Learning Quantum Operators

Dan Ventura
Applied Research Laboratory
Penn State University
dav8@psu.edu
http://www.personal.psu.edu/dav8

Abstract

Consider the system F|y) = |i)) where F' is un-
known. We examine the possibility of learning the
operator a inductively, drawing analogies with ideas
from classical computational learning.

1 Introduction

The field of quantum computation views computa-
tion as effected by the time evolution of a physical
system, usually described mathematically as

Flx) = [v) (1)

where |x) represents the initial state of the system,
F the system’s (unitary) evolution, and |¢) the final
state of the system. From a computational point of
view, we might say that |x) is the input to a “func-
tion” F' and that [¢)) is the output of that function.
In other words, we might draw a mathematical anal-
ogy between Eq. (1) and

fx)=y (2)

The field of (classical) computational learning
deals with the situation where we do not know the
function f but instead have only a set P of exam-
ple functional points of the form (z,y) such that
f(z) = y. The challenge is to find a learning algo-
rithm that uses these functional examples to hypoth-
esize a function g such that g ~ f (g approximates
f). In other words, the learning algorithm takes P
as input and returns g as output. The relationship
g ~ f may be defined in many ways. For example,
we might say that g ~ f if Vz(|g(z) — f(z)] < €) for
some suitably small €; or we might say that g ~ f
if 3A(g(a) = f(a),a € A,|A| > n) for some suitably
defined n. In any case, much of the field of com-
putational learning involves discovering how we can
suitably hypothesize the function g.

Taking our analogy a little further, we may con-
sider the situation in quantum computation in which
we do not know the operator F and thus would like
to hypothesize an operator G such that G ~ F. If
we are to continue the analogy, this hypothesis step
requires the availability of a set S of “functional” ex-
amples and some learning algorithm that uses S to
produce G. The remainder of this paper will discuss
this idea, explore what the set & might consist of,
and discuss a proposal for an algorithm for learning
quantum operators.

2 Quantum Learning

From the preceding discussion it appears that the
most natural candidate for examples in the quantum
setting is a pair of quantum states (|x), |¢)), where
1) is the result of the operator F operating on |x).
Given a set of such pairs and a random (unitary)
operator GO, we would like to discover an algorithm
A that will iteratively produce G, G2, ..., G such
that G" ~ F.

One well-known classical learning algorithm is the
delta learning rule used in some implementations of
neural networks. The basic idea is to evaluate a neu-
ral network using an example input and compare
the network’s output with that of the target out-
put. The weights of the network are then adjusted
so that the output will more closely approximate
the target. A similar concept can be developed as a
simple learning algorithm for quantum operators.

Given a set of quantum examples, § =
{(x)i,]%)i)} and a random initial (unitary) oper-
ator GO, the algorithm proceeds as in Fig. 1. First,
the operator G is applied to the quantum state Ix)
and the result is compared to the target state |i).

Glx) = [9) 3)

The operator G is then updated according to the

1. for each time step ¢t

2 for each example pair (|x), [¢))

3. calculateﬁ?ﬂx) = |¢)

4 Update G as R
gt = ghe + (5 — ¥i)xn

Figure 1: Inductive learning algorithm for quantum
operators

rule R
9;751 = gl + 0(; — Pj)xa (4)

where ¢ represents time or iteration number and g,
are the matrix entries indexed by row j and column
k. Intuitively, a matrix entry is modified according
to how much it contributes to the state evolution er-
ror (the difference between the target state |¢) and
the actual state [¢)); d is a traditional learning con-
stant that scales how quickly the error-based mod-
ification affects the operator; and multiplying the
error by xr weights the change according to how
significantly g, affects the state error.

Note that in the limited experimentation per-
formed to date the learning rate ¢ does not appear
to be a sensitive parameter and thus in the interest
of parsimony was set to d = 1.

As a simple example, suppose we want to learn
the operator F represented by the two examples

(1] 1))
1] vm
S— 50 1 0| 1

T 1 2
CIREEY)
Further suppose the operator @G is initialized as

o [0 1
@=[5 0]

which corresponds to Fig. 2(a). We then evaluate

the first example using G°

cro=in=] 4][] =5[]

Next, we update the matrix entries. For example,

3 1.2

\/—1_0_%)% ~ 0.449

Calculating the rest of the maftrix entries in a similar
fashion results in an updated version of G,

960 = 990+0(1bo—10)x0 = 0+(

O 0.449 1.224
~] 0.083 0.541

()

)

()

Figure 2: Evolution of the operator G: (a) initial
random (unitary) state (b) state after processing
first example (c) state after processing second ex-
ample — the Hadamard transform

corresponding to Fig. 2(b). Repeating the process
for the second example results in the final version of

G, which is shown in Fig. 2(c) and is, in fact, the
well-known Hadamard transform

0.707

; 0.707 111
—0.707 | T Va1 -1

2N
G~ 0.707

3 Generalization

In computational learning, once the function g has
been produced the issue becomes one of generaliza-
tion. This ill-defined term refers to how reasonably
the function g performs for new inputs not used dur-
ing learning. In other words, it is an attempt to

qualify the relationship g ~ f. Similarly, we will be
interested in how well G generalizes to new quantum
states.

A quantum state can be thought of as a vector
in a Hilbert space, and a quantum operator as sim-
ply a description of a rotation in that Hilbert space.
Therefore, the algorithm presented here is simply
using a set of vector pairs as a partial description of
how such a rotation should be performed. The perti-
nent question is whether the algorithm produces an
operator that describes parsimonious rotation in the
Hilbert space, such that new vectors are rotated in a
way that may be described as interesting, or useful
or reasonable. In the simple example above, learn-
ing the Hadamard transform would certainly qualify
as interesting, useful and reasonable, and therefore
we can say at least that the algorithm generalizes
well for some problems.

4 Conclusion

In the newly emerging field of quantum computa-
tional intelligence, approaches to date have concen-
trated on implementing intelligent algorithms using
quantum computation [1] [4] or on modeling intelli-
gent systems using quantum dynamics [2]. In other
words, they have tried to produce quantum opera-
tors that affect quantum systems in such a way as
may be characterized as intelligent. Here we have
taken a different tact entirely, attempting to apply a
classical approach to learning to the quantum realm.
Therefore, instead of trying to produce quantum al-
gorithms that mimic or exhibit or explain intelli-
gent behavior, we have produced an (in fact clas-
sicall) computational intelligence approach to pro-
ducing quantum operators. The algorithm described
here can be thought of as a delta rule for learning
quantum operators.

The matrix representation of a quantum operator
grows exponentially with the size of the associated
Hilbert space. There are at least two approaches to
addressing this problem. One obvious possibility is
the development of a quantum version of the algo-
rithm. In other words, we might solve the problem
by producing quantum operators for implementing
an algorithm for learning quantum operators. For
example, one could consider using density matrices
as representations of the operator to be learned and
then manipulating the quantum system described by
the density matrix. Another possibility for address-
ing the tractability issue is the decomposition of the
problem of learning general unitary operators into
a problem of learning a series of elementary unitary

operators. Related work in this area has been done
on decomposing a general operator into a sequence
of elementary operators [3]. If, in fact, the problem
can be effectively decomposed, then the classical ver-
sion of the learning algorithm presented here will be
sufficient. Finally, learning theoretic properties of
the algorithm need to be explored. These include,
for example, convergence properties, upper bounds
on number of examples required, and quantification
of the relationship G ~ F'.

References

[1] Behrman, E., J. Niemel, J. Steck and S. Skinner,
“A Quantum Dot Neural Network”, Proceedings
of the Workshop on Physics of Computation, pp.
22-24, 1996.

[2] Perus, Mitja, “Neuro-Quantum Parallelism in
Brain-Mind and Computers”, Informatica, vol.
20, pp. 173-183, 1996.

[3] Tucci, Robert R., “A Rudimentary Quantum
Compiler (2nd Ed.)”, Los Alamos Preprint
Archive, quant-ph/9902062, 1999.

[4] Ventura, Dan and Tony Martinez, “Quantum
Associative Memory” Information Sciences, in
press.

