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Abstract: Quantum computation uses microscopic
gquantum level effects to perform computational tasks and
has produced results that in some cases are exponentially
faster than their classical counterparts. Choosing the best
weights for a neural network is a time consuming problem
that makes the harnessing of this “quantum parallelism”
appealing. This paper briefly covers necessary high-level
quantum theory and introduces a model for a quantum
neuron.

1 Introduction

The field of artificial neural networks has at least
two important goals: (A) creation of powerful artificial
problem solving systems and (B) furthering
understanding of biological neural networks including
the human brain. Much effort has been made in both
areas and some progress has been realized. Thefield of
quantum computation [1], which has been completely
unrelated to that of neural networks until very recently,
applies ideas from quantum mechanics to the study of
computation and has made interesting progress. Most
notably, quantum algorithms for prime factorization
and discrete logarithms have recently been discovered
that provide exponential improvement over the best
known classical methods [2]. Recently some work has
been done in the area of combining classical artificial
neural networks with ideas from the field of quantum
mechanicsin pursuit of goal (A).

It is the purpose of this paper to further this
pursuit of goal (A), that is, to show the usefulness of
some ideas from the field of quantum mechanics (in
particular those of linear superposition and
coherence/decoherence) to that of artificial neural
networks in order to improve neural networks' abilities
as problem solving systems. Our approach is to
introduce a mathematical model of an artificial neuron
with quantum mechanical properties that allow it to
discriminate linearly inseparable problems using only
linear thresholding as its activation function.

2 Some Quantum ldeas

Quantum mechanics is in many ways extremely
counterintuitive and yet it has provided us with perhaps
the most accurate theory (in terms of predicting
experimental results) ever devised by science. The
theory is well established and is covered in its basic
form by many textbooks (see for example [3]). Severa
ideas from this theory that are necessary for the
following presentation must be briefly mentioned.

Linear superposition is closely related to the
familiar mathematical principle of linear combination.
For example, in a vector space with bases x and y, any
vector v can be defined asv = ax + by. In some sensev
can be thought of as being both x and y at the same
time. In quantum mechanics, this principle actually
applies to physical variables in physical systems. The
vector space is generalized to a Hilbert space whose
bases are the classical values normally associated with
the system. For example, the position of an electron
orbiting a nucleus is usually a superposition of all
possible positions in 3-d space, where each possible
position is a basis state for the Hilbert space and has a
finite probability of being the actual position. One of
the most counterintuitive aspects of quantum theory is
this -- at the quantum or microscopic level, the electron
is not in any one position in an orbit, but it isin a
superposition of all of them at once. In some sense it
isin al positions at the same time. However, at the
macroscopic or classical level, the location of the
electron is a single definite position in 3-d space. This
apparent contradiction is still not fully understood, but
it is explained as follows. A quantum mechanical
system remains in a superposition of its basis states
until it interacts with its environment.

Coherence/decoherence is related to the idea of
linear superposition. A quantum system is said to be
coherent if it isin a linear superposition of its basis
states. As mentioned above, a result of quantum
mechanics is that if a system that is in a linear
superposition of states is observed or interacts in any



way with its environment, it must instantaneously
choose one of those states and “ collapse” into that state
and that state only. This collapse is called
decoherence and is governed by the wave function V.
Just as the basis states of the Hilbert space have a
physical interpretation (as the classical values
associated with a system), so too does the amplitude of
the wave function ¥ describing the system. This wave
function actually represents the probability amplitudes
(in the complex domain) of all bases (possible
positions, etc.) such that the probability for a given
basis (position, etc.) is given by [V

Operators are a mathematical formalism used to
describe how one wave function is changed into
another. They are analogical to matrices operating on
vectors. Using operators, an eigenvalue equation can
be written A¢; =a¢;. The solutions ¢; to such an
equation are called eigenstates and are the basis states of
a Hilbert space. In the quantum formalism, all
properties (position, momentum, spin, etc.) are
represented as operators whose eigenstates are the
classical values normally associated with that property.

3 Related Work

To date, very little has been done in combining the
fields of quantum mechanics and neural networks.
However, afew notable exceptions do exist. Perus has
published an interesting set of mathematical analogies
between the quantum formalism and neural network
theory [4]. Menneer and Narayanan have proposed a
model weakly inspired (their term) by the “many
worlds’ interpretation of quantum mechanicsin which a
network is trained for each instance in the training set
and the final network is a superposition of these [5].
Finally, Behrman et. al. have developed a novel
approach to implementing a quantum neural network
using quantum dots [6]. It uses a quantum dot for each
input and the system is alowed to evolve quantum
mechanically through time while being observed (and
thus forced to decoher) at fixed time intervals.
Interestingly, the different time slices act as the neurons
in a hidden layer of a neural network -- the more time
dlices, the more hidden layer neurons. Perhaps most
notably, Behrman et. al. have actually implemented
this quantum dot neural network and give results for its
learning several two input boolean functions.

4 Quantum Neuron

The simplest classical artificial neuron is the
perceptron that takes as input n bipolar (or binary)
values, {ij}. It is defined as a weight vector w = (wy,
Ws, ..., W,)T, a threshold 6 and an output function f
where

n
1 if Ywiii>0
f= 2> @
-1 otherwise

This neuron model is well understood, but it is
mentioned for several reasons. First, it cannot solve
problems that are not linearly separable, and second,
though this classical perceptron is extremely simple
and well understood, this will not be the case for its
guantum counterpart and thus it is important to start
with the very simplest concepts as quantum ideas are
incorporated.

We now define a simple quantum analog to the
perceptron, which also takes asinput {ij}. Itissimilar
in all respects to the classic perceptron except that the
single weight vector w, is replaced by a wave function,
Y(w,t) in a Hilbert space whose basis states are the
classical weight vectors. Thiswave function represents
the probability amplitude (in general this is a complex
wave as opposed to areal one) for all possible weight
vectors in weight space together with the
normalization condition that for any timet

[|¥|°dw=1. @
Thus, the weight vector of the perceptron is replaced
with a quantum superposition of many weight vectors
which on interaction with its environment will decoher
into one classical weight vector, according to the
probabilities given by [¥[2.

For example, consider the one-input, one-output
bipolar function that inverts its input (NOT). For
convenience the weights will be bounded such that

- <Wj < T 3
In order for a quantum neuron to learn this function,
Y(w,t) and &6 must be found. We assume that ¥ is
time-invariant and concentrate only on w, which isin
this case a one-dimensional vector. Because of the strict
bounds given in (3), finding ¥ is equivalent to solving
the one-dimensional rigid box problem common to
most elementary treatments of quantum mechanics,
whose solutions are of the form

P(w,) = As n(%wo). @



Here A is a normalization constant that can be found
using (2), n =1, 2, 3, ..., Wy is the single element of
w, and a is the width of the box (in general thisis 2m,
but the width may be altered to be smaller).

Inverse

¥ = Asin(wo)

Figure 1. Solutions for one-dimensional NOT function

Figure 1 shows a graph of one ¥ for the one-input
bipolar NOT function, and for comparison figure 2
shows a solution for another one-input bipolar
function, TRUE (the extra m term shifts the function,
which is necessary since the general solution (4)
assumes for convenience that the left hand side of the
box occurs at 0). To understand what these graphs
represent, it must be realized that they are graphs in
weight space and that ¥ is the probability amplitude
for a given weight vector w. In a quantum neuron the
weight vectors exist in coherent superposition of all
possible classical weight vectors in weight space with
non-zero probability amplitude.

¥ = Asin[(wot+ )/ 2]

True

Figure 2. Solutions for one-dimensional TRUE function

When the superposition of weight vectorsinteracts
with its environment (for example when it encounters
an input) it must decoher into one basis state -- a
classical weight vector within the bounds enforced in
(3) -- and this decoherence occurs with probability
governed by [¥|2. Notethat in the case of these simple
functions, no matter what weight vector is chosen at
decoherence, it will result in the correct output.

Now consider the more complicated two-input
XOR problem, which is of course, not linearly
separable. Using a similar argument for that of the
one-dimensional case, it is not surprising to find that

the solutions to problems with two-dimensional weight
spaces are equivalent to those of the two dimensional

rigid box

¥ (wo,w.) = Asin(e”

a
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where the variables and constants have the same
meanings as in (4) with the added note that now there

aretwo different n's, one for each weight.
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Figure 3. Plot of ¥ for the XOR problem

Figure 3 shows a contour plot of one such
solution, rotated by 45°. Note again that this is a
graph of ¥, the probability amplitude, whereas the

probability, [¥[2, is what is really important.
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Figure 4. Plot of |¥|? for the XOR problem



Also notice that its contour plot (figure 4) gives two
solutions with maximal probability, at (n/2, n/2) and
at (-n/2, -n/2). It is aso important to note that the
nodal line that exists at wy = -w, in figure 3 ensures
that no solutions exist on this line which must be the
case in order to learn the function. Finally note that
since the quantum neuron maintains a coherent
superposition of weights, it can solve non-linearly
separable problems.

Of course, these examples are simple and their
solutions are simple. Even in the general case
however, the solutions will always be equivalent to
those of an n dimensional rigid box so that ¥ will
aways be of the general form introduced above. This
need not be true, however, if other physical models,
such as the non-rigid box, simple harmonic oscillator,
hydrogen atom, etc. are be considered. Further, the
time variable has not been incorporated into the
equations. Another important topic is training of the
neuron, which entails changing the wave function V.
Since ¥ is governed by the (time-independent for now)
Schrodinger equation,

VZ‘P:Zh—T[U - E]¥, (6)

note that the only variable that may be changed is the
potential, U. Therefore ¥ may be changed by
changing U.

The n’s introduced in (4) and (5) are termed
quantum numbers and play an important role in
guantum mechanics. Further investigation of their role
with regards to quantum neuronsis needed. A series of
classification operators that ensures appropriate wave
function decoherence is also required. For example, in
the XOR problem, two of the possible input patterns,
(-1,1) and (1,-1), are correctly classified using any of
the superposed weight vectors; however, for the other
two input patterns, (-1,-1) and (1,1), this is not the
case. The necessary operators for the quantum neuron
will be analogical to a matrix form of the input vector.
The operator associated with the input vector (-1,-1)
must greatly decrease the probability amplitude (and
thus the probability) for all the negative weight vectors
and correspondingly increase the amplitudes for the
positive weight vectors. The operator associated with
the input vector (1,1) must do the opposite.

5 Concluding Remarks
Though many of these topics are beyond the scope
of this paper, it has been demonstrated that the

application of quantum mechanical ideas to the field of
neural networks is a fertile area for further research.
This includes development of a learning algorithm for
the quantum neuron, further investigation of the
classification operators, and theoretical analysis of the
guantum neuron’s capabilities. Further, the idea of
linear superposition may be applied not only to the
weight vector of a neuron, but also to its inputs, its
output, and its activation function, among other things.
See [7] for an application to the problem of choosing
useful features from the exponentially large set of
possibilities.  Also, other quantum mechanical
concepts such as the quantum nature of energy, spin,
momentum, etc. and EPR phenomenon may find
application asthisfield is explored further.
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