoption data
and so on.

11) Other influences: might include things like feedback
from the environment about others’ work (when publicly
available), the behaviors, opinions, preferences and aesthetics
of other creators or consumers, current events, etc.

This abstract notion of a creative agent has been instantiated
in many different forms, and a variety of systems of varying
degrees of sophistication and efficacy have been built by
the CC community for creating artifacts in a broad range
of domains, including culinary recipes [15], [16], language
constructs such as metaphor [17] and neologism [18], visual
art [19], [20], poetry [21], [22], humor [23], [24], advertising
and slogans [25], [26], narrative and story telling [27], [28],
mathematics [29] and music [30], [31].

At least some of these kinds of systems, and possibly
any of them, could be incorporated directly in games, or the
techniques they use could be repurposed for use in creating
games or components of games. However, in the long run,
the most useful takeaway for the CiG community is the set
of meta-level ideas driving this research independent of a
particular domain. Subscribing to these can have a lasting
impact in extending the autonomy/responsibility that can be
given to game systems.

The meta-level ideas referred to here are those discussed
above in the treatment of an abstract creative agent and should
be considered necessary, though possibly not sufficient, for a
(sophisticated) CC system. Indeed, because creativity is here
assumed to be an essentially contested concept, it is likely im-
possible to establish a sufficiency condition for computational
creativity. Instead, analogous to scientific theories, a system
likely may only conclusively be discredited as not creative,
and this list is a starting point for avoiding the obvious ways
this might happen (cf. some of the arguments in [13]). The
avoidance of such a discrediting may seem like a dubious
goal to which to aspire; however, a system that cannot easily
be argued to be uncreative is likely a quite impressive one.

B. How is this different than PCG?

It is possible to consider this proposal of computational
creativity as just procedural content generation on steroids,
and in one sense, that may not be completely incorrect.

However, the idea of content should be expanded beyond
the low-level (though certainly important and by no means
trivial) components currently being tackled (e.g., maps, levels,
skins and other visuals, some music, simple dialogue, etc.) to
include much higher-level constructs such as complete quests,
complex mechanics, goals and objectives, governing rules,
ludic considerations, full narratives and eventually complete
games (cf. Smith’s position on the future of PCG [32]).

Perhaps the most significant improvement over traditional
PCG approaches is the consideration of agent intentionality—
CC research targets the building of systems that demonstrate

deliberation or purposiveness in their creating. Accomplishing
this is nontrivial, to be sure, and is a topic of ongoing research
and debate. One way in which this might be approached is by
building systems that share a perceptual grounding with users.
Such shared grounding facilitates successful communication
of intention between the system and those with which it
interacts by providing a common medium for motivating and
interpreting system actions. Games are an ideal domain for
this kind of research, because it is possible to forge that
shared grounding through the game experience (which may
even facilitate types of grounding and types of intentionality
not possible in the real world).

Of course, CiG research is already beginning to explore
some of these possibilities, and that’s why this discussion is
timely—the computational creativity perspective can lend a
transformative momentum to this trend.

III. IMAGINING THE POSSIBILITIES

Several classic and recent games provide good examples
of how CC ideas might be incorporated; here, the games are
categorized as research or commercial, with the allowance that
others may see the dichotomy somewhat differently.

A. Research Games

These games have typically been used as research platforms
over many years, are well-understood and are relatively simple,
in the sense that one might be able to envision an automated
system for inventing something like them in its entirety.

For example, consider the class of platform- or level-based
puzzle games. Super Mario Bros.” is certainly the most studied
of these, likely because of both its original popularity and be-
cause of its conservative nature—it is easy to generate playable
levels. Examples like Ms. Pac-Man® and Spelunky* complexify
the genre by adding ghosts and bombs, respectively, that make
both level design and play more challenging. Is it possible to
abstract a complete description of such games in such a way
that comparable new, cohesive and interesting games of the
genre could be created automatically?

Or consider card-based games such as Hearthstone® and
Lords of War®. Because these games lack mechanics, it is
perhaps even simpler to imagine abstracting the genre and
building a system that creates new complete games. The
challenge is the invention of diverse card packs and their
coherent incorporation into a set of gameplay and ludic rules.

Racing games like TORCS’ provide another relatively sim-
ple class of games to consider for abstraction. The mechanics
are well-defined and immutable (though, an interesting varia-
tion would allow mutation of the mechanics in coherent ways).
Vehicle types, tracks, obstacles, race conditions, skins, and
soundtracks could all be the subject of CC intervention, and

2Nintendo, 1985

3Bally/Midway Manufacturing, 1982
4“Mossmouth, 2008

5Blizzard Entertainment, 2014

%Black Box Games Publishing, 2012

7Eric Espié and Christophe Guionneau, 1997

while the basic ludic principle is to finish first, perhaps even
this could be tampered with in interesting ways.

First person shooters like the very popular Unreal Tourna-
ment® and strategy games like Starcraft® and their variants and
expansions introduce multi-player, tactical decision making,
and real-time considerations as well as scale and additional
complexity issues. Perhaps the most obvious focus here is the
development of sophisticated and believable Al NPCs, but not
using traditional tricks that allow NPCs game-knowledge not
available to normal players (cf. the comment below about The
Flame in the Flood'").

Games like Galactic Arms Race'' and Neuro-Evolving
Robotic Operatives (NERO)'? are interesting in that they
might be described as exploring some of the themes taken
up here in a non-cognitive way—by using neuroevolution to
procedurally generate content that dynamically responds to the
game environment.

Other types of research games exist, of course, and the
interactive fiction game Facade'> deserves a special mention
as a very different kind of “game”, that is in some ways much
more complex than those mentioned above and is also in some
ways a true pre-cursor to the idea of CC in games. (A more
recent version of this idea, Versu'?, introduces some ground-
breaking work on social modeling and how it affects narrative
and in particular the progression of a group conversation.)
Imagine the core engine for Facade coupled with the ability to
potentially invent any human-drama-based interactive fiction,
based on current events, online novels, movies, etc.

B. Commercial Games (AAA and Indie)

Commercial games have a high “cool” factor, but their
implementations are usually opaque, and therefore it is difficult
to evaluate their process—there is always the possibility of
smoke and mirrors, but if it works, it works—their goals are
different than a research community’s (though hopefully they
are informed by such goals). Given that, what follows are some
potential CC contributions to such games.

The Flame in the Flood (a river journey) and No Man’s
Sky'> (a mind-bogglingly large universe) and, to a lesser extent
Secret Habitat'® (a series of art galleries), offer impressive
PCG of the main game content. However, in the first case, NPC
Als are supported by dynamic markup of generated terrain,
which would be considered “cheating” in the CC sense, and
in the latter two, there are no NPCs. CC techniques might
facilitate the introduction of believable NPCs that inhabit the
PCG worlds and thereby provide a cohesive plot (of sorts).

At the other end of the spectrum are games with very strong
NPC Als, with examples including Incognita from Invisible,

1

8Epic Games and Digital Extremes, 1999

9Blizzard Entertainment, 1998

10The Molasses Flood, 2016

Evolutionary Games, 2010

12Neural Networks Group, CS Dept., UT Austin, 2005
13Michael Mateas and Andrew Stern, 2005

l4Richard Evans and Emily Short

SHello Games, 2016

16Strangethink, 2014

Inc."”, the Xenomorph from Alien: Isolation'® and Elizabeth
from Bioshock: Infinite'®. These Als might be made even more
believable with a focus on intentional novelty and utility.

Adventure games such as Assassin’s Creed®®, Sunset Over-
drive’" and Dying Light?* are hailed for their visuals, their
combat systems, their mechanics, etc. while at the same time
being criticized for their relatively weak stories. Of course all
games do not need to be all things to all people, but here is
another example of a subcomponent of the game that might
be co-opted by a CC system to positive effect.

Other games of interest here might include Total War:
Rome II** for its impressive incorporation of Monte Carlo tree
search (discussed in the next section) and Cities: Skylines** a
building/planning simulation game that might be made more
game-like if it could pose interesting problems to be solved.

IV. COMPUTATIONAL CREATIVITY IN GAMES

As mentioned above, the field of computational creativity is
already beginning to produce working systems that themselves
produce artifacts that could be used as components of games.
However, the bigger vision is, of course, the building of a
system that can contribute significantly to the creation of
complete games (or, in the extreme, autonomously create
complete games). A good deal of recent work has begun to
explore various approaches to this for simple games [33]-
[38], with the most explicit example probably being Cook’s
ANGELINA system [39], [40], so this is of course not a novel
idea; however, the widespread adoption of CC ideas will help
move this effort forward significantly.

The first necessity is some way to describe a game in the
abstract, and many attempts at this exist, including the classic
Zillions of Games [41], the game description language [42]
used in the AAAI general game playing competition, the
game description language used in the Ludi system [33], the
recently developed puzzlescript [43] and a general video game
description language [44].

Now, imagine something like these description languages
that admit the description of a space of possible games in an
abstract, hierarchical manner, as suggested in Figs 2, 3, and 4.
Each level of abstraction consists of a set of design choices,
and the hierarchical organization allows the exploration of the
space by traversal of a tree, as in Figure 5. Making choices
at each node in the tree corresponds to design decisions, both
general and specific for creating a particular game, and the leaf
nodes in the tree correspond to completely specified games,
given the representation/description language. One obvious
possibility for exploring such a tree would be some variation
on Monte Carlo tree search (MCTS), which has become

17Klei Entertainment, 2015
18Creative Assembly, 2014
rrational Games, 2013
20Ubisoft, 2007

2l nsomniac Games, 2014
22Techland, 2015
23Creative Assembly, 2013
24Colossal Order, 2015

Type

{Role Play,

Side Scroller,

First Person Shooter,

Puzzle,
Strategy,
.}
.Theme
{Exploration,
Contest,
Creation, .Design
Survival, {Players,
Simulation, Layout,
Conquest, G a m e Affordances,
Cooperation, Interaction,
Play, ..}
Discovery,
Training,
.Genre
{Scifi ({opera, post-apocalypse, cyberpunk, ...}),
Fantasy,
Whimsical,

o}

Fig. 2. An abstract (representative, incomplete) model of a game. A game
has theme, genre, type and design elements (among other things), and each
of these elements can take different values, each of which can be expanded
with further detail at a lower level of the abstraction (see Fig. 3).

.Type

{Riddle,
Builder,
Hunt,
Pattern,

)

.Goal Audio
{Escape, {Backing,
Clue, Ambient,
Quest, PUZZIe Actions,
Task, Signals,
))
.Construct
{Tile ({Square({2, ..., 20}), Rectangle({2, ..., 20}.{2, ..., 20}), Circle({2, ..., 20}), ...}),
Voxel,
Text,
Image,
Sound,
)
Fig. 3. An abstract (partial) model of a puzzle-game. A second level of

abstraction specializes the game-type puzzle, which itself has associated
elements goal, type, audio and construct. Again, each of these elements can
be expanded with further detail at a lower level of the abstraction (see Fig. 4).

widely adopted in the CiG community [45]. (In fact, something
like this has been done very recently on a limited scale, for
the creation of platformer levels [46].)

In traditional MCTS, nodes in the tree represent game states,
and leaf nodes represent completed games, with an outcome
(win or lose, or possibly draw). A path from a node to a leaf
represents a sequence of moves, each resulting in a new game
state further down the tree, until the leaf is reached and the
game is completed. Following one of these paths is called a
playout, and the search involves making many playouts and

HasEntered
NONE,

DEATH,

CONDITIONAL DEATH({axe, amulet, key}, {1, 2, 3})
MOVE({—,—1,1}.{1,....9),

ADD ({axe, amulet, key} , {1, 2, 3}),

REMOVE({axe, amulet, key} , {1, 2, 3}),

SLIDE({—,—1,1}{1,....9)),
)
HasExited

.CanEnter g\‘EOA"\II'E
(;; Filég . CONDITIONAL DEATH({axe, amulet, key} , {1, 2, 3})

3 - T||e MOVE({—,—,1,{1{1,-.-.9)),
HAS ({axe, amulet, key} , {1, 2, 3}), ADD({axe, amulet, key} , {1, 2, 3}),
HASNOT {axe, amulet, key} , {1, 2, 3)), REMOVE ({axe, amulet, key} , {1, 2, 3}),
) SLIDE({—,—1.1}1,....9}),

}
Sprite

{START,
GOAL,
WOooD,
STONE,
WATER,
GRASS,
DIRT,
TREES,
)

Fig. 4. An abstract model of a tile for a tile-based puzzle-game. This third
level of the abstraction provides concrete detail that can be implemented—a
tile has three parameterized functional characteristics: . CanEnter, .HasEntered
and .HasExited and an associated sprite, which can take any of several visual
values (of course in general, the levels of abstraction could continue).

Exploration,
2-player,

Role play,

3D Map,

SciFi (cyberpunk),
Tile1={TRUE,NONE,NONE,START},

Tile2={HAS (key, 1),REMOVE (key),NONE,WOOD},

Tile100={TRUE , NONE,DEATH,WATER}

Escape,
Hunt,

Discovery, Tile

1-player,
Puzzle (Square(10)
3D Map,

Game Fantasy,

Tile1={FALSE,NONE,NONE,GOAL},
Tile2={TRUE,NONE,ADD(axe),GRASS},

Tile100={TRUE,ADD(amulet),NONE, TREES}

Quest,
Builder,
Image,

Training,
Strategy,
MMOG,
Text-based,
Real-world-like,

Fig. 5. Search tree for exploring the hierarchical space of possible games
(partially) described by the abstractions of Figs 2, 3, and 4. Each node in the
tree represents a partial game design, and each branch represents a particular
design decision that further specifies the game. Leaf nodes represent fully
specified games.

collecting statistics on their results (wins/losses/draws) and
backpropagating those statistics up the tree. Eventually, based
on these collected statistics, a move is actually made, and the
game progresses. In this search, the objective is to win the
game, and the search explores different paths down the tree
in an effort to find a “good” move to make, which increases
the chances of meeting the objective. Each time the search
reaches a leaf, the result is known and the relative quality of
the moves in the path can be updated.

In searching the proposed game creation tree of Fig. 5, the
objective is to create a “good” game, and the search explores

different paths down the tree in an effort to find one of these
“good” games. Each node in the path is a design decision,
with the idea being to make “good” decisions that lead to the
creation of a “good” game, in the same way that making good
moves leads to winning a game. In other words, the game
creation process can be thought of as a meta-game of sorts;
however, it is not a competitive game—there is no explicit
opponent nor explicit concept of winning—another example
of the difference between traditional Al problems and CC
problems. Since there is no objective concept of winning,
how can the leaf nodes of this tree be evaluated? How can
it be determined when one of them represents a “good” game
(or piece of a game, in the case of creating a soundtrack or
mechanics or visuals, etc.)?

This, it turns out, is a really difficult question, that can be
posed in a variety of ways. For example, consider the idea
of using an inductive logic program (ILP) to represent a quest
and the (pre- and post-) conditions that apply to various stages
of that quest. It is not perhaps that difficult to think about how
one might do this (though for a complex quest, this may not be
trivial, either), and this might, in fact, be an interesting way to
approach the problem of realizing a game quest. Having taken
that step, it might not be (too) difficult to then take the next
step—considering how to build a system that could generate
an ILP to represent a quest. However, what determines if the
generated quest is a good one? Is there some way to formalize
an aesthetic for (ILP-encoded) quests, so that the system has
a method for evaluating its own output? This is a difficult
question, of course, and the discovery and implementation of
useful aesthetics for various domains is one of the key points
of study in the field. However, even this is not yet satisfactory.
For, given a formalized aesthetic for “good” quests, the system
now can (in principle) create such quests, but it will not create
other quests that may be considered “good” under some other
defendable aesthetic. In other words, what is really wanted is
a system that can (also) create an aesthetic, and for that, what
is required is an aesthetic for aesthetics (about quests in this
particular example).

This meta-level reasoning has its finger prints all over
computational creativity, and once recognized, it immediately
begs the question, “what about an aesthetic for aesthetics for
aesthetics?” Ad infinitum. This is a fair question, but for now
a satisfactory accounting for one additional level of meta will
constitute serious progress. It is also worth mentioning here
that it is not clear that human creators are capable of this type
of higher-order meta-evaluation either, so if artificial systems
are limited to “only” one meta-level of evaluation, they may
be still in good company.

Now, assume the existence of a system for exploring the
(tree-structured) space of possible games, that the system
knows what constitutes a “good” game, and even that it knows
how to “change its mind” about what makes a game “good”
in a defensible way. There is still work to do, in the sense that
the search space has been given to the system in the first place
and is immutable from the system’s point of view. What if the
system could invent new branches for the tree? This could be

something as simple as adding an additional item to associate
with the Tile.CanEnter. HAS property of Fig. 4; or as complex
as adding a new Game.Type in Fig. 2; or even inventing
an additional element, Game.NewElement, analogous to the
existing elements: Game.Theme, Game.Type, Game.Design,
and Game.Genre. This is another form of meta-creativity in
which the space to be explored is the space of all possible trees
that define spaces of game representations. But then, what kind
of aesthetic would guide that search?

Of course, MCTS may not be the right approach to this
general problem of exploring the space of possible games.
The search tree envisioned here is possibly relatively shallow,
and possibly very broad (even likely infinitely so). Is MCTS
the best approach for this shape of tree, let alone this kind of
search problem? There are certainly other traditional forms of
search that could also be adapted as a possible mechanism for
exploring this space, and it is possible that the shape of the tree
might be changed significantly by changing the abstraction.
Perhaps a tree isn’t even the appropriate structure for describ-
ing this space. Perhaps it is even possible to search the space
of abstractions for good ones for searching for games. Many
of these considerations are related to interesting foundational
work by Wiggins [47]; however, this is likely beyond the realm
of (immediate) interest for the CiG community.

One additional suggestion that deserves further exploration
is the idea of building games in which computational creativity
is the main feature of the game. It is not yet clear what this
might entail, but a similarly intriguing idea has been suggested
for games featuring Al [48], and as argued there, it seems
likely that taking full advantage of CC as the main event will
require re-thinking at least some accepted ideas about games
and may open the way for entirely new types of game.

A. Evaluation

As with any creative endeavor, it is not sufficient that the
creator believe that the result is novel and useful, though this
is certainly necessary; other creators or consumers or other
“gatekeepers” of the field must also attribute these values to the
result. This sort of external feedback can be measured in any
number of ways, and certainly gross measures such as sales
ranking, hours played and other adoption/popularity metrics
represent something of a bottom line when it comes to games.
However, there is another sense of external measurement
that is also critical to the advancement of computational
creativity as a field and is somewhat more difficult to assess—
the “creativity” of the system. This is a difficult question,
made the more so by the lack of a concrete definition for
creativity. Still, some progress has been made and varying
proposals suggest ways of dealing with the problem, including
suggesting metrics for quantifying various qualities of system
output [49]; an abstract ontology of behaviors potentially
demonstrable by a system [50]; a proposal for a standardized
evaluation methodology that uses case-specific requirements-
based testing [51]; and a spectrum of prototypical abstract
landmark algorithms that characterize varying levels of system
intentionality in producing novelty and utility [52].

V. CONCLUSION

This paper argues that the logical next step for computa-
tional intelligence and games is the incorporation of com-
putational creativity in games. It gives a necessarily brief
overview of the field of computational creativity, imagines
some initial uses for it in contemporary games, and explores
the beginnings of a few ideas for its incorporation into the
next generation of games and beyond. Many more questions
have been raised than have been answered, with the goal being
to arouse interest in the CiG community reciprocal to that
which has begun to grow in the CC field. For those whose
interest is piqued, a good resource for all things CC, and in
particular an extensive and growing bibliography can be found
at www.computationalcreativity.net.

Computational creativity is itself basically domain agnostic.
However, since it is very difficult to make an effective study
in the abstract, it is typical to settle for being agnostic in
the statistical sense of “averaging” over many domains. This
provides interesting opportunities for collaboration between
CC researchers and researchers in a particular domain to
which CC may be applied, and that, in turn, can strengthen
research agendas in both fields. Here the call by Liapis,
et al. for such a collaboration between the CiG and CC
communities is reciprocated as being perhaps the most natural
of possible collusions. Though the extreme possibility of a
fully autonomous system that creates complete games has been
considered, in reality most games are now so complex that
they are built by (often large) teams of creative individuals,
and so the more likely positive outcome would be a system
or systems that can participate in that collaborative process as
true co-creative members of such a team.

ACKNOWLEDGMENT

Thanks to Jim Whitehead, Michael Mateas, Michael Cook,
Antonios Liapis and Julian Togelius for many useful sugges-
tions that helped guide the development of this manuscript.

REFERENCES

[1] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” [EEE
Transactions on Computational Intelligence and Al in Games, vol. 3,
no. 3, pp. 172-186, 2011.

[2] M. Hendrikx, S. Meijer, J. V. D. Velden, and A. Iosup, “Procedural con-
tent generation for games: A survey,” ACM Transactions on Multimedia
Computing, Communications, and Applications, vol. 9, no. 1, p. 1, 2013.

[3] R. Hunicke and V. Chapman, “Al for dynamic difficulty adjustment in
games,” in AAAI Workshop on Challenges in Game Artificial Intelli-
gence, 2004.

[4] G. Chanel, C. Rebetez, M. Betrancourt, and T. Pun, “Emotion assess-
ment from physiological signals for adaptation of games difficulty,”
IEEE Transactions on Systems Man and Cybernetics, Part A, vol. 41,
no. 6, pp. 1052 — 1063, 2011.

[5] A. Drachen, “Crafting user experience via game metrics analysis,”
presented at NORDICHI 2008, Lund, Sweden, 2008.

[6] G.N. Yannakakis and J. Togelius, “Experience-driven procedural content
generation,” IEEE Transactions on Affective Computing, vol. 2, no. 3,
pp. 147-161, 2011.

[7] C. Bauckhage, A. Drachen, and R. Sifa, “Clustering game behavior
data,” IEEE Transactions on Computational Intelligence and Al in
Games, vol. 7, no. 3, pp. 266-278, 2015.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

N. Ducheneaut, N. Yee, E. Nickell, and R. J. Moore, “Alone together?:
Exploring the social dynamics of massively multiplayer online games,”
in Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, 2006, pp. 407-416.

A. Liapis, G. N. Yannakakis, and J. Togelius, “Computational game
creativity,” in Proceedings of the 5th International Conference on
Computational Creativity, 2014, pp. 46-53.

K. Compton and M. Mateas, “Casual creators,” in Proceedings of the
6th International Conference on Computational Creativity, 2015, pp.
228-235.

W. B. Gallie, “Essentially contested concepts,” Proceedings of the
Aristotelian Society, vol. 56, pp. 167-198, 1956.

S. Colton and G. Wiggins, “Computational creativity: The final fron-
tier?” in Proceedings of the 20th European Conference on Artificial
Intelligence, 2012, pp. 21-26.

S. Colton, “Creativity versus the perception of creativity in compu-
tational systems,” Creative Intelligent Systems: Papers from the AAAI
Spring Symposium, pp. 14-20, 2008.

D. Ventura, “The computational creativity complex,” in Computa-
tional Creativity Research: Towards Creative Machines, T. R. Besold,
M. Schorlemmer, and A. Smaill, Eds. Atlantis Press, 2015, pp. 65-92.
R. Morris, S. Burton, P. Bodily, and D. Ventura, “Soup over bean of
pure joy: Culinary ruminations of an artificial chef,” in Proceedings of
the 3rd International Conference on Computational Creativity, 2012, pp.
119-125.

L. Varshney, F. Pinel, K. Varshney, A. Schorgendorfer, and Y.-M. Chee,
“Cognition as a part of computational creativity,” in Proceedings of
the 12th IEEE International Conference on Cognitive Informatics and
Cognitive Computing, 2013, pp. 36-43.

T. Veale and Y. Hao, “Comprehending and generating apt metaphors:
A web-driven, case-based approach to figurative language,” Proceedings
of the 22" AAAI Conference on Artificial Intelligence, vol. 2, 2007.
M. R. Smith, R. S. Hintze, and D. Ventura, “Nehovah: A neologism cre-
ator nomen ipsum,” in Proceedings of the 5th International Conference
on Computational Creativity, 2014, pp. 173-181.

D. Heath, D. Norton, and D. Ventura, “Conveying semantics through
visual metaphor,” ACM Transactions on Intelligent Systems and Tech-
nology, vol. 5, no. 2, p. article 31, 2014.

S. Colton, “The Painting Fool: Stories from building an automated
painter,” in Computers and Creativity, J. McCormack and M. d’Inverno,
Eds. Springer-Verlag, 2011, pp. 3-38.

J. M. Toivanen, H. Toivonen, A. Valitutti, and O. Gross, “Corpus-based
generation of content and form in poetry,” in Proceedings of the 3rd
International Conference on Computational Creativity, 2012, pp. 175-
179.

H. G. Oliveira, “PoeTryMe: a versatile platform for poetry generation,”
in Proceedings of the ECAI 2012 Workshop on Computational Creativity,
Concept Invention, and General Intelligence, 2012.

0. Stock and C. Strapparava, “HAHAcronym: Humorous agents for hu-
morous acronyms,” Humor - International Journal of Humor Research,
vol. 16, no. 3, pp. 297-314, 2003.

K. Binsted and G. Ritchie, “A symbolic description of punning riddles
and its computer implementation,” in Proceedings of the Association for
the Advancement of Artificial Intelligence, 1994, pp. 633-638.

C. Strapparava, A. Valitutti, and O. Stock, “Automatizing two creative
functions for advertising,” in Proceedings of 4th International Joint
Workshop on Computational Creativity, 2007, pp. 99-105.

G. Ozbal, D. Pighin, and C. Strapparava, “BRAINSUP: Brainstorming
support for creative sentence generation,” in Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics, 2013,
pp. 1446-1455.

M. O. Riedl and R. M. Young, “Narrative planning: Balancing plot and
character,” Journal of Artificial Intelligence Research, vol. 39, no. 1, pp.
217-268, 2010.

R. Pérez y Pérez and M. Sharples, “Three computer-based models of
storytelling: BRUTUS, MINSTREL and MEXICA,” Knowledge-Based
Systems, vol. 17, no. 1, pp. 15-29, 2004.

S. Colton, A. Bundy, and T. Walsh, “HR: Automatic concept formation
in pure mathematics,” in Proceedings of the 16th International Joint
Conference on Artificial Intelligence, 1999, pp. 786-791.

B. Houge, “Cell-based music organization in Tom Clancy’s EndWar,” in
Proceedings of the 1st International Workshop on Musical Metacreation,
2012.

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

F. Pachet and P. Roy, “Non-conformant harmonization: the real book in
the style of Take 6,” in Proceedings of the 5th International Conference
on Computational Creativity, 2014, pp. 100-107.

G. Smith, “The future of procedural content generation,” in Experimental
Artificial Intelligence in Games: Papers from the AIIDE Workshop, 2014,
pp. 53-57.

C. Browne and F. Maire, “Evolutionary game design,” IEEE Transac-
tions on Computational Intelligence and Al in Games, vol. 2, no. 1, pp.
1-16, 2010.

C.-U. Lim and D. F. Harrell, “An approach to general videogame
evaluation and automatic generation using a description language,” in
Proceedings of the IEEE Conference on Computational Intelligence and
Games, 2014, pp. 1-8.

T. S. Nielsen, G. A. B. Barros, J. Togelius, and M. J. Nelson, “Towards
generating arcade game rules with VGDL,” in Proceedings of the IEEE
Conference on Computational Intelligence and Games, 2015, pp. 185—
192.

A. Khalifa and M. Fayek, “Automatic puzzle level generation: A general
approach using a description language,” in Computational Creativity and
Games Workshop, 2015.

D. M. LeBaron, L. A. Mitchell, and D. Ventura, “Intelligent content gen-
eration via abstraction, evolution and reinforcement,” in Experimental Al
in Games: Papers from the AIIDE 2015 Workshop, 2015, pp. 36—41.

J. Gow and J. Corneli, “Towards generating novel games using concep-
tual blending,” in Experimental Al in Games: Papers from the AIIDE
2015 Workshop, 2015, pp. 15-21.

M. Cook, S. Colton, and J. Gow, “The ANGELINA videogame design
system, part I,” IEEE Transactions on Computational Intelligence and
Al in Games, 2016, to appear.

——, “The ANGELINA videogame design system, part II,” [EEE
Transactions on Computational Intelligence and Al in Games, 2016,
to appear.

J. Mallett and M. Lefler, “Zillions of games,” 1998. [Online]. Available:
http://www.zillions-of-games.com

N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth, “Gen-
eral game playing: Game description language specification,” Stanford,
LG-2006-01, 2006.

S. Lavelle, “Puzzlescript.” [Online]. Available: http://www.puzzlescript.
net/

T. Schaul, “A video game description language for model-based or
interactive learning,” in Proceedings of the IEEE Conference on Com-
putational Intelligence in Games, 2013, pp. 1-8.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and Al in Games, vol. 4, no. 1, pp. 1-43,
2012.

A. Summerville, S. Philip, and M. Mateas, “MCMCTS PCG 4 SMB:
Monte Carlo tree search to guide platformer level generation,” in
Experimental Al in Games: Papers from the AIIDE 2015 Workshop,
2015, pp. 68-74.

G. A. Wiggins, “A preliminary framework for description, analysis and
comparison of creative systems,” Knowledge-Based Systems, vol. 19, pp.
449-458, 2006.

I. Horswill, “Game design for classical Al,” in Experimental Artificial
Intelligence in Games: Papers from the AIIDE Workshop, 2014, pp. 28—
34.

G. Ritchie, “Some empirical criteria for attributing creativity to a
computer program,” Minds and Machines, vol. 17, pp. 67-99, 2007.

S. Colton, J. Charnley, and A. Pease, “Computational creativity theory:
The FACE and IDEA descriptive models,” in Proceedings of the 2nd
International Conference on Computational Creativity, 2011, pp. 90—
95.

A. Jordanous, “A standardised procedure for evaluating creative systems:
Computational creativity evaluation based on what it is to be creative,”
Cognitive Computation, vol. 4, no. 3, pp. 246-279, 2012.

D. Ventura, “Mere generation: Essential barometer or dated concept?”
in Proceedings of the 7th International Conference on Computational
Creativity, 2016, to appear.

