
Learning as Optimization

A Dissertation
Presented to the

Department of Computer Science
Brigham Young University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

c© Kevin S. Van Horn 1994
by

Kevin S. Van Horn
August 1994

This dissertation by Kevin S. Van Horn is accepted in its present form by the
Department of Computer Science of Brigham Young University as satisfying the dis-
sertation requirement for the degree of Doctor of Philosophy.

Tony Martinez, Committee Chairman

Douglas Campbell, Committee Member

William Barrett, Committee Member

Date David Embley, Graduate Coordinator

ii

Acknowledgments

This research was supported by grants from Wordperfect and Novell, and by the
financial assistance of the BYU Computer Science Department. My thanks go to
them for helping me to keep my family fed.

Thanks are also due to Dr. Douglas Campbell for teaching me more about technical
writing than I have learned from anyone else; Dr. William Barrett for the insights
and perspective gained from his Pattern Recognition class; and Dr. Tony Martinez
for his support and encouragement as an advisor.

Finally, I would like to thank several people whose encouragement was crucial:
Dr. James Kajiya, whose expression of confidence in me as a graduate student at
Caltech stayed with me through the years; Dr. Alain Martin, whose positive remarks
encouraged me when I decided to return to school; and most importantly my wife
Emma, who believed in me when I did not believe in myself, persuaded me to go back
to school even though it would mean economic hardship, and has provided invaluable
moral support throughout my time at BYU.

iii

Contents

1 Introduction 1

2 Theoretical Background 3
2.1 Review of Computational Complexity 3
2.2 The PAC Model . 5

2.2.1 The Unstratified PAC Model 5
2.2.2 A Strategy for Unstratified PAC Learning 6
2.2.3 The Stratified PAC Model . 8

3 Extending Occam’s Razor 10
3.1 Introduction . 10
3.2 Haussler’s Generalization of the PAC Model 10
3.3 Summary of Sample-Complexity Results 12
3.4 Proof of Sample-Complexity Result 14
3.5 Loose Occam Algorithms . 20

4 The Minimum Feature Set Problem 25
4.1 Introduction . 25
4.2 Benefits of Minimization . 26
4.3 The complexity of minimization . 27

5 Robust Learning with Linear-Threshold Functions 31
5.1 Introduction . 31
5.2 Robust Learning and Minimization 31
5.3 Limited Degradation and Halfspaces 33
5.4 Acknowledgments . 41

6 Decision Trees and Rule Lists 42
6.1 Decision Trees . 42
6.2 Rule Lists . 45
6.3 Generating Test Problems . 48

6.3.1 BRGEN0 . 49
6.3.2 BTGEN . 51
6.3.3 BRGEN1 . 52
6.3.4 NRGEN . 52

iv

6.3.5 LRGEN . 56
6.3.6 Irrelevant Attributes . 56

7 Rule Induction 58
7.1 Overview of BBG . 58

7.1.1 Algorithm GREEDY . 58
7.1.2 Trading Off Empirical Risk and Hypothesis Size 59
7.1.3 Instances and Primitive Tests 60

7.2 Implementation of BESTRULE . 61
7.2.1 Parameters . 62
7.2.2 Search Tree Structure . 62
7.2.3 Good and Bad Examples . 63
7.2.4 Dominance . 66
7.2.5 Choosing a test on which to expand 68
7.2.6 Computing the Upper Bound 70
7.2.7 Node Evaluation . 74
7.2.8 Updating cap, hclass, and z 75
7.2.9 Search control . 75

7.3 Evolution of BBG . 80
7.4 Results . 81

7.4.1 Overview of C4.5 and CN2 . 81
7.4.2 Results for BBG0 . 82
7.4.3 Results for BBG6 on UC Irvine data sets 83
7.4.4 Results for BBG6 on Synthetic Data 85

8 Conclusion 95
8.1 Summary . 95
8.2 Further Research . 97

8.2.1 Inconsistent Training Samples 98
8.2.2 Continuous Attributes . 98

v

Learning as Optimization

Kevin S. Van Horn
Department of Computer Science

Ph.D. Degree, August 1994

ABSTRACT

This dissertation is concerned with inductive learning from examples, and the
reduction of learning problems to associated optimization problems. The emphasis
is on learning to classify. Theoretical results include (1) examining the application
of Occam’s Razor in a general learning setting; (2) investigating two optimization
problems associated with learning using linear threshold functions, and showing it
to be NP-hard to even approximate them to within a constant factor; and (4) a
comparison of the expressive power of decision trees and rule lists.

Practical results include a number of methods of randomly generating learning
problems on which to compare learning algorithms, and a new rule induction algo-
rithm called BBG. The problem generators allow one to see how a learning algorithm’s
performance varies as various parameters such as number of examples, size of target
hypothesis, or noise level are varied. BBG learns rule lists by combining the greedy
choice of the best new rule to insert into the current rule list with a branch-and-bound
algorithm to find this best new rule.

COMMITTEE APPROVAL:
Tony Martinez, Committee Chairman

Douglas Campbell, Committee Member

William Barrett, Committee Member

David Embley, Graduate Coordinator

Chapter 1

Introduction

This dissertation is concerned with machine learning, in particular inductive learning
from examples. Roughly speaking, the problem of inductive learning is the following:
given a collection of examples (x, y) drawn from some probability distribution D over
X × Y , construct a function h : X → Y that predicts well the value of y given x
when (x, y) is drawn from D. (As we will see in Chapter 3, the problem of inductive
learning can be phrased in even more general terms than this.)

During the last decade the field of computational learning theory has developed
considerably, providing guidelines for inductive learning and worst-case analyses of
learning algorithms. This work has shown how inductive learning problems can be
reduced to problems of combinatorial optimization. This provides the pervading
theme of this dissertation: reducing learning problems to optimization problems,
analyzing those optimization problems, and developing heuristic approaches to the
required (approximate) optimization.

Chapter 2 provides the necessary theoretical background and introduction to com-
putational learning theory, emphasizing the PAC model. An important concept here
is the notion of the VC dimension of a hypothesis space; a smaller VC dimension
gives a smaller bound on the number of training examples needed to achieve a given
level of error in learning. Among other things, Chapter 2 discusses the notion of an
Occam algorithm, which is an application of the Occam’s Razor principle to the PAC
model. Most of these results are due to Blumer et al. [6].

Chapter 3 discusses Haussler’s extension of the PAC model. Haussler’s model
is a very general learning model covering many interesting learning situations not
covered by the PAC model. Chapter 3 then gives my results on applying a version
of Occam’s Razor to Haussler’s model, producing results similar to those already
obtained for Occam Algorithms under the more restricted PAC model. These results
make use of what I call loose empirical risk minimization (ERM) algorithms. An
alternative approach would be to use what I call loose Occam algorithms, which are
a generalization of Occam algorithms. The last part of the chapter shows that, under
some weak conditions, for every polynomial-time loose ERM algorithm there is an
equivalent polynomial-time loose Occam algorithm, and vice versa.

Chapter 4 looks at reducing the number of examples needed for learning a linear
threshold function (a.k.a. perceptron or single-layer neural net) by trying to minimize

1

the number of non-zero weights used. It examines two relevant issues. First a bound
is given on the VC dimension of the set of linear-threshold functions that have non-
zero weights for at most s of n inputs. Second, it is shown that the problem of
minimizing the number of non-zero input weights used (without misclassifying any
training examples) is not only NP-hard, it cannot even be approximinated to within
any constant factor unless P = NP.

Chapter 5 discusses a minimization problem related to learning linear threshold
functions in the presence of noise, or learning linear-threshold approximations to
arbitrary functions; among other things, it is shown that this minimization problem,
and several weakened versions of it, cannot be approximated to within any constant
factor unless P = NP. Thus the learning problem of approaching the minimum
error achievable with a linear threshold function cannot be approximated to within
any constant factor c in polynomial time, no matter how large c is chosen, unless
P = NP.

Chapter 6 discusses decision trees and rule lists, quantifying the oft-observed ex-
pressive advantage of rule lists. It also discusses methods for randomly generating
learning problems whose underlying structure is best described by a decision tree or
rule list. The advantage of such synthetic problems is that we can see how the average
misclassification error of a learning algorithm varies as we vary parameters such as
the number of examples, noise level, or size of the defining decision tree or rule list.

Chapter 7 discusses a heuristic approach to learning with rule lists, called BBG.
BBG combines the greedy choice of the best new rule to insert into the current rule list
with a branch-and-bound algorithm to find this best new rule. BBG is compared with
the C4.5 and CN2 rule induction algorithms both on data sets drawn from the UC
Irvine Repository of Machine-Learning Databases, and on data sets generated using
the problem generators of Chapter 6. BBG is found to have a marked advantage for
problems that require the full expressive power of rule lists and have even a little noise,
and to be competitive with the best of C4.5 and CN2 in most other circumstances.

Chapter 8 reviews the results of this dissertation and outlines directions for further
research.

2

Chapter 2

Theoretical Background

This chapter presents the basics of computational learning theory, as applied to in-
ductive learning from examples. This material will be used in Chapters 3, 4, and
5.

2.1 Review of Computational Complexity

This section defines some complexity classes which we will make use of later. It
is assumed that the reader already has some familiarity with the basic notions of
computational complexity theory, and merely needs some review and an introduction
to some of the less commonly-used complexity classes. The material in this section is
taken from [13] and [28].

Definition 2.1 A language L (set of strings over some finite alphabet) is computed
by an algorithm A if, on input x, A outputs true when x ∈ L and false when x /∈ L.

Definition 2.2 We say that an algorithm runs in polynomial time if its worst-case
execution time is bounded by a polynomial ld in the size l of the input. (The size of
an input x is the length of the string of symbols representing x.) P is the set of all
languages computable by a polynomial-time algorithm.

If L /∈ P then, although L may be computable in principle, it is not practically
computable, as the execution time increases too rapidly with the size of the input.

Definition 2.3 RP is the set of all languages L computable by a probabilistic algo-
rithm A with the following properties:

• If x ∈ L then Pr[A(x) = true] ≥ 1/2.

• If x /∈ L then A(x) = false.

• The worst-case execution time of A(x) is bounded by a polynomial in the size
of x.

(A probabilistic algorithm is allowed to make random choices.)

3

Although A above has only a probability 1/2 of getting the right answer when
x ∈ L, we can gain greatly increased reliability at little additional cost by simply
running A multiple times. In particular, let A′(x, n) be the algorithm that runs A on
x for n times, then outputs true if A(x) ever returns true and false if A(x) always
returns false. Then A′ has the following properties:

• If x ∈ L then Pr[A′(x, n) = true] > 1 − (1/2)n.

• If x /∈ L then A′(x, n) = false.

• The worst-case execution time of A′(x, n) is bounded by a polynomial in n and
the size of x.

Thus membership in RP is almost as good as membership in P.

Definition 2.4 If T (n) is a function from the positive integers to the positive inte-
gers, then DTIME[T (n)] is the set of all languages computable by an algorithm whose
worst-case execution time is O(T (n)), where n is the size of the input.

For example, if L ∈ P then L ∈ DTIME[nk] for some k.

Definition 2.5 NP is the set of all languages verifiable in polynomial time. That is
to say, L ∈ NP iff there exists a total function v with the following properties:

• If x ∈ L then there exists some y such that v(x, y) = true.

• If x /∈ L then there does not exist any y such that v(x, y) = true.

• v(x, y) is computable by an algorithm whose worst-case execution time is bounded
by a polynomial in the size of x only.

It is easily shown that P ⊆ RP ⊆ NP. In decreasing order of confidence, it is
generally believed that P 6= NP, RP 6= NP, and P 6= RP, but none of these has been
proven. Nevertheless, if one can show that some computational problem cannot be
solved in polynomial time unless P = NP (or RP = NP), this is generally considered
very good evidence that the problem is intractable.

Definition 2.6 Let L1 and L2 be two languages. A polynomial transformation from
L1 to L2 is a function τ with the following properties:

• There is a polynomial-time algorithm for computing τ .

• For all x, x ∈ L1 iff τ(x) ∈ L2.

Suppose there is a polynomial transformation from L1 to L2. Then L2 ∈ P implies
L1 ∈ P, and L2 ∈ RP implies L1 ∈ RP, since one can determine if x ∈ L1 by first
computing τ(x) and then running the polynomial-time algorithm for L2 on the result.

Definition 2.7 A language L is NP-complete if L ∈ NP and for every L′ ∈ NP there
is a polynomial transformation from L′ to L.

4

If any NP-complete language can be computed in polynomial time, then all lan-
guages in NP can be computed in polynomial time, i.e. P = NP. Thus if we can show
that a language is NP-complete, this is considered strong evidence that it cannot be
computed in polynomial time. The usual way of proving that a language L is NP-
complete is to construct a polynomial transformation from some known NP-complete
problem to L.

Definition 2.8 A computational problem is said to be NP-hard if any polynomial-
time algorithm for solving it can be used as a subroutine to obtain a polynomial-time
algorithm for computing an NP-complete language.

For brevity’s sake the above definition is a bit vague, but it will suffice for our
purposes. The important point is that an NP-hard problem cannot be solved in
polynomial time unless P = NP. Note the difference between NP-complete and NP-
hard: an NP-complete problem has only yes/no answers (is the string in the specified
language?) and must belong to NP; an NP-hard problem, on the other hand, need
not have only yes/no answers and need not belong to NP, as long as it is at least as
hard to solve as computing an NP-complete language.

2.2 The PAC Model

We now discuss the PAC model of learning. The PAC (probably approximately
correct) model of learning [6, 23, 32, 39] was first introduced by Valiant [39]. There
are a number of variants of the model which have been proven to be essentially
equivalent [19]; the variant presented here is a slightly simplified version of the one
presented in [6]. The problem addressed by the PAC model is that of learning a
Boolean function.

2.2.1 The Unstratified PAC Model

The simplest form of the PAC model we call the “unstratified” PAC model, for reasons
that will be clear later. Its elements are the following:

• An instance space X.

• A hypothesis space H over X. H is a set of Boolean functions with domain X.

• An unknown target function f ∈ H which is to be learned.

• An unknown probability distribution D governing the frequency of occurrence
of elements of X.

• A sequence of training examples zi = (xi, f(xi)), where the xi are randomly
and independently chosen according to D. This sequence is called the training
sample.

5

An algorithm A for learning H takes the training sample z as input, and outputs
a hypothesis h ∈ H . Note that since z is randomly chosen, the output hypothesis
h = A(z) is in general defined only probabilistically, even if A is deterministic. Thus
we do not require A to be deterministic; instead we allow A to make random choices.

Definition 2.9 The error of a hypothesis h ∈ H , denoted err(h), is defined as the
probability that h(x) 6= f(x) (h misclassifies x) when x is drawn at random from the
distribution D.

Definition 2.10 The sample complexity S(ǫ, δ) of an algorithm for learning H is the
worst-case number of examples needed to have probability 1−δ or better of returning
a hypothesis with error at most ǫ, when f may be any element of H and D may be
any distribution over X.

It is often the case that the instance space X is implicitly parameterized; thus we
actually have a family of instance spaces X [n] and associated hypothesis spaces H [n],
indexed by n. For example, we might have X [n] = {0, 1}n and H [n] defined as the
set of all linear threshold functions on X [n]. In this case the sample complexity of a
learning algorithm should also be considered a function of n. We will often leave such
a parameterization implicit to avoid cumbersome notation.

A practical learning algorithm must have a sample complexity that does not grow
too quickly with ǫ−1, δ−1, and n, and its execution time must not grow too quickly
with the size of its input. This motivates the following definition.

Definition 2.11 A learning algorithm which runs in polynomial time, and whose
sample complexity is bounded by a polynomial in ǫ−1, δ−1, and n, is called a polyno-
mial algorithm for learning H.

2.2.2 A Strategy for Unstratified PAC Learning

Definition 2.12 A hypothesis h ∈ H is consistent with a training sample z if h(xi) =
yi for all examples zi = (xi, yi). We say that a learning algorithm uses H consistently
if it returns a hypothesis h ∈ H that is consistent with the training sample given it,
whenever such an h exists.

Under certain circumstances a learning algorithm can achieve an acceptable sam-
ple complexity simply by using H consistently. This happens when H has a small
enough VC dimension, a notion that we now define.

Definition 2.13 Let H be a hypothesis space over X. For any finite I ⊆ X we
define

ΠH(I) = {h ∩ I : h ∈ H},
where we regard the elements of H as subsets of X. Note that each h ∈ H defines a
dichotomy of I, partitioning it into I ∩ h and I − I ∩ h. ΠH(I) can then be thought

6

of as the set of such dichotomies on I defined by elements of H . For any integer m,
1 ≤ m ≤ |X|, we define

ΠH(m) = max
I⊆X,|I|=m

|ΠH(I)|.

ΠH(m) is just the maximum number of ways a set of m elements of X can be di-
chotomized by elements of H .

Note that ΠH(m) ≤ 2m, since an m-element set has only 2m distinct subsets.

Definition 2.14 Let H be a hypothesis space over X. The Vapnik-Chervonenkis
dimension of H , denoted VCdim(H), is the largest integer m s.t. ΠH(m) = 2m. In
other words, VCdim(H) is the cardinality of the largest subset of X which can be
arbitrarily dichotomized by elements of H .

Note that the VC dimension of any finite hypothesis space H is at most log2 |H|.
When this bound is tight, the VC dimension of H may be viewed as the number
of bits required to specify an arbitrary hypothesis in H . Other hypothesis spaces
are infinite but specified by a finite number of real-valued parameters, and their VC
dimension is related to the number of parameters. For example, the set of all linear
threshold functions of n inputs has VC dimension n+ 1 [6].

If the VC dimension of H [n] grows polynomially in n, then any polynomial-time
learning algorithm that uses H consistently is a polynomial algorithm for learning H .
In particular, we have the following theorem [6]:

Theorem 2.1 Let hypothesis space H have finite VC dimension. Then any learning
algorithm that uses H consistently has sample complexity

O(ǫ−1(VCdim(H) log ǫ−1 + log δ−1)).

It may be that there is no polynomial algorithm for learning H , even if VCdim(H)
is finite and is bounded by a polynomial in n. This can happen if the problem of
finding a consistent hypothesis is intractable.

The following result is shown in [24, 34]:

Definition 2.15 The consistency problem for H is the following:
Input: A sequence z of examples.
Question: Does there exist a hypothesis h ∈ H that is consistent with z?

Theorem 2.2 If RP 6= NP and the consistency problem for H is NP-hard, then
there is no polynomial algorithm for learning H .

7

2.2.3 The Stratified PAC Model

Theorem 2.1 suggests that the larger the VC dimension of a hypothesis space, the
harder it is to learn. In many interesting cases the VC dimension ofH is either infinite
or excessively large. To handle this problem we resort to a stratified hypothesis space.

Definition 2.16 A stratified hypothesis space on X is a (possibly infinite) sequence
of hypothesis spaces (Hi)i≥1 such that Hi ⊆ Hi+1 for all i. We write H for either
⋃

iHi or (Hi)i≥1, and rely on context to disambiguate the usage.

The purpose of stratifying the hypothesis space is to introduce a simplicity bias
into our learning methods. Work in machine learning often makes use of the Occam’s
Razor principle: given two explanations of the data, all other things being equal,
the simpler of the two is preferable. Occam’s Razor can be applied once we have a
measure of the complexity of a hypothesis. Such a measure is obtained by choosing
some means of representing hypotheses, and defining the complexity of a hypothesis
in terms of the size of its smallest representation. For example, choosing X = {0, 1}n

we could let H be the set of all Boolean functions on X, and define the size of h ∈ H
to be the number of literals in the smallest sum-of-products formula for h. We can
then define Hi to be the set of h ∈ H of size at most i.

If we knew in advance the size s of the target function, we could simply apply the
method of Section 2.2.2 using Hs for the hypothesis space H of that section. The
sample-complexity bound thus obtained depends on VCdim(Hs), which increases as
s increases. Thus we modify the definition of sample complexity and of a polynomial
learning algorithm to take the size of the target into account.

Definition 2.17 The sample complexity S(ǫ, δ, s) of an algorithm for learning a strat-
ified hypothesis space H is the worst-case number of examples needed to have prob-
ability 1− δ or better of returning a hypothesis with error at most ǫ, when f may be
any element of Hs and D may be any distribution over X.

As before, if the instance space is implicitly parameterized by a variable n, we will
consider the sample complexity to be also a function of n.

Definition 2.18 Let H be a stratified hypothesis space. A learning algorithm for
H which runs in polynomial time, and whose sample complexity is bounded by a
polynomial in ǫ−1, δ−1, s, and n, is called a polynomial algorithm for learning H.

Blumer et al. [6] show that learning with a stratified hypothesis space can be
done by approximately solving the following optimization problem: find the smallest
hypothesis that is consistent with the training sample.

Definition 2.19 Let 0 ≤ a < 1 and let p(s) ≥ 1 be a function bounded from above by
a polynomial in s. Let H be a stratified hypothesis space and b(s,m) be some function
satisfying VCdim(Hb(s,m)) ≤ p(s)ma. Suppose A is an approximation algorithm that
is guaranteed to return a hypothesis h ∈ H of size at most b(s,m), consistent with
the m training examples input to A, whenever there exists a consistent hypothesis
h′ ∈ H of size s. Then we call A an Occam algorithm for H , with bound p(s)ma.

8

Theorem 2.3 [6] Any Occam algorithm forH with bound p(s)ma serves as a learning
algorithm with sample complexity

O
(

ǫ−1 log δ−1 + (p(s)ǫ−1 log ǫ−1)
1

1−a

)

.

Note that exact minimization is not needed — even a quite weak approximation
algorithm can give us a polynomial algorithm for learning a stratified hypothesis
space.

9

Chapter 3

Extending Occam’s Razor

3.1 Introduction

In Section 2.2.3 we discussed the application of Occam’s Razor, in the form of Occam
algorithms, to learning under the PAC model. The PAC model, however, has a num-
ber of limitations. It assumes that the problem is to learn the correct classification
of instances, and that some member of the given hypothesis space correctly classifies
all instances. This rules out problems such as learning real-valued functions, proba-
bility distributions, class probability distributions as a function of the instance to be
classified, and the Bayes-optimal classifier in a stochastic setting.

Haussler [18] has generalized the PAC model to deal with these situations and
others. In this chapter I prove, for Haussler’s model, an analog of Theorem 2.3
(sample complexity for Occam algorithms). The approach I analyze is essentially the
“hold-out” method often used in applied statistics. That is, one tries to minimize the
empirical risk (a measure of error on the training sample) with different bounds on
the complexity of the hypotheses to be considered, then one uses a separate hold-out
set to choose the best complexity bound. As with Theorem 2.3, attention is paid to
avoiding exact minimization and its attendant intractability — a limited increase in
hypothesis complexity is allowed over what is strictly needed to attain a given level of
empirical risk. We obtain sample complexity bounds similar to those of Theorem 2.3,
but for Haussler’s more general learning model.

The approach analyzed here uses what I have called a loose empirical risk mini-
mization algorithm. An alternate approach would be to use what I call a loose Occam
algorithm, where one tries to minimize hypothesis size with different upper bounds
on allowed empirical risk, then uses a separate hold-out set to choose the best risk
bound. The chapter concludes by showing that, under some reasonable assumptions,
the two approaches have equivalent computational complexities.

3.2 Haussler’s Generalization of the PAC Model

Haussler [18] has extended the PAC model to handle more general learning situations.
The elements of his model are the following:

10

• An instance space X.

• An outcome space Y .

• A decision space Y ′.

• A hypothesis space H of functions h : X → Y .

• An assumption space A of probability distributions over X × Y .

• An unknown target D ∈ A which determines the frequency of occurrence of
instances x ∈ X and their outcomes y ∈ Y .

• A sequence of training examples zi = (xi, yi), where the zi are randomly and
independently chosen according to D. This sequence is called the training sam-
ple.

• A loss function l : Y ′×Y → [0,M] (for some M > 0). l(y′, y) is the loss incurred
when a hypothesis outputs y′ for an instance x whose outcome is y.

The PAC model can be considered a special case of this model, with Y = Y ′ = {0, 1},
l(y′, y) = 1 if y′ 6= y and 0 otherwise, and A being the set of all distributions over
X × Y satisfying Pr[y = f(x)] = 1 for some f ∈ H .

Definition 3.1 The risk r(h) of a hypothesis h ∈ H is the expected value of l(h(x), y)
when (x, y) is drawn at random from the distribution D.

A learning algorithm takes training examples drawn from this same distribution
D. The goal of learning is to find a hypothesis whose error is close to the minimum
possible for hypotheses from H .

Haussler defines sample complexity in terms of the following family of metrics on
the real numbers:

Definition 3.2 For any real ν > 0, dν is a measure of relative distance defined by

dν(r, s) =
|r − s|
ν + r + s

for any r, s ≥ 0.

Note that the condition dν(r, s) ≤ α is equivalent to

(

1 − α

1 + α

)

r − αν

1 + α
≤ s ≤

(

1 + α

1 − α

)

r +
αν

1 − α
;

for small α this says that s differs from r by at most a multiplicative factor of about
1 + 2α and an additive term of αν.

11

Definition 3.3 The sample complexity S(α, ν, δ) of a learning algorithm is the worst-
case number of examples needed to have probability 1 − δ or better of returning a
hypothesis h ∈ H satisfying

dν(r(h), inf{r(h′) : h′ ∈ H}) ≤ α,

when the target distribution may be any D ∈ A.

The literature contains no analog, for Haussler’s model, of the Occam algorithm
result of Theorem 2.3. (Nor does it contain such an analog for the simpler PAC
extensions of simply allowing stochastic targets or targets not in the hypothesis space.)
There are, however, useful sample complexity results for the case that H has a finite
pseudodimension. The pseudodimension of H , denoted pdim(H), depends on the loss
function l and may be considered a generalization of the VC dimension; in fact the two
are equal if the hypotheses of H are Boolean-valued and l(y′, y) = (y′ 6= y). (Note:
we abuse terminology by writing pdim(H) when we really mean pdim{fh : h ∈ H},
where fh(x, y) = l(h(x), y).) Details on the pseudodimension may be found in [18].

Definition 3.4 Given a sequence of examples z = (x1, y1), . . . , (xm, ym), the em-

pirical risk r̂(h; z) of a hypothesis h is the average loss of h on z, i.e. r̂(h; z)
def
=

1
m

∑m
i=1 l(h(xi), yi). We write r̂(h) when z is understood.

A learning algorithm is said to use empirical risk minimization [18, 42, 43] if it
returns a hypothesis whose empirical risk is the minimum possible for hypotheses
from H . Combining Lemma 1 and Theorem 7 of Haussler [18] gives this result: any
learning algorithm that uses empirical risk minimization has a sample complexity
that is

O((α2ν)−1(pdim(H) log(αν)−1 + log δ−1)). (3.1)

Note the similarity between this bound and that of Theorem 2.1: they are identical
except that pdim(H) replaces VCdim(H) and α2ν replaces ǫ.

3.3 Summary of Sample-Complexity Results

We begin with some definitions.

Definition 3.5 A dimension-stratified hypothesis space is a (possibly infinite) se-
quence of hypothesis spaces (Hi)i≥1 such that Hi ⊆ Hi+1 and pdim(Hi) ≤ i for all
i. We abuse notation and write H for either (Hi)i≥1 or

⋃

iHi. We define the size of
h ∈ H , denoted siz(h), to be min{i : h ∈ Hi}.

Definition 3.6 Let p(s) ≥ 1 be monotonic and polynomially bounded in s, 0 ≤ a <
1, and H be a dimension-stratified hypothesis space. We say that A is a loose ERM
(empirical risk minimization) algorithm for H , with bound p(s)ma, if

• A takes as input a sequence of examples z and an integer size bound i satisfying

1 ≤ i ≤ m
def
= |z|;

12

• If p(j)ma < i + 1 for some j s.t. Hj 6= ∅, then A outputs a hypothesis h ∈ Hi

satisfying r̂(h; z) ≤ r̂(h′; z) for all h′ ∈ H s.t. p(siz(h′))ma < i+ 1.

Thus a loose ERM algorithm loosens the requirements of empirical risk minimiza-
tion in hopes of making the problem tractable. Associated with each loose ERM
algorithm for H is a learning algorithm for H :

Definition 3.7 Let H be a dimension-stratified hypothesis space, A be a loose ERM
algorithm forH , 0 < c < 1, and 0 < ρ ≤ 1; then HO[A, c, ρ] is the following algorithm:

1. Input a sequence of examples z.

2. Split z into two sequences: z1 (the training sample), containing the first
⌊|z|/(1 + ρ)⌋ elements of z, and z2 (the test sample), containing the remain-

ing elements of z. Let m
def
= |z1|.

3. For all 1 ≤ i ≤ ⌊logm/ log(1/c)⌋, compute hi
def
= A(z1, ⌊mci⌋).

4. Output that hi minimizing r̂(hi; z2).

The above is essentially the “hold-out” method often used in applied statistics
(see [12], for example). Our contribution is to analyze the sample complexity of
HO[A, c, ρ] given the weakened requirement that A be a loose ERM algorithm (as
opposed to doing strict empirical risk minimization), and show that we get sample
complexity bounds analogous to those of Theorem 2.3.

We modify Haussler’s definition of sample complexity to take into account hy-
pothesis complexity by adding a size parameter s. We also need to take into account
the possibility that the hypothesis returned has size greater than s, and hence might
have a risk less than the minimum achievable by hypotheses from Hs.

Definition 3.8 d′ν(r1, r2)
def
= dν(r1,max{r1, r2}).

Definition 3.9 Let H be a dimension-stratified hypothesis space. The sample com-
plexity S(α, ν, δ, s) of a learning algorithm forH is the worst-case number of examples
needed to have probability 1 − δ or better of returning a hypothesis h satisfying

d′ν(inf{r(h′) : h′ ∈ Hs}, r(h)) ≤ α

when the target distribution may be any D ∈ D.

Our result is that if H is a dimension-stratified hypothesis space and A is a loose
ERM algorithm for H , with bound p(s)ma, then the learning algorithm HO[A, c, ρ]
has sample complexity

O((α2ν)−1 log δ−1 + ((α2ν)−1p(s) log(αν)−1)
1

1−a). (3.2)

Comparing this bound to that of Theorem 2.3, we see that they are the same
except that α2ν replaces ǫ and the pseudodimension replaces the VC dimension.

13

3.4 Proof of Sample-Complexity Result

Our proof will require some theorems from Haussler [18] and two lemmas. We will
assume throughout that M is a bound on the loss function for whatever hypothesis
space H is being discussed. The theorems from Haussler give sample complexity
bounds for hypothesis spaces of finite cardinality or finite pseudodimension.

Theorem 3.1 (Theorem 1 of [18].) LetH be a finite set of hypotheses; let a sequence
z of m examples be drawn randomly and independently from the distribution D; and
let ν > 0 and 0 < α < 1. Then

Pr[∃h ∈ H. dν(r̂(h; z), r(h)) > α] ≤ 2|H| exp(−α2νm/M).

For δ > 0 and m ≥ M(α2ν)−1(ln |H| + ln(2/δ)), this probability is at most δ.

Theorem 3.2 (Theorem 7 of [18].) Let H be a set of hypotheses with pdim(H) = s
(s finite); let a sequence z of m ≥ 1 examples be drawn randomly and independently
from the distribution D; and let 0 < ν ≤ 8M and 0 < α < 1. Then

Pr[∃h ∈ H. dν(r̂(h; z), r(h)) > α] ≤ 8
(

16eM

αν
ln

16eM

αν

)s

exp

(

−α
2νm

8M

)

,

where e is the base of the natural logarithm.

The following lemma is used to bound the risk of the hypothesis output by a loose
ERM algorithm.

Definition 3.10 We write lln (x) for ln(x ln x). Note that lln (x) = O(lnx).

Lemma 3.3 Let m be a positive integer and 0 ≤ a < 1; let H be a set of hypotheses
with pdim(H) ≤ sma; let a sequence z of m examples be drawn randomly and
independently from the distribution D; and let 0 < α < 1, δ > 0 and 0 < ν ≤ 8M .
Then

Pr[∃h ∈ H. dν(r̂(h; z), r(h)) > α] ≤ δ

whenever

m ≥ max

(

16M

α2ν
s lln

16eM

αν

)

1

1−a

,
16M

α2ν
ln

8

δ

. (3.3)

Proof. By Theorem 3.2 it suffices to show that

8
(

16eM

αν
ln

16eM

αν

)sma

exp

(

−α
2νm

8M

)

≤ δ

when the bound (3.3) on m holds. Taking logarithms of both sides of the above
inequality and rearranging yields

m ≥ 8M

α2ν

(

sma lln
16eM

αν
+ ln

8

δ

)

. (3.4)

14

From the bound (3.3) on m we have that

m

2
≥ 8M

α2ν
ln

8

δ
;

thus (3.4) will be satisfied if

m

2
≥ Bma where B

def
=

8M

α2ν
s lln

16eM

αν
,

which can be rewritten asm1−a ≥ 2B and then asm ≥ (2B)
1

1−a . This latter inequality
follows directly from (3.3). 2

The next lemma is used to bound the error incurred in step 4 of HO[A, c, ρ].

Lemma 3.4 Let ρ, C,m > 0; let H be a set of ⌊C lnm⌋ hypotheses; let a sequence z
of at least ρm examples be drawn randomly and independently from the distribution
D; and let α2ν ≤M/(3ρ); then

Pr[∃h ∈ H. dν(r̂(h; z), r(h)) > α] ≤ δ

whenever

m ≥ 2M

α2νρ
max

{

0.44 + ln ln
2M

α2νρ
, ln

2C

δ

}

(3.5)

Proof. By Theorem 3.1, the above-mentioned probability will be at most δ if

ρm ≥ M

α2ν
(ln(C lnm) + ln(2/δ)),

which can be rewritten as

m ≥ M

α2νρ
(ln lnm+ ln(2C/δ)).

This inequality in turn will hold if

m ≥ 2M

α2νρ
ln

2C

δ
(3.6)

and

m ≥ B ln lnm where B
def
=

2M

α2νρ
. (3.7)

From the bound (3.5) on m we see that (3.6) holds, so it remains only to show that
(3.7) holds. We shall use the fact that B ≥ 6, since α2ν ≤M/(3ρ) from the statement
of the lemma.

Let f(b)
def
= b ln(1.55 ln b). Since 0.44 > ln 1.55, we have by (3.5) that m > f(B).

In fact, m = f(b′) for some b′ > B, since f(b) is continuous and increasing for b > 1,

15

and f(b) → ∞ as b → ∞. Thus (3.7) holds if f(b) ≥ B ln ln f(b) for all b ≥ B; this
in turn holds if

f(b) ≥ b ln ln f(b) for all b ≥ 6 (3.8)

Defining g(b)
def
= b0.55/ ln(1.55 ln b), for all b ≥ 6 we have

f(b) ≥ b ln ln f(b) ⇔ 1.55 ln b ≥ ln(b ln(1.55 ln b)) ⇔ b1.55 ≥ b ln(1.55 ln b) ⇔ g(b) ≥ 1.

Writing sgn(x) for the sign of x and noting that 1.55 ln b > 1 for b ≥ 6, we have that

sgn(dg/db) = sgn(ln(1.55 ln b) · 0.55b−0.45 − b0.55 · (1.55 ln b)−11.55b−1)

= sgn(s(b)) where s(b)
def
= 0.55 ln(1.55 ln b) − (ln b)−1.

But s(6) > 0 and s(b) is an increasing function of b, so s(b) > 0 for all b ≥ 6. Hence
dg/db > 0 for all b ≥ 6. But g(6) ≃ 2.6 > 1, hence g(b) > 1 for all b ≥ 6. Thus (3.8)
holds, which means that (3.7) holds, and the theorem is proven. 2

We now mention some properties of dν and d′ν that we use in the proof of Theo-
rem 3.5. Haussler proves the following properties of dν :

1. dν is a metric on the nonnegative reals, i.e. dν(r, s) ≥ 0, dν(r, s) = 0 iff r = s,
dν(r, s) = dν(s, r), and dν(r, t) ≤ dν(r, s) + dν(s, t) (triangle inequality.)

2. dν is compatible with the ordering on the reals, i.e. if r ≤ s ≤ t then dν(r, s) ≤
dν(r, t) and dν(s, t) ≤ dν(r, t).

We state without proof the following easily-verified properties of d′ν :

1. If r2 ≤ r1 then d′ν(r1, r2) = 0.

2. 0 ≤ d′ν(r1, r2) ≤ dν(r1, r2).

3. d′ν(r1, r3) ≤ d′ν(r1, r2) + d′ν(r2, r3) (triangle inequality).

Finally, we are ready for the main theorem.

Theorem 3.5 Let H be a dimension-stratified hypothesis space; let S be a positive

integer and r0
def
= inf{r(h) : h ∈ HS}; let A be a loose ERM algorithm for H with

bound p(s)ma; let 0.05 ≤ c < 1 and 0 < ρ ≤ 1; let z be a sequence of m examples

drawn randomly and independently from the distributionD; let hout
def
= HO[A, c, ρ](z);

and let 0 < δ ≤ 1, 0 < α < 1, and 0 < ν ≤ 8M . Then

Pr[d′ν(r0, r(hout)) > α] ≤ δ (3.9)

whenever m ≥ (1 + ρ)(B + 1), where

B = max

55M

α2νρ

(

0.44 + ln ln
55M

α2νρ

)

,
55M

α2νρ
ln

2(C + 6)

δ
,
(

55M

α2νc
p(S) lln

81M

αν

)

1

1−a

and C = 1/ ln(1/c).

16

Before giving the proof, we have a few comments. Recall that HO[A, c, ρ] runs
A with various size bounds of the form ⌊mci⌋, where i goes from 1 to a maximum
value. The requirement 0.05 ≤ c < 1 merely says that the size bound decreases as i
increases, but not by more than a factor of 20 at each step. Recall also that A is run
on the first ⌊|z|/(1 + ρ)|⌋ examples, with the remaining examples used to choose the
best size bound. Thus the requirement 0 < ρ ≤ 1 says that at least (about) half —
but not all — of the examples are used as input to A. Finally, note that a, c, ρ, and
M are constants, lln (x) = O(lnx), and

ln ln
55M

α2νρ
= O

(

ln
1

αν

)

,

so that B = O((α2ν)−1 ln δ−1 + ((α2ν)−1p(S) ln(αν)−1)
1

1−a). (Compare with (3.2).)

Proof. If HS = ∅ then r0 = M , and the theorem trivially holds. So we assume
that HS 6= ∅. HO[A, c, ρ] is run with m∗ = ⌊(1 + ρ)−1m⌋ training examples and
m∗∗ = m−m∗ test examples. Since m ≥ (1 + ρ)(B + 1), we have that

m∗ ≥ ⌊(1 + ρ)−1(1 + ρ)(B + 1)⌋ = ⌊B + 1⌋ > B

and
m∗∗ = m−m∗ ≥ m− m

1 + ρ
=

ρ

1 + ρ
m ≥ ρ⌊(1 + ρ)−1m⌋ = ρm∗.

Thus it will suffice to show that (3.9) holds whenever steps 3 and 4 of HO[A, c, ρ] are
run with m∗ > B training examples and m∗∗ ≥ ρm∗ test examples. We will write z1

for the training examples and z2 for the test examples.
Viewing B as a function of α, we have that B(α) is continuous and decreasing in

α, and B(α) → ∞ as α → 0; hence m∗ > B(α) implies that m∗ = B(α∗) for some
α∗ < α. By the definition of r0 as an infimum, there are hypotheses h ∈ HS with risk
arbitrarily close to r0; in particular, there exists some h∗ ∈ HS with d′ν(r0, r(h∗)) ≤
α− α∗. By the triangle inequality for d′ν , it then suffices to show that

Pr[d′ν(r(h∗), r(hout)) > α∗] ≤ δ (3.10)

whenever steps 3 and 4 of HO[A, c, ρ] are run with m∗ = B(α∗) training examples
and m∗∗ ≥ ρm∗ test examples.

It will be useful to have a simpler lower bound on m∗. By the requirements that
ν ≤ 8M , α < 1 and c < 1 we have that 55M/(α2

∗νc) > 55/8 and lln (81M/(αν)) >
lln (81/8); hence using m∗ = B(α∗) we have

m∗ >
(

55

8
p(S) lln

81

8

)

1

1−a

> (21.6 p(S))
1

1−a (3.11)

Let us define the following:

• hi
def
= A(z1, ⌊m∗c

i⌋) for all 1 ≤ i ≤ ⌊C lnm∗⌋, as in the definition of HO[A, c, ρ].

• j
def
= max{i ∈ Z : m∗c

i ≥ p(S)ma
∗}.

17

• S ′ def
= ⌊m∗c

j⌋.

We wish to ensure that 1 ≤ j ≤ ⌊C lnm∗⌋, so that hj = A(z1, S
′) will be one of the

hypotheses considered in step 4 of HO[A, c, ρ]. We will have j ≥ 1 if m∗c ≥ p(S)ma
∗,

i.e. c ≥ p(S)ma−1
∗ . From (3.11) and the fact that a < 1 we have that

p(S)ma−1
∗ < p(S)(21.6 p(S))

a−1

1−a = 21.6−1;

but c ≥ 0.05 (from the statement of the theorem) > 21.6−1 > p(S)ma−1
∗ , so j ≥ 1.

For the upper bound on j, note that since m∗c
j ≥ p(S)ma

∗, we have

j ≤ ln(p(S)ma−1
∗)/ ln c = ln(p(S)−1m1−a

∗)/ ln(1/c) ≤ lnm∗/ ln(1/c)

(the last inequality uses p(S) ≥ 1, m∗ > 1, and a ≥ 0); but since j is an integer we
have

j ≤ ⌊lnm∗/ ln(1/c)⌋ = ⌊C lnm∗⌋.
By the triangle inequality for d′ν , we will have d′ν(r(h∗), r(hout)) ≤ α∗ if the fol-

lowing hold for appropriate positive values ai summing to 1:

1. d′ν(r(h∗), r̂(h∗; z1)) ≤ a1α∗;

2. d′ν(r̂(h∗; z1), r̂(hj; z1)) = 0;

3. d′ν(r̂(hj ; z1), r(hj)) ≤ a2α∗;

4. d′ν(r(hj), r̂(hj ; z2)) ≤ a3α∗;

5. d′ν(r̂(hj ; z2), r̂(hout; z2)) = 0;

6. d′ν(r̂(hout; z2), r(hout)) ≤ a4α∗.

Thus we prove (3.10) by showing that conditions 2 and 5 always hold, and that the
following hold for appropriate positive values fi summing to 1:

Pr[Condition 1 does not hold] ≤ f1δ
Pr[Condition 3 does not hold] ≤ f2δ
Pr[Condition 4 does not hold] ≤ f3δ
Pr[Condition 6 does not hold] ≤ f4δ.

(3.12)

By definition, r̂(hout; z2) ≤ r̂(hj; z2), so condition 5 holds. Since h∗ ∈ HS we have
siz(h∗) ≤ S, hence using the monotonicity of p and the definition of j,

p(siz(h∗))m
a
∗ ≤ p(S)ma

∗ ≤ m∗c
j < ⌊m∗c

j⌋ + 1 = S ′ + 1.

But hj = A(z1, S
′) and A is a loose ERM algorithm, so r̂(hj; z1) ≤ r̂(h∗; z1), and

condition 2 holds.
We now specify the values fi summing to 1 and ai summing to 1:

• f1 = f3 = (C + 6)−1, f2 = 4(C + 6)−1, and f4 = C(C + 6)−1.

18

• a1 = a3 = (6 +
√

2)−1, a2 = 4(6 +
√

2)−1, and a4 =
√

2(6 +
√

2)−1.

Using m∗ = B(α∗) and 55 > (6 +
√

2)2 we obtain

m∗ ≥
M

a2
1α

2
∗νρ

ln
2

f1δ
.

Now apply Theorem 3.1 with a singleton hypothesis set, a1α∗ for α and f1δ for δ;
then using the facts that ρ ≤ 1 and d′ν(r, s) ≤ dν(r, s) we obtain

Pr[Condition 1 doesn’t hold] ≤ f1δ.

Using a1 = a3 and f1 = f3 we also obtain

m∗ ≥
M

a2
3α

2
∗νρ

ln
2

f3δ
.

Since the choice of hj is independent of z2, and |z2| = m∗∗ ≥ ρm∗, we can again apply
Theorem 3.1 to obtain

Pr[Condition 4 doesn’t hold] ≤ f3δ.

Using m∗ = B(α∗), 55 > (6 +
√

2)2, 81 > 4e(6 +
√

2), and ρ ≤ 1, we obtain

m∗ ≥ max

(

16M

a2
2α

2
∗ν
c−1p(S) lln

16eM

a2α∗ν

)
1

1−a

,
16M

a2
2α

2
∗ν

ln
8

f2δ

Referring back to the definitions of j and S ′, we note that m∗c
j+1 < p(S)ma

∗ (recall
that 0 < c < 1), hence

S ′ = ⌊m∗c
j⌋ ≤ m∗c

j < c−1p(S)ma
∗.

Then applying Lemma 3.3 with this upper bound on S ′ and the preceding lower
bound on m∗ we obtain

Pr[∃h ∈ HS′. dν(r̂(h; z1), r(h)) > a2α∗] ≤ f2δ.

Since hj = A(z1, S
′) and hence h ∈ HS′, we then obtain

Pr[Condition 3 doesn’t hold] ≤ f2δ.

Finally, we look at condition 6. In step 4 of the algorithm we look at k
def
= ⌊C lnm∗⌋

hypotheses, which are tested on m∗∗ ≥ ρm∗ examples. Using the facts that ν ≤ 8M
and α∗ < 1, we have

(a4α∗)
2ν <

2

(6 +
√

2)2
8M < M/3 ≤M/(3ρ).

19

Furthermore, using m∗ = B(α∗) and 55 > (6 +
√

2)2 we obtain

m∗ ≥
2M

a2
4α

2
∗νρ

max

{

0.44 + ln ln
2M

a2
4α

2
∗νρ

, ln
2C

f4δ

}

.

Thus the conditions of Lemma 3.4 hold; applying this lemma, we obtain

Pr[∃1 ≤ i ≤ k. dν(r̂(hi; z2), r(hi)) > a4α∗] ≤ f4δ.

and hence Pr[Condition 6 doesn’t hold] ≤ f4δ.
Thus we have proven that the inequalities (3.12) hold, which completes the proof

of (3.10), and hence of the theorem itself. 2

3.5 Loose Occam Algorithms

The title of this chapter is “Extending Occam’s Razor,” but the relationship between
its main result and Occam’s Razor is not entirely obvious. To clarify the relationship
we look at another class of algorithms that is obviously related to the Occam algo-
rithms of Blumer et al. An Occam algorithm tries to find a near-smallest hypothesis
with zero empirical risk. The obvious generalization is an algorithm that is given a
risk bound R and tries to find a near-smallest hypothesis with empirical risk at most
R.

Definition 3.11 Let p(s) ≥ 1 be monotonic and polynomially bounded in s, 0 ≤
a < 1, and H be a dimension-stratified hypothesis space. We say that A is a loose
Occam algorithm for H with bound p(s)ma if

• A takes as input a sequence of examples z and a risk bound R ≥ 0;

• A outputs a hypothesis h ∈ H which satisfies r̂(h; z) ≤ R and siz(h) ≤ p(S)ma,

where m
def
= |z| and S

def
= min{siz(h′) : r̂(h′; z) ≤ R}, whenever

∃h′ ∈ H. r̂(h′; z) ≤ R ∧ p(siz(h′))ma < m+ 1.

(When this existence condition holds we say that A(z, R) succeeds.)

We might have proposed the following approach to learning using a stratified
hypothesis space: split the examples into a training set and a test set; run a loose
Occam algorithm on the training set with various risk bounds; then, of the hypotheses
so obtained, choose the one with the least empirical risk on the test set. We could
then have proven an analog of the main result, but for loose Occam algorithms. We
chose the loose ERM algorithm approach because it appeared somewhat simpler.
But does it matter which approach we choose? It could matter if, for some H , one of
the approaches is computationally tractable and the other is not. We will see from
Theorems 3.6 and 3.7 that, under certain mild assumptions, the two approaches are
of equivalent computational complexity.

20

Before stating the required assumptions, let us consider some matters of repre-
sentation. When we say that an algorithm returns a hypothesis h ∈ H , what we
really mean is that it returns some representation or encoding of a hypothesis h ∈ H .
We then must carefully distinguish between the size of a hypothesis h ∈ H , denoted
siz(h) (Definition 3.5), and the size of the representation of h, which is the length of
the string of symbols representing h.

Definition 3.12 The repsize of an abstract value x, denoted rsiz(x), is the length of
the string of symbols representing x.

Note that there may not be any bound at all on rsiz(h) even when requiring h ∈ Hi

for some fixed i. For example, if the hypotheses in Hi are defined by j rational-valued
parameters, then we can find hypotheses in Hi of arbitrarily large repsize simply by
choosing the parameter values to have the form p/q for very large, relatively-prime
integers p and q.

We make the following assumptions:

1. |z| is bounded by a polynomial in rsiz(z).

2. A rational number r is represented by (the representation of) a pair of integers
(p, q) such that r = p/q; or we can convert the actual representation to and
from this representation in polynomial time.

3. r̂(h; z) is computable in polynomial time.

4. siz(h) and |z| are computable in polynomial time.

5. If 1 ≤ i ≤ |z| and Hi 6= ∅, then there exists a hypothesis h ∈ Hi achieving the
minimum empirical risk on z, and its repsize is bounded by a polynomial in i
and rsiz(z). (Note that, combined with Assumption 1, this means that rsiz(h)
is bounded by a polynomial q in rsiz(z) only.)

Assumption 1 will be satisfied by any standard representation of sequences. To
violate it would require a representation that does some sort of data compression to
allow a long but very structured sequence of examples to have a short representa-
tion. Assumption 2 just specifies the standard representation of rational numbers,
or a polynomial-time equivalent representation. Assumption 3 is a standard kind
of assumption in computational learning theory [32] — if you can’t even evaluate a
hypothesis on the training data in polynomial time, it seems pointless to hope for
a polynomial learning algorithm. Assumption 4 merely says that we haven’t chosen
such perverse representations that it’s an intractable problem just to determine the
size of a hypothesis or length of a sequence of examples. If Assumption 5 does not
hold, then the problem of minimizing empirical risk for a given hypothesis-size bound
is absurd to even consider, since the answer cannot even be written in polynomial
time!

Definition 3.13 A loose Occam algorithm A is said to be fully polynomial if both
of the following hold:

21

1. Its worst-case run time is bounded by a polynomial in the repsize of its inputs.

2. The repsize of r̂(A(z, R); z) is bounded by a polynomial in rsiz(z).

Let us consider why it might be reasonable to expect (2) above to hold. Let q

be the polynomial mentioned in Assumption 5 and σ
def
= rsiz(z). Then there is no

need to even consider hypotheses of repsize greater than q(σ). If our loose Occam
algorithm A nevertheless considers hypotheses of repsize up to q′(q(σ), σ), where q′ is
a polynomial, the repsize of A(z, R) is still bounded by a polynomial in rsiz(z). Then
by Assumption 3 the repsize of r̂(A(z, R); z) will be bounded by a polynomial in σ.

Our result is then the following: there exists a polynomial-time loose ERM al-
gorithm for H iff there exists a fully polynomial loose Occam algorithm for H . We
prove this in two parts.

Theorem 3.6 If there exists a polynomial-time loose ERM algorithm for H with
bound p(s)ma then there exists a fully polynomial loose Occam algorithm for H with
the same bound.

Proof. Let A be a loose ERM algorithm for H with bound p(s)ma. We define A′

to be the algorithm that takes as input a sequence of examples z and a risk bound
R ≥ 0, and does the following:

1. For each 1 ≤ i ≤ m
def
= |z|, compute hi

def
= A(z, i).

2. If r̂(hi; z) > R for all 1 ≤ i ≤ m, then output a fixed hypothesis h0 ∈ H .

3. Otherwise return hk, where k
def
= min{i : r̂(hi; z) ≤ R}.

To see that A′ runs in polynomial time, note that m can be computed in polyno-
mial time and is bounded by a polynomial in rsiz(z). Thus each hi can be computed
in polynomial time, which furthermore implies that rsiz(hi) is bounded by a polyno-
mial in rsiz(z). Then since r̂(hi; z) can be computed in time polynomial in rsiz(z)
and rsiz(hi), and we have O(m) such computations, the entire algorithm runs in
polynomial time.

We now show that A′ is a loose Occam algorithm with bound p(s)ma. If r̂(hi) > R
then, since A is a loose ERM algorithm, we know that r̂(h) ≥ r̂(hi) > R for all h ∈ H
satisfying p(siz(h))ma < i + 1. Thus if r̂(hi) > R for all 1 ≤ i ≤ m, we have that
r̂(h) > R for all h ∈ H s.t. p(siz(h))ma < m + 1, in which case we see from the
definition of a loose Occam algorithm that it doesn’t matter what A′ outputs.

Otherwise, A′ returns hk and we have r̂(hk) ≤ R and r̂(hi) > R for all i < k.
Suppose that k > 1. Then, since A is a loose ERM algorithm, we have

R < r̂(hk−1) ≤ min{r̂(h) : h ∈ H ∧ p(siz(h))ma < k},

and from this we derive that r̂(h) > R for all h ∈ H s.t. p(siz(h))ma < k. Then
p(siz(h))ma ≥ k ≥ siz(hk) for all h ∈ H s.t. r̂(h) ≤ R, satisfying the requirements
of a loose Occam algorithm. If k = 1 then, since p(siz(h)) ≥ 1 and m ≥ 1, we also

22

have p(siz(h))ma ≥ k ≥ siz(hk) for all h ∈ H . So A′ is a loose Occam algorithm for
H with bound p(s)ma.

Finally, since h0 is a constant (making rsiz(h0) also a constant) and rsiz(hi) is
bounded by the same polynomial in rsiz(z) for all 1 ≤ i ≤ m, the repsize of the hy-
pothesis output is bounded by a polynomial in rsiz(z). Since r̂(hk; z) can be computed
in polynomial time, the repsize of r̂(hk; z) is bounded by a polynomial in rsiz(z), and
we see that A′ is fully polynomial. 2

Theorem 3.7 If there exists a fully polynomial loose Occam algorithm for H with
bound p(s)ma, then there exists a polynomial-time loose ERM algorithm for H with
the same bound.

Proof. Let us define the following:

• A is a fully polynomial loose Occam algorithm for H with bound p(s)ma.

• qH is a polynomial such that the repsize of the minimum empirical error on z

achievable by hypotheses from Hi is at most qH(σ), where σ
def
= rsiz(z), when

1 ≤ i ≤ |z|. Such a polynomial exists by Assumptions 3 and 5.

• qA is a polynomial such that the repsize of r̂(A(z, R); z) is at most qA(σ), for
all z and R. This exists because A is fully polynomial.

• q(σ)
def
= max(qH(σ), qA(σ)).

• E(z) is the finite set of rational numbers containing r̂(A(z, R); z) for 0 ≤ R ≤
M , and min{r̂(h; z) : h ∈ Hi} for all 1 ≤ i ≤ |z|. (We define min ∅ to be M).

• d(z) is any positive integer having repsize 2q(σ) + 1.

The elements of E(z) have a repsize of at most q(σ); thus their denominators
have a repsize of at most q(σ), and the difference of any two elements of E(z) has a
denominator of repsize at most 2q(σ), and hence a magnitude greater than 1/d(z).
So any interval [j/d(z), (j + 1)/d(z)] contains at most one element of E(z).

We then define A′ to be the following algorithm:

1. Input a sequence of examples z and an integer i s.t. 1 ≤ i ≤ m
def
= |z|. In the

following define

• h[R]
def
= A(z;R);

• P (R)
def
= (r̂(h[R]; z) ≤ R ∧ h[R] ∈ Hi).

2. d := d(z); N := ⌈Md⌉

3. If P (0) then output h[0].

4. If ¬P (M) then output some constant hypothesis h0 ∈ H .

23

5. Otherwise, starting with 0 and N as bounds, do a binary search on the set of
integers from 0 to N to find j0 such that P (j0/d) and ¬P ((j0 − 1)/d). Output
h[j0/d].

Note that d can be computed in polynomial time, and since M is a constant,
the computation of N takes place in polynomial time. Thus log(N) is polynomial
in σ = rsiz(z). The binary search takes O(log(N)) steps, which is polynomial in σ.
Since empirical risk, the size of a hypothesis, and the size of a sequence of examples
can be computed in polynomial time, the entire algorithm runs in polynomial time.

We now show that A′ is a loose ERM algorithm for H with bound p(s)ma.
Case 1: P (0) holds. Then A′ outputs a hypothesis h ∈ Hi with zero empirical

risk, trivially satisfying the requirements of a loose ERM algorithm.
Case 2: There is no h ∈ H s.t. p(siz(h))ma < i+1. Then we see from the definition

of a loose ERM algorithm that it doesn’t matter what hypothesis A′ outputs.
Case 3: ¬P (0) and there is some h ∈ H s.t. p(siz(h))ma < i + 1 ≤ m + 1. Then

A(z,M) succeeds, hence P (M) holds and the binary search is carried out. A′ outputs
h[j0/d], where j0 > 0, P (j0/d) holds and P ((j0−1)/d) does not. Let k be the greatest

integer such that p(k)ma < i + 1, and let R0
def
= min{r̂(h; z) : h ∈ Hk}. Since A is

a loose Occam algorithm and ¬P ((j0 − 1)/d), we have that R0 > (j0 − 1)/d. Let

R1
def
= r̂(h[j0/d]; z). Since P (j0/d), we have that R1 ≤ j0/d. But R0 and R1 are both

elements of E(z), and the interval [(j0 − 1)/d, j0/d] contains at most one element of
E(z). Thus R1 ≤ R0, and since h[j0/d] ∈ Hi we see that the requirements of a loose
ERM algorithm have been met. 2

24

Chapter 4

The Minimum Feature Set
Problem

4.1 Introduction

Consider the task of learning from examples an (unknown) linear threshold function
f of n real-valued features. Assuming that a learning algorithm uses the hypothesis
space consistently, Theorem 2.1 gives an upper bound on its sample complexity that
is linear in the VC dimension of the hypothesis space, which in this case is n + 1.
If f depends on only a small subset of the features, this argues for removing the
superfluous features; but often it is not known beforehand on which specific features
f depends. Thus there has long been interest in methods of reducing the number of
features actually used (i.e. the number of non-zero input weights), while still correctly
classifying all the training examples. Some heuristic techniques for doing this are
given in [38], chapter 7; while useful, such techniques come without guarantees as to
how closely the minimum number of features is approximated. (Note that Littlestone
[29] gives an alternative approach to the problem of many unnecessary features, for
a restricted class of linear threshold functions with Boolean inputs.)

In Section 4.2 we quantify the benefits of minimizing the number of features used,
by giving an upper bound on the VC dimension of the set of linear threshold functions
with n inputs and at most s non-zero input weights. For s ≪ n this bound is much
less than n+ 1. This VC dimension bound improves on the bound that follows from
the (more general) results of Baum and Haussler [3].

In section 4.3 we examine the time-complexity of this feature-minimization prob-
lem, which we call MINIMUM FEATURE SET (MIN FS). We show that MIN FS is
both NP-hard and difficult to approximate. In particular, we show the following:

• No polynomial-time algorithm can approximate MIN FS to within a constant
factor, unless P = NP.

• No polynomial-time algorithm can approximate MIN FS to within an
o(logm) factor, where m is the number of training examples, unless NP ⊆
DTIME[nlog log n].

25

4.2 Benefits of Minimization

Let H be the set of linear threshold functions on n real-valued features. We will
identify h ∈ H with its defining weight vector w, i.e. the vector w ∈ Qn+1 s.t.

h(x) =

{

1 if wn+1 +
∑n

i=1wixi ≥ 0
0 if wn+1 +

∑n
i=1wixi < 0.

(Q is the set of rational numbers.) We have VCdim(H) = n + 1 [6].

Definition 4.1 The cost of w ∈ Qn+1 (or the corresponding h ∈ H) is the number
of nonzero weights other than the bias weight wn+1, i.e. |{i : wi 6= 0, 1 ≤ i ≤ n}|.

Definition 4.2 Let S ⊆ N def
= {1, . . . , n} and 1 ≤ s ≤ n; then we define

• H [S] is the set of h ∈ H which have nonzero weights (other than the bias) only
for the features in S, and

• H [s] is the set of h ∈ H whose cost is at most s.

We now have a stratified hypothesis space (H [s])0≤s≤n. Suppose a learning algo-
rithm A uses H consistently and also minimizes the cost of the hypothesis it returns.
If s is the cost of the function being learned, then A also uses H [s] consistently, and
we have an upper bound on sample complexity that is linear in VCdim(H [s]) instead
of VCdim(H). Even if A only does approximate minimization, Theorem 2.3 can give
reduced sample-complexity bounds that use VCdim(H [s]) rather than VCdim(H).
Thus it is useful to have good bounds on VCdim(H [s]).

We will need to use the following theorem given in [6], which relates VCdim(H)
and ΠH(m):

Theorem 4.1 If VCdim(H) = d and m ≥ d ≥ 1, then ΠH(m) ≤ (em/d)d, where e
is the base of the natural logarithm.

(ΠH(m) was defined in Section 2.2.2.) We now state and prove our bound on
VCdim(H [s]).

Theorem 4.2 Let 1 ≤ s < n. Then VCdim(H [s]) < 2.71(s+ 1) log2(en/(s+ 1)).

Proof. We can assume that s + 1 ≤ n/2. If not, i.e. s + 1 > n/2, then n ≥ s + 1 ≥
(n + 1)/2 (since s and n are integers), and writing lg for log2 we have

2.71(s+ 1) lg
(

en

s+ 1

)

≥ 2.71(s+ 1) lg e ≥ 2.71

2
(n+ 1) lg e > n+ 1.

But since H [s] ⊆ H we have VCdim(H [s]) ≤ VCdim(H) = n + 1, which is less than
our bound.

We now compute ΠH[s](m). The set of linear threshold functions of s inputs has
VC dimension s + 1. Thus VCdim(H [S]) = s + 1 for all S ⊆ N , |S| = s, and by

26

Theorem 4.1 this gives ΠH[S](m) ≤ (em/(s + 1))s+1 for all m ≥ s + 1. Using this
inequality we obtain

ΠH[s](m) ≤
∑

|S|=s

ΠH[S](m) ≤
(

n

s

)

(em/(s+ 1))s+1.

By the assumption that s + 1 ≤ n/2 we have
(

n
s+1

)

>
(

n
s

)

. A variant of Stirling’s

formula states that
(

j
k

)

≤ (ej/k)k, for all j and k ([11], p. 102). Combining these we
obtain

ΠH[s](m) < (en/(s+ 1))s+1(em/(s+ 1))s+1 for all m ≥ s+ 1.

Let x0
def
= lg(en/(s+ 1)) and m0

def
= 2.71(s+1)x0. To prove the theorem it suffices

to show that ΠH[s](m0) < 2m0 , by the definition of the VC dimension. This inequality
will hold if m0 − lg(ΠH[s](m0)) > 0. Dividing this inequality by s+ 1, and using the
fact that m0 ≥ s+ 1, we find

m0 − lg(ΠH[s](m0))

s + 1
>

m0

s+ 1
− x0 − lg

(

em0

s + 1

)

= 1.71x0 − lg(2.71ex0)

Thus it suffices to show that f(x0) ≥ 0, where f(x)
def
= 1.71x−lg(2.71ex). We have

f ′(x) = 1.71−(x ln 2)−1, hence f(x) is non-decreasing for all x ≥ xmin
def
= (1.71 ln 2)−1.

Thus it suffices to show that f(x) ≥ 0 for some xmin ≤ x ≤ x0. Let us choose
x = lg(2e). Since s+ 1 ≤ n/2 we have x0 ≥ lg(2e). We also have

lg(2e) = ln(2e)/ ln 2 > 1.71−1/ ln 2 = xmin.

Finally, by computation we find f(lg(2e)) ≈ 7.55 × 10−3 > 0. 2

The above VC dimension bound is a significant improvement over n + 1 when
s ≪ n. It is also an improvement over the Θ(s log(sn)) bound that can be obtained
from Corollary 5 of [3], which is a more general result applicable to multi-layered
neural nets.

4.3 The complexity of minimization

We can formally state the minimization problem we have been discussing as follows:

Definition 4.3 MINIMUM FEATURE SET (MIN FS)
Instance: Integers m ≥ 1, n ≥ 1, and an m× (n+ 1) matrix A of rational numbers
s.t. ai,n+1 ∈ {1,−1} for all i.
Problem: Find a w ∈ Qn+1 satisfying Aw > 0, of minimum cost. (Recall that the
cost of w is the number of nonzero wi, i 6= n + 1.)

In the above, m is the number of training examples and n is the number of features.
Ai, the i-th row of the matrix A, is obtained from the i-th training example (xi, yi)
as follows: first, augment xi with 1 to obtain an (n+1)-element vector α(xi); then, if

27

it is a negative example (yi = 0), negate this vector. The requirement that Aw > 0
is equivalent to Aiw > 0 for all i, so this gives us α(xi) ·w > 0 for positive examples
and α(xi) · w < 0 for negative examples.

The requirement that ai,n+1 ∈ {1,−1} arises from the above construction, in
which the example vectors were augmented with 1 to provide for the bias term; thus
ai,n+1 = 1 for positive examples and ai,n+1 = −1 for negative examples.

The requirement Aw > 0 may seem too strong, given that the linear threshold
function corresponding to w classifies x as positive if w ·x ≥ 0. To see that this is not
a problem, suppose that we have a weight vector w satisfying the relaxed requirement
that Aiw ≥ 0 when ai,n+1 = 1 (positive example), and Aiw > 0 when ai,n+1 = −1

(negative example). Let γ
def
= min{Aiw : ai,n+1 = −1}. Then if we add γ/2 to wn+1 to

obtain w′, we see that w′ has the same cost as w and additionally satisifies Aw > 0.
We now give some standard definitions that will be needed in our investigation of

the difficulty of solving or approximating MIN FS.

Definition 4.4 A minimization problem M has the following form, for some pair of
predicates P and Q and integer-valued cost function κ: Given x satisfying P (x) (a
problem instance), find some y satisfying Q(x, y) (a solution for x) that minimizes
κ(x, y).

Definition 4.5 A polynomial-time approximation algorithm (PTAA) A for a min-
imization problem M is a polynomial-time algorithm which takes as input some
instance x satisfying P (x) and outputs a y satisfying Q(x, y). We say that A approxi-
mates M to within a factor φ(x) if, additionally, κ(x, y) ≤ φ(x)κ(x, z) for any z such
that Q(x, z). We say that M can be approximated to within a factor φ(x) if there is
a PTAA that approximates it to within a factor φ(x).

Definition 4.6 A cost-preserving polynomial transformation from minimization prob-
lem M to minimization problem M′ is a pair of functions (t1, t2) with the following
properties, where x is taken to be an instance of M:

1. t1 maps instances of M to instances of M′. t2 maps pairs (y, x), where y is a
solution for t1(x), to solutions for x.

2. t1 and t2 are both computable in polynomial time.

3. If x has a solution of cost k, then t1(x) has a solution of cost at most k.

4. If y is a solution for t1(x) of cost k, then t2(y, x) has cost at most k.

Suppose there exist both a cost-preserving polynomial transformation from M
to M′ and a PTAA that approximates M′ to within a factor φ(x′). Then there
is a PTAA that approximates M to within a factor φ(t1(x)): compute x′ = t1(x),
run the PTAA for M′ on x′ to get y, and output t2(y, x). Thus any limits on the
approximability of M give corresponding limits on the approximability of M′. We will
show that MIN FS is both NP-hard and difficult to approximate via a transformation
from MIN SET COVER.

28

Definition 4.7 MINIMUM SET COVER (MIN SC)
Instance: A finite set S and a collection C of subsets of S.
Problem: Find a cover of S (a set C ′ ⊆ C s.t.

⋃

C ′ = S) of minimum cardinality.

Theorem 4.3 There is a cost-preserving polynomial transformation from MIN SC
to MIN FS in which instances (S,C) of MIN SC are mapped to instances (m,n,A)
of MIN FS with m = |S| + 1.

Proof. In the following we shall use the notation (Φ), where Φ is a logical formula,
for (if Φ then 1 else 0). This notation is from [16].

Let (S,C) be an instance of MIN SC. Define m = |S|+1 and n = |C|. Enumerate
the elements of S as s1, s2, . . . , sm−1 and the elements of C as c1, c2, . . . , cn. Define
t1(S,C) = (m,n,A), where A is an m× (n+ 1) matrix constructed from the column
vectors of 1’s and 0’s corresponding to each cj , as follows:

...
c1 c2 · · · cn −1

...
· · · 0 · · · 1

(Thus, aij = (si ∈ cj) for i < m and j ≤ n.)
Note that the inequality Aw > 0 is equivalent to the set of inequalities Aiw > 0,

1 ≤ i ≤ m. This set of inequalities is in turn equivalent to
∑

j≤n

(si ∈ cj)wj > wn+1 > 0, 1 ≤ i < m (4.1)

Suppose that (S,C) has a solution of cost k, i.e. there exists some C ′ ⊆ C which
is a cover of S, and |C ′| = k. Define the vector w by

wj =

{

(cj ∈ C ′) if j ≤ n
0.5 if j = n+ 1.

Note that w has cost k and wn+1 > 0. Using the fact that C ′ is a cover of S we have
also that, for 1 ≤ i < m,

∑

j≤n

(si ∈ cj)wj =
∑

j≤n

(si ∈ cj)(cj ∈ C ′) > 1 > wn+1,

so w satisfies (4.1). Thus we have shown that t1(S,C) = (m,n,A) has a solution of
cost k.

We now consider the reverse mapping. For all w ∈ Qn+1, define

t2(w, S, C) = {cj : wj > 0, 1 ≤ j ≤ n}.
Suppose that w is a solution for t1(S,C) = (m,n,A), of cost k. Let C ′ =

t2(w, S, C). It is clear from the definition of t2 that C ′ ⊆ C and |C ′| ≤ k. We
have furthermore that Aw > 0 and hence w satisfies the inequalities (4.1). Thus for
each i there is some j s.t. si ∈ cj and wj > 0. But wj > 0 implies cj ∈ C ′, so C ′ is a
cover for S. Thus we have shown that w is a solution for (S,C) of cost at most k. 2

29

Corollary 4.4 MIN FS is NP-hard. In addition, we have the following approxima-
bility limits:

1. For every constant c ≥ 1, MIN FS cannot be approximated to within a factor
c, unless P = NP.

2. MIN FS cannot be approximated to within an o(logm) factor, unless NP ⊆
DTIME[nlog log n].

Proof. MIN SC is NP-hard [13], hence by Theorem 4.3, so is MIN FS.
From Theorem 4.3, if MIN FS can be approximated to within some constant factor

c, so can MIN SC. But Bellare, Goldwasser, Lund and Russel [4] have shown that
MIN SC cannot be approximated to within a constant factor unless P = NP.

Suppose that MIN FS can be approximated to within a factor g(m,n,A) = f(m),
where f(m) = o(logm). Then MIN SC can be approximated to within a factor
g(t1(S,C)) = f(|S| + 1) = o(log(|S| + 1)) = o(log |S|). But Bellare et al. have also
shown that MIN SC cannot be approximated to within an o(log |S|) factor unless
NP ⊆ DTIME[nlog log n]. 2

Haussler [17] looks at the problem of finding a pure conjunctive concept consistent
with a set of examples, with the minimum number of conjuncts, and shows that it is
NP-hard via a reduction from MIN SC. His reduction also defines a cost-preserving
polynomial transformation that produces |S| + 1 examples. Thus the conclusions of
Corollary 4.4 also apply to Haussler’s problem.

We note in closing that Corollary 4.4 should not be taken as evidence against
the possibility of obtaining improved sample-complexity bounds by approximating
MIN FS. For example, if the approximation factor grows polylogarithmically with
the number of examples, then Theorem 3.2.1 of [6] (which contains a variant of
Theorem 2.3 in which the size bound p(s)ma is replaced by p(s)(logm)l for some
l > 0), or Lemma 5.6 of [17], can be used to establish improved upper bounds on
sample complexity.

30

Chapter 5

Robust Learning with
Linear-Threshold Functions

5.1 Introduction

In Chapter 4 we touched on the problem of learning linear threshold functions (also
known as halfspaces, due to their geometric interpretation) under the PAC model.
It is well known [6] that linear programming methods can be applied to obtain a
polynomial algorithm for learning halfspaces. (The weight minimization discussed
in Chapter 4, although it may reduce sample complexity, is not needed to obtain a
polynomial learning algorithm.) In this chapter we analyze how learning performance
degrades when the representational power of halfspaces is overstrained, i.e., if more
complex target functions than just halfspaces are allowed.

A rigorous analysis of this question is based on the notion of PAO (probably almost
optimal) learnability [20], because we must not insist on probably almost correct
hypotheses. If PAO learning is possible for arbitrary target functions, we speak of
robust learning. If we can come within a constant factor of the optimal error, we
speak of learning with limited degradation. We show that neither robust learning nor
learning with limited degradation is possible when using halfspaces, unless RP = NP.
The proofs are based on a method that associates an optimization problem with a
learning problem. If the optimization problem is NP-hard, then its corresponding
learning problem is intractable unless RP = NP.

5.2 Robust Learning and Minimization

The version of PAO learning discussed in this chapter is a slight variant of the un-
stratified PAC model of Section 2.2.1. The only new element is the following:

• We have a target space T , whose elements are Boolean functions on the instance
space X. The target function f may be any element of T .

The definition of the error of a hypothesis remains the same. The relaxed re-
quirement on the target function, however, leads to a modified definition of sample

31

complexity.

Definition 5.1 A hypothesis h is ǫ-optimal if

err(h) ≤ opt(H) + ǫ, where opt(H)
def
= inf

h′∈H
err(h′),

i.e. if the error of h comes within ǫ of the minimum achievable by hypotheses from
H .

Definition 5.2 The PAO sample complexity S(ǫ, δ) of an algorithm for learning T
by H is the worst-case number of examples needed to have probability 1− δ or better
of returning an ǫ-optimal hypothesis, when the target f may be any element of T and
any distribution over the instance space X is allowed.

As for the PAC model, X, H and T may be implicitly parameterized by a variable
n, in which case the sample complexity is also a function of n.

Definition 5.3 An algorithm for learning T by H which runs in polynomial time,
and whose PAO sample complexity is bounded by a polynomial in ǫ−1, δ−1, and n,
is called a polynomial algorithm for learning T by H . If such an algorithm exists, we
say that T is PAO learnable by H .

An important special case of PAO learning occurs when T ⊆ H . In this case the
target f ∈ H , so opt(H) = 0 and an ǫ-optimal hypothesis has error at most ǫ. Thus
the notion of PAO learnability becomes equivalent to PAC learnability.

Definition 5.4 We assume that X is augmented with a σ-algebra A of events. For
instance, A might be the powerset of X if X is countable, or the system of Borel sets
if X = Rn. A is the set of all subsets S of X for which it is meaningful to speak of the
probability of S. (For definitions of “σ-algebra” and “Borel sets,” and a discussion of
technical issues in the foundations of probability theory, see for example [2], chapters
13 and 14.)

The notion of PAO learnability becomes more interesting if H ⊂ T , in which case
we may have opt(H) > 0. An extreme situation occurs if we allow arbitrary concepts,
i.e., T = A. It is practically important that learning algorithms be robust in the sense
that their performance degrades ‘gracefully’ when opt(H) > 0. This considerations
motivates the following definition:

Definition 5.5 We say that H allows robust learning if A is PAO learnable by H .

From Theorem 2.2 we saw that the PAC learnability of H was related to the con-
sistency problem for H . Similarly, the question of whether H allows robust learning
is related to the following minimizing disagreements problem:

32

Definition 5.6 MinDis(H).
Input: A sequence z of examples zi ∈ X × {0, 1}. (We call z the input sample.)
Output: A hypothesis h ∈ H which misclassifies the minimum number of examples
zi possible.

Definition 5.7 If T is a target space, we say that z is T -legal if T contains a function
f which is consistent with z.

Theorem 5.1 If RP 6= NP and MinDis(H) restricted to T -legal input samples is
NP-hard, then T is not PAO learnable by H .

Theorem 5.1 is proven in [21], and a slightly different form of it was previously
proven in [1]. A stronger version is proven in Section 5.3. Setting T = A gives the
following corollary:

Corollary 5.2 If RP 6= NP and MinDis(H) is NP-hard, then H does not allow
robust learning.

We now turn our attention to the case of H = Halfspaces.

Theorem 5.3 MinDis(Halfspaces) is NP-hard.

Proof. Follows from the stronger Theorem 5.8 which we prove in Section 5.3.
A. Blum [5] independently suggested another proof using a polynomial transforma-
tion from the NP-complete problem Open Hemisphere (problem MP6 in [13]) to the
decision problem corresponding to MinDis(Halfspaces). 2

Open Hemisphere is just the decision problem corresponding to Min-
Dis(Homogeneous Halfspaces). (A homogeneous halfspace is a halfspace whose sepa-
rating hyperplane passes through the origin, or equivalently, a linear threshold func-
tion with a bias weight of 0.) Thus MinDis(Homogeneous Halfspaces) is also NP-hard.
Using this fact and Theorem 5.3, we immediately obtain the following corollary:

Corollary 5.4 Neither Halfspaces nor Homogeneous Halfspaces allows robust learn-
ing, unless RP = NP.

This result is strengthened in Section 5.3.

5.3 Limited Degradation and Halfspaces

We have ruled out the possibility that halfspaces allow robust learning (unless RP =
NP). Robust learning requires in the confident case that the error of the hypothesis
is bounded by opt(H)+ ǫ. We shall consider two ways of relaxing the requirements of
robust learning. One is to only require that we approach some fixed multiple d ≥ 1 of
the minimum error achievable by hypotheses from H . This can still be of practical use
if d is not too large. The other is to enlarge our learning environment. Assume that

33

we have a hypothesis space H ′, which defines the optimal error opt(H ′) achievable
using hypotheses in H ′ to approximate the given concept. To relax the restrictions of
the learning problem we may now increase the power of the hypothesis space while
preserving the value of opt(H ′) as the measure of our learning success. This means
we use the hypothesis space H ′ as a touchstone to define the goal of the learning
problem, but allow our learning algorithm to consider hypotheses from a larger space
H ⊇ H ′. This framework was introduced by Kearns et al. in [25]. We combine these
relaxations in the following definitions:

Definition 5.8 Let L be an algorithm for learning T by H . Suppose that, given
p(ǫ, δ, n) training examples, there is a probability of 1 − δ or better that L returns
a hypothesis h ∈ H whose error is at most d · opt(H ′) + ǫ, regardless of the target
function T and distribution D over X [n]. Then we say that the H ′-degradation of L
is limited by d, with sample complexity p(ǫ, δ, n).

Definition 5.9 We say that the H ′-degradation of H is limited by d when learning T
if there exists a polynomial-time algorithm for learning T by H whose H ′-degradation
is limited by d, with a sample complexity polynomial in ǫ−1, δ−1, and n.

• We say that the H ′-degradation of H is unlimited when learning T if the degra-
dation is not limited by any fixed d when learning T .

• We use H and A as the default values for H ′ and T respectively, e.g. “the
degradation of H is unlimited” means that the H-degradation of H is unlimited
when learning A.

The question of whether the H ′-degradation of H is limited is related to the hard-
ness of approximating MinDis(H). The reader may want to review the definitions of
a minimization problem (Definition 4.4) and PTAA (Definition 4.5), from Chapter 4,
before proceeding. The following definition will also be needed.

Definition 5.10 We say that a sample z is (H,H ′)-indifferent if the minimum num-
ber of misclassifications on z achievable by hypotheses from H ′ is the same as the
minimum achievable by hypotheses from H .

Theorem 5.5 Let H ′ ⊆ H . If RP 6= NP and it is NP-hard to approximate
MinDis(H), restricted to T -legal and (H,H ′)-indifferent samples, to within a factor
d ∈ Q, then the H ′-degradation of H is not limited by d when learning T .

Proof. The proof is similar to that of Theorem 5.1 given in [21], but with addi-
tional complications. We show that a polynomial-time algorithm L for learning T
by H , whose H ′-degradation is limited by d with a polynomial sample complexity,
can be converted into a polynomial-time probabilistic algorithm A for approximating
MinDis(H), restricted to T -legal and (H,H ′)-indifferent samples, to within a factor
d.

Let p(ǫ−1, δ−1, n) be a polynomial bounding the sample complexity of L. Let
d = d1/d2, where d1 and d2 are positive integers. Algorithm A is given z and n as
input, and proceeds as follows:

34

1. Let ǫ := (d2(|z| + 1))−1, δ := 1/2, m := ⌈p(ǫ, δ, n)⌉, and D be the distribution

defined by D(x)
def
= w(x)/|z|, where

w(x)
def
= |{i : ∃y. zi = (x, y)}|,

i.e., w(x) is the number of occurrences of instance x in z.

2. Randomly and independently select m instances x′i from the distribution D, and

let y′i be such that (x′i, y
′
i) is in the sequence z. Define z′

def
= (x′1, y

′
1), . . . , (x

′
m, y

′
m).

3. Output h = L(z′).

Since d2 and δ are constants and p is a polynomial, m is bounded by a polynomial
in n and rsiz(z) (the repsize of z). Assuming we have a reasonable parameterization
of the instance space (i.e., rsiz(x) = Ω(na) for some a > 0 when x ∈ X [n]), n is
bounded by a polynomial in rsiz(z), so m is bounded by a polynomial in rsiz(z) only.
Combining this with the fact that L runs in polynomial time, it is easy to see that A
runs in polynomial time.

Since z is T -legal, there is some f ∈ T that is consistent with z. Combining
this with the fact that x′i is known to occur in z, we see that y′i in step 2 above is
unambiguously defined (it is f(x′i)).

Let k be the minimum number of misclassifications on z achievable by hypotheses
in H , and k′ the minimum achievable by hypotheses in H ′. Since z is (H,H ′)-
indifferent, we have k = k′. In addition, for distribution D and target f we have
opt(H) = opt(H ′) = k/|z|. Since L learns T by H , with H ′-degradation limited by
d, we have a probability of at least 1 − δ = 1/2 that

err(h) ≤ d · opt(H ′) + ǫ = dk/|z| + ǫ.

Suppose h misclassifies j > dk examples. Since dk is a multiple of 1/d2, and j is
an integer and hence a multiple of 1/d2, we have j ≥ dk + 1/d2. Then

err(h) ≥ dk/|z| + (d2|z|)−1 > dk/|z| + ǫ,

a contradiction. Hence we conclude that, with a probability of at least 1/2, h mis-
classifies at most dk examples. Thus A approximates MinDis(H) to within a factor
of d. 2

The main result of this chapter is to demonstrate limits on the approximability
of MinDis(Halfspaces) and variants. Our tool for doing this is the cost-preserving
polynomial transformation (recall Definition 4.6).

Definition 5.11 Let M1 and M2 be two minimization problems. We write M1 ≤cp
pol

M2 to mean that there is a cost-preserving polynomial transformation (CPPT) from
M1 to M2.

Lemma 5.6 If M ≤cp
pol M′ and M′ ≤cp

pol M′′, then M ≤cp
pol M′′.

35

Proof. If (t1, t2) is the CPPT from M to M′, and (t′1, t
′
2) is the CPPT from

M′ to M′′, it is easily verified that (u1, u2), where u1(x) = t′1(t1(x)) and u2(y, x) =
t2(t

′
2(y, t1(x)), x), is a CPPT from M to M′. 2

We are now ready to strengthen Corollary 5.4, showing that Halfspaces also has
unlimited degradation. We do this by giving a cost-preserving polynomial transfor-
mation from Hitting Set to MinDis(Halfspaces).

Definition 5.12 Hitting Set.
Input: A finite set S and a collection C of nonempty subsets of S.
Output: A hitting set for C of minimum cardinality. (A hitting set is a set R ⊆ S
s.t. R ∩M 6= ∅ for all M ∈ C).
Note: The restriction of Hitting Set in which we require all M ∈ C to have equal
cardinality s ≥ 2 we call Uniform Hitting Set.

Lemma 5.7 Hitting Set ≤cp
pol Uniform Hitting Set.

Proof. Let (S ′, C ′) be an instance of Hitting Set. Let s be the maximum of 2 and
the cardinality of the largest set in C ′. To every M ∈ C ′ add s − |M | new, distinct
dummy elements, and call the result C. Add to S ′ all the dummy elements, and call
the result S. We then define t1(S

′, C ′) = (S,C). It is clear that any hitting set for C ′

is also a hitting set for C, thus t1(S
′, C ′) has a solution of cost no greater than that

of any solution for (S ′, C ′).
Conversely, given any hitting set R for C we can obtain a hitting set R′ for C ′ s.t.

|R′| ≤ |R|, as follows: replace any dummy element i of R by any non-dummy element
of the unique M ∈ C s.t. i ∈ M . Thus we define t2(R, (S,C)) = R′, and we see that
the cost of R′ is at most the cost of R. Hence (t1, t2) is the desired CPPT. 2

Theorem 5.8 Hitting Set ≤cp
pol MinDis(Halfspaces).

Proof. From Lemmas 5.7 and 5.6 it suffices to show that Uniform Hitting Set ≤cp
pol

MinDis(Halfspaces). Let (S,C) be an instance of Uniform Hitting Set, with each
element of C having cardinality s ≥ 2. WLOG we will assume that S = {1, . . . , n}.
We define example vectors of dimension sn, which should be viewed as s groups of
n dimensions. We write 1i1,...,ip for the n-dimensional vector having 1 at positions
i1, . . . , ip and 0 at all other positions, and 0 for the n-dimensional null vector. We
then define

• X+ is the set of sn-dimensional “element vectors” (1i, . . . , 1i), 1 ≤ i ≤ n;

• X− is the set of sn-dimensional “set vectors”

(1i1,...,is, 0, . . . , 0), . . . , (0, . . . , 0, 1i1,...,is)

for each set M = {i1, . . . , is} ∈ C.

36

• z is a sequence containing (x, 1) for every x ∈ X+, (x, 0) for every x ∈ X−, and
no other elements.

• t1(S,C) = z.

Note that |X+| = n and |X−| = s|C|.
Claim 1: If R ⊆ S is a hitting set for C, then there exists a halfspace misclassifying

|R| examples from z.

Proof of Claim 1: Given R, consider the halfspace obtained from θ(x)
def
=

∑s
j=1

∑

l∈R −xj,l. If x is a set vector derived from M ∈ C then θ(x) = −|R ∩M |;
since R ∩M 6= ∅, we have θ(x) < 0. Hence all set vectors are correctly classified as
negative. If x is an element vector derived from i ∈ S, then θ(x) = −s if i ∈ R, and
θ(x) = 0 if i 6∈ R. In the first case the vector is incorrectly classified as negative,
and in the second case the vector is correctly classified as positive. This gives |R|
misclassifications altogether, proving Claim 1.

Thus if (S,C) has a solution of cost k, t1(S,C) has a solution of cost k.
We now define t2. Let (w, τ) be the (sn + 1)-dimensional weight vector defining

a halfspace h. We find a corresponding hitting set R ⊆ S for C as follows:

• If h misclassifies an element vector derived from i ∈ S, then insert i into R.

• If h misclassifies a set vector derived from M ∈ C, then insert an arbitrary
element of M into R.

We define t2((w, τ), (S,C)) = R.
Claim 2: If (w, τ) defines a halfspace misclassifying k examples in z = t1(S,C),

then R = t2((w, τ), (S,C)) is a hitting set for C with cardinality at most k.
Proof of Claim 2: It follows directly from its definition that R has at most k

elements, and that it is a subset of S. Assume for the sake of contradiction that R is
not a hitting set, i.e., there exists some M ∈ C with i 6∈ R for all i ∈M . This implies
that the s element vectors derived from the elements of M are classified as positive,
leading to

∀l ∈M,
s
∑

j=1

wj,l ≥ τ, hence
s
∑

j=1

∑

l∈M

wj,l ≥ sτ ;

it also implies that the s set vectors corresponding to M are classified as negative,
leading to

∀1 ≤ j ≤ s,
∑

l∈M

wj,l < τ, hence
s
∑

j=1

∑

l∈M

wj,l < sτ,

which is a contradiction, and Claim 2 is proven.
From Claims 1 and 2, and the evident fact that t1 and t2 can be computed in

polynomial time, we see that (t1, t2) is a CPPT from Uniform Hitting Set to Min-
Dis(Halfspaces). 2

Note that in the polynomial transformation given above, only Boolean example
vectors were produced. Thus we have the following.

37

Definition 5.13 Boolean Halfspaces is the set of linear threshold functions restricted
to Boolean vectors.

Corollary 5.9 Hitting Set ≤cp
pol MinDis(Boolean Halfspaces).

We now consider the hypothesis space of hyperplanes:

Definition 5.14 Hyperplanes is the set of Boolean-valued functions f having the
form f(x) = true if w · x = τ , and false otherwise, for some w and τ .

A hyperplane is simply the intersection of two halfspaces, and so would seem to
be little more complex than a halfspace. We obtain, however, the following:

Corollary 5.10 Hitting Set ≤cp
pol MinDis(Boolean Halfspaces) restricted to

Hyperplanes-legal samples.

Proof. Combine Corollary 5.9 with the fact that the positive examples in the proof
of Theorem 5.8 all lie on the hyperplane

∑n
l=1w1,l = 1, and none of the negative

examples lie on this hyperplane. 2

Now let us consider the hypothesis spaces of monomials and decision lists:

Definition 5.15 In the following a literal is an expression of either of the forms xi

or ¬xi.

1. Monomials is the set of functions on Boolean vectors which can be expressed as
the conjunction of 0 or more literals.

2. Decision Lists is the set of functions f on Boolean vectors, of the form f(x) =
if l1 then c1 else if l2 then c2 . . . else if lp then cp else cp+1, where p ≥ 0,
each ci is either 1 or 0, and each li is a literal. We represent such a function by
the list of pairs (l1, c1) · · · (lp, cp)(true, cp+1).

Lemma 5.11 Monomials ⊆ Decision Lists ⊆ Boolean Halfspaces.

Proof. The monomial ∧p
i=1li is the same as the decision list

(¬l1, 0) · · · (¬lp, 0)(true, 1). Thus every monomial is also a decision list.
Now consider the decision list L = (l1, c1) · · · (lp, cp)(true, cp+1). Let σ(1) = 1 and

σ(0) = −1. Noting that ¬xi = (1 − xi), we see that each li is a linear function of x.
A straightforward induction on p shows that the halfspace defined by

p
∑

i=1

σ(ci)2
p+1−ili ≥ −σ(cp+1)

is equivalent to L. Thus every decision list is also a Boolean halfspace. 2

38

Corollary 5.12 Hitting Set ≤cp
pol MinDis(Boolean Halfspaces) restricted to

Hyperplanes-legal, (Boolean Halfspaces, Monomials)-indifferent samples.

Proof. Returning to the proof of Theorem 5.8, let the instance (S,C) of Uniform
Hitting Set transform to the instance z of MinDis(Halfspaces). It follows from the
definition of a CPPT (Definition 4.6) that if k is the cardinality of the smallest hitting
set for C, then k is also the minimum number of misclassifications on z achievable by
hypotheses from Halfspaces.

It was shown that if C has a hitting set R, then the halfspace defined by
∑s

j=1

∑

l∈R −xj,l ≥ 0 misclassifies |R| examples from z. But this halfspace, when
restricted to Boolean vectors, is in fact a monomial, viz.,

∧s
j=1

∧

l∈R ¬xj,l. Thus the
minimum number of misclassifications on z achievable by monomials is at most the
minimum achievable by halfspaces. By Lemma 5.11 the minimum achievable by half-
spaces is at most the minimum achievable by monomials. Thus the two minima are
equal, and z is (Boolean Halfspaces, Monomials)-indifferent. 2

We have a similar corollary for homogeneous halfspaces:

Corollary 5.13 Hitting Set ≤cp
pol MinDis(Halfspaces) restricted to Hyperplanes-legal,

(Halfspaces, Homogeneous Halfspaces)-indifferent samples.

Proof. Same as the proof of Corollary 5.12, except that this time we note that the
halfspace defined by

∑s
j=1

∑

l∈R −xj,l ≥ 0 is homogeneous. 2

We can readily extend these results to cover the degradation of Monomials, Deci-
sion Lists, and Homogeneous Halfspaces using the following lemma:

Lemma 5.14 If H ′′ ⊆ H ′ ⊆ H , then MinDis(H) restricted to (H,H ′′)-indifferent
samples ≤cp

pol MinDis(H ′) restricted to (H ′, H ′′)-indifferent samples.

Proof. The required cost-preserving polynomial transformation is just (t1, t2) where
t1(x) = x and t2(y, x) = y:

1. If x is an instance of MinDis(H) restricted to (H,H ′′)-indifferent samples then
the minimum number of misclassifications achievable with H is the same as the
minimum achievable with H ′′; and this the same as the minimum achievable
with H ′ (since opt(H) ≤ opt(H ′) ≤ opt(H ′′)).

2. Any solution for MinDis(H ′) is a hypothesis from H ′ ⊆ H , and hence is also a
solution for MinDis(H).

2

Recall from the end of Chapter 4 that Min Set Cover cannot be approximated to
within any constant factor (in polynomial time), unless P = NP. The Hitting Set
problem is isomorphic to Min Set Cover [22, 27], so these approximation limits apply
also to Hitting Set. Thus we have the following results:

39

Corollary 5.15 The following problems cannot be approximated to within any con-
stant factor, unless P = NP:

1. MinDis(Boolean Halfspaces), even when restricted to (Boolean Halfspaces,
Monomials)-indifferent samples.

2. MinDis(Decision Lists), even when restricted to (Decision Lists, Monomials)-
indifferent samples.

3. MinDis(Monomials).

4. MinDis(Halfspaces), even when restricted to (Halfspaces, Homogeneous
Halfspaces)-indifferent samples.

5. MinDis(Homogeneous Halfspaces).

These results hold even when the problems are further restricted to Hyperplanes-legal
samples.

Proof. (1) follows from Corollary 5.12. (2) and (3) follow from (1), Lemma 5.11, and
Lemma 5.14. (4) follows from Corollary 5.13. (5) follows from (4) and Lemma 5.14.
2

Corollary 5.16 Unless RP = NP,

1. Boolean Halfspaces has unlimited (Monomials-)degradation;

2. Decision Lists has unlimited (Monomials-)degradation;

3. Monomials has unlimited degradation;

4. Halfspaces has unlimited (Homogeneous Halfspaces-)degradation;

5. Homogeneous Halfspaces has unlimited degradation.

These results hold even when the problem is restricted to learning Hyperplanes.

Proof. Follows directly from Corollary 5.15 and Theorem 5.5. 2

The negative results of Corollary 5.16 are rather surprising in light of the fact that
there exist polynomial algorithms for learning all of the hypothesis spaces mentioned
therein, under the PAC model [6, 37, 39]. By simply allowing targets that are not in
the hypothesis space, we go from a tractable problem to a problem that is not only
intractable, but cannot even be approximated to within any constant factor! Thus it
would appear that PAO learning is much more difficult than PAC learning.

40

5.4 Acknowledgments

This chapter is excerpted, with modifications and some additions, from a paper on
which I collaborated with Klaus-Uwe Höffgen and Han-Ulrich Simon of the University
of Dortmund [21]. The original proof showing that MinDis(Halfspaces) could not be
approximated to within any constant factor unless Min Set Cover could was mine.
Klaus-Uwe Höffgen then modified my proof to remove some aesthetically unpleasing
features of it (for example, my proof required multiple copies of some examples). I
then introduced the notion of an (H,H ′)-indifferent sample and H ′-degradation for
H ′ 6= H , and further modified the proof to allow us to obtain the H ′-degradation
results for H ′ 6= H , and the degradation results for Monomials and Decision Lists.

41

Chapter 6

Decision Trees and Rule Lists

In this chapter we look at the stratified hypothesis spaces of decision trees and rule
lists, as a prelude to the discussion of rule induction in Chapter 7. Decision trees and
rule lists are used for classification; in Haussler’s model (see Chapter 3) this means
that the outcome space Y and decision space Y ′ are equal and finite, and the loss
function most often used is l(y′, y) = (y 6= y′) (a loss of 1 for misclassification, 0
otherwise). Heuristic algorithms for learning decision trees have been much-studied
in both the machine learning [35] and applied statistics [7] communities. Decision
trees have some expressive limitations, however, which can be overcome with the use
of rule lists. Sections 6.1 and 6.2 define decision trees and rule lists, discuss their use,
and compare their expressive power. Section 6.3 discusses the generation of synthetic
test problems for evaluating heuristic learning algorithms that use these hypothesis
spaces.

6.1 Decision Trees

If C is the set of possible classes and X the instance space, a decision tree defines a
function h : X → C by hierarchically partitioning X and assigning each part of the
resultant partition a class c ∈ C. (We hereafter use C rather than Y to denote the
outcome space, to emphasize that it is a finite set of classes.)

Definition 6.1 We assume that we have a (possibly infinite) set P of finite partitions
of the instance space X. Each Π ∈ P we call a primitive partition. Each such Π can
be considered a finite set of mutually-exclusive and exhaustive predicates P on X.
Each such predicate P ∈ Π ∈ P we call a primitive test.

Definition 6.2 A decision tree is a tree that is labeled as follows:

• Each leaf node is labeled by some class c ∈ C.

• Corresponding to each internal node is a partition Π ∈ P such that the node
has |Π| > 1 children, and the branches emanating from it are labeled by the
predicates P ∈ Π.

42

We write c for the single-node decision tree labeled with class c, and we write
(P1 : T1 | · · · | Pk : Tk) for the decision tree comprised of a root node with k
outgoing branches labeled P1, . . . , Pk, and coresponding subtrees T1, . . . , Tk.

Definition 6.3 We say that a leaf node of a decision tree covers an instance x ∈ X
if P (x) holds for every predicate P labeling a branch on the path from the root to
the leaf. A decision tree represents the function h : X → C, where h(x) is the class
labeling the unique leaf node that covers x.

Definition 6.4 The size of a decision tree is the number of leaf nodes.

Note that, by defining the size of a decision tree, we have defined the stratified
hypothesis space of decision trees: Hi is just the set of functions f : X → C which
are represented by some decision tree of size i or less.

It is common in machine learning tasks for the instance space X to be the set of
attribute vectors of a particular type. That is to say, X = D1 × · · · × Dn for some
sequence of domains D1, . . . , Dn. Typically, each Di is either

• a finite set of unordered values (a nominal attribute),

• a finite set of fully-ordered values (a discrete linear attribute), or

• Q, the set of all rational numbers (a continuous attribute).

In such a case the set P typically contains the following partitions, and no others:

• For each nominal attribute i with Di = {v1, . . . , vk}, the partition {P1, . . . , Pk},
where Pj(x)

def
= (xi = vj).

• For each discrete linear or continuous attribute i and value v ∈ Di, the partition

{P≤, P>}, where P≤(x)
def
= (xi ≤ v) and P>(x)

def
= (xi > v).

Whenever we have an instance space of attributes vectors as defined above, we will
assume that the set P of primitive partitions is as defined above also, unless otherwise
noted.

Although decision trees have found wide use in machine learning, and have even
been used in commercial machine learning systems, they have some expressive limi-
tations. It has been noted by machine-learning researchers [33] that some seemingly-
simple Boolean functions apparently require large decision trees that contain many

identical subtrees. For example, let ψ(x,y)
def
= (x1 ∧ y1)∨ (x2 ∧ y2). For this function

the instance space has 3 natural regions: those vectors covered by the first conjunct
x1∧y1, those vectors covered by the second conjunct x2∧y2, and all remaining vectors.
But one can verify by exhaustive search that the smallest decision tree representing
ψ is the following tree of size 7:

(x1 : (y1 : 1 | ¬y1 : (x2 : (y2 : 1 | ¬y2 : 0) | ¬x2 : 0))
| ¬x1 : (x2 : (y2 : 1 | ¬y2 : 0) | ¬x2 : 0))

43

Note that there are two identical sub-trees for x2∧y2. We now prove that the obvious
extension of ψ to n-bit vectors (for arbitrary n) requires a decision tree whose size is
exponential in n.

Theorem 6.1 Let ψn(x,y)
def
= (x1∧y1)∨· · ·∨(xn∧yn), where x and y are n-element

Boolean vectors. Then the smallest decision tree representing ψn has size 2n+1 − 1.

Proof. We prove the theorem by induction on n.
Base case (n = 1): We have ψ1(x, y) = (x1∧y1). It is straightforward to enumerate

the decision trees of size 1 or 2 and verify that none of them represents ψ1. But the
size-3 decision tree

(x1 : (y1 : 1 | ¬y1 : 0) | ¬x2 : 0)

does represent ψ1, and we have 21+1 − 1 = 3.
Induction step (n > 1): Assume the theorem holds for all ψl, l < n. Let T ′ be

a minimum-size decision tree representing ψn. Let πi(x) be the permutation of x
in which xi and xn are exchanged, everything else remaining the same. Note that
ψn(y,x) = ψn(x,y) and ψn(πi(x), πi(y)) = ψn(x,y). Thus if we exchange the roles
of x and y in T ′, or exchange the roles of xi and xn while simultaneously exchanging
the roles of yi and yn, we obtain an equivalent tree of the same size. The root node
of T ′ is partitioned on the value of xi or yi, for some i; by applying one or both of
the mentioned transformations, we can then obtain from T ′ a minimum-sized tree T
representing ψn, whose root node is partitioned on the value of xn.

Let T = (¬xn : T0 | xn : T1). Neither T0 nor T1 contains any node partitioned on
the value of xn, since T is of minimum size. (If there were such a node, then the subtree
rooted at that node could be replaced by one of the node’s two child subtrees, making
T smaller while still representing ψn.) Thus both T0 and T1 represent functions that
do not depend on xn.

T0 represents a function g such that, when xn = false, g(x,y) = ψ(x,y) =
∨n−1

i=1 (xi ∧ yi). Since g does not depend on xn, we have that g(x,y) =
∨n−1

i=1 (xi ∧ yi)
for all x and y. T0 is a minimum-size decision tree representing g; by the induction
hypothesis, we then know that T0 has size 2n − 1.

T1 represents a function h such that, when xn = true, h(x,y) = ψ(x,y) =
yn ∨ g(x,y). Since neither h nor g depends on xn, we have that h(x,y) = yn ∨ g(x,y)
for all x and y. The function h can be represented by the decision tree

(yn : 1 | ¬yn : T0)

since T0 represents g. This is a tree of size (2n − 1) + 1 = 2n. Since T1 is a minimum-
sized tree representing h, its size is then at most 2n.

Let T ′
1 be the tree obtained from T1 by repeatedly choosing any node partitioned

on the value of yn and replacing the subtree rooted at that node with its child subtree
corresponding to the test yn = false. T ′

1 represents a function h′ that does not depend
on yn and is identical to h when yn = false, i.e., T ′

1 represents g. By the induction
hypothesis, the size of T ′

1 is at least 2n−1. But T ′
1 is smaller than T1, since h depends

on yn and hence T1 has at least one node partitioned on the value of yn. Thus the

44

size of T1 is at least (2n − 1) + 1 = 2n. Combining this with the previous paragraph,
the size of T1 is exactly 2n.

The size of T is just the sum of the sizes of T0 and T1, i.e., (2n−1)+2n = 2n+1−1.
2

6.2 Rule Lists

Each leaf of a decision tree may be thought of as expressing the rule “if t then output
class c”, where c is the class labeling the leaf and t is the conjunction of all tests
labeling branches on the path from the root to the leaf. Thus each decision tree may
be thought of as a collection of such rules. The function ψn of Theorem 6.1 may also
be expressed by a set of rules: we have the rules “if xi ∧ yi then output true” for
each i, 1 ≤ i ≤ n, and a default rule “output false” to be used if none of the other
rules apply. But the structure of a decision tree imposes a rigid structure on the set
of rules expressed by the tree, which causes problems for representing functions such
as ψn. This has motivated some machine learning researchers [10, 35, 37, 44] to use
lists of rules themselves to represent hypotheses. A question that immediately arises
is how to evaluate the application of a rule list to an instance if more than one rule
applies. The simplest answer is to use the first rule that applies. We now define these
notions more precisely.

Definition 6.5 A rule is a pair (t, c), where c ∈ C and t is a conjunction of primitive
tests. t is called the precondition of the rule, and c its output class.

Definition 6.6 A rule list is a nonempty sequence of rules

(tr, cr) . . . (t1, c1)(t0, c0),

with t0 = true. It represents the function h : X → Y such that h(x) = ci if ti(x) is
true and tj(x) is false for all j > i; in this case we say that rule i captures instance x.
The final rule of a rule list is called the default rule.

Note that, for a rule list of r (non-default) rules, rule r is the first rule, rule 1 is
the last non-default rule, and rule 0 is the default rule.

Definition 6.7 Let ς be a positive number to be fixed later, which we will call the
start size. The size of a rule is ς plus the number of primitive tests in the precondition
of the rule. The size of a rule list is the sum of the rule sizes, i.e., rς + p, where r is
the number of rules and p the total number of primitive tests.

As with decision trees, by defining the size of a rule list we have defined a stratified
hypothesis space of rule lists. The exact stratification is determined by the start-size
parameter ς, which lets us choose a relative weighting between the number of rules
and the total number of primitive tests in determining the size of a rule list. If we use
some variant of Occam’s Razor for learning, for example, using the results on loose

45

ERM algorithms of Chapter 3 as a guide, then different values of ς define different
learning biases.

It is evident that the function ψn of Theorem 6.1 can be represented by a rule
list of n + 1 rules (including the default) with a total of 2n primitive tests — a far
cry from the 2n+1 − 1 leaves needed to represent ψn with a decision tree. But to
argue that we have gained in expressive power by using rule lists, we must show that
for any decision tree there is an equivalent rule list that is not too much “larger”.
Corresponding to each leaf of a decision tree is a rule whose precondition is the
conjunction of the primitive tests on the path from the root to the leaf, and whose
output class is the class labeling the leaf. If our instances are attribute vectors, as
discussed in Section 6.1, then some of the primitive tests may be superflous — e.g.,
if we have the test “xi ≤ 4” then we can dispense with the test “xi ≤ 5”. After
removing any superfluous tests, the rule corresponding to a leaf will have at most
N + 2L primitive tests, where N is the number of nominal attributes and L is the
number of linear attributes. If we put these rules together into a rule list, replacing
the precondition of the last rule with true, we obtain a rule list equivalent to our
tree, with s rules and at most (N + 2L)(s− 1) primitive tests, where s is the size of
the tree.

The bound of (N + 2L)(s− 1) primitive tests is not the best we can do, however;
we can construct an equivalent rule list using s rules and at most s log4 s primitive
tests, and the construction does not assume that instances are attribute vectors. For
all but small values of N and L or very large values of s, this s log4 s bound is an
improvement over (N + 2L)(s − 1). We prove this result beginning with a technical
lemma.

Lemma 6.2 Let 1 ≤ u ≤ v and 1 < b ≤ 4. Then u + u logb u + v logb v ≤
(u+ v) logb(u+ v).

Proof. We reduce the the problem as follows:

(u+ v) logb(u+ v) = u logb(u+ v) + v logb(u+ v)

= u logb

(

u
u+ v

u

)

+ v logb

(

v
u+ v

v

)

= u logb u+ v logb v + u logb

u+ v

u
+ v logb

u+ v

v
;

thus it suffices to show that y ≥ u, where

y
def
= u logb

u+ v

u
+ v logb

u+ v

v
.

If v = u, then y = 2u logb 2; but b ≤ 4 implies that logb 2 ≥ 0.5, hence y ≥ u. We
show that y ≥ u still holds for v > u by showing that dy/dv > 0:

dy/dv =
u

ln b

(

u

u+ v

)

1

u
+

v

ln b

(

v

u+ v

)(−u
v2

)

+ 1 · logb

u+ v

v

=
u

(u+ v) ln b
− u

(u+ v) ln b
+ logb

u+ v

v
> 0.

46

2

Theorem 6.3 For each decision tree T of size s there is an equivalent rule list with
s rules and a total of at most ⌊s log4 s⌋ primitive tests.

Proof. We prove the theorem by induction on s.
Base case (s = 1): T consists of a single node labeled by some class c. The equiv-

alent rule list is (true, c), which has 1 rule and 0 primitive tests, trivially satisfying
the theorem.

Induction step (s > 1): Assume the theorem holds for all trees of size less than
s. Let K ≥ 2 be the number of children of the root node of T . Let T1, . . . , TK be the
subtrees rooted at the children of T ’s root node, in order of decreasing size, and let
s1, . . . , sK be the sizes of the corresponding trees. Thus we have 1 ≤ si ≤ sj for all
i > j, and

∑K
i=1 si = s. By the induction hypothesis, for each Ti there is an equivalent

rule list Li with si rules and a total of at most ⌊si log4 si⌋ primitive tests. We write
(ti,j, ci,j) for rule j of Li.

Let Pi be the primitive test labeling the branch leading from the root of T to
subtree Ti. We then define L′

i to be the sequence of rules obtained from Li by
replacing each rule precondition ti,j(x) with ti,j(x)∧Pi(x). Note that L′

i is not a rule
list, because its final rule no longer has the trivial precondition true. Finally, we
define

L
def
= L′

KL
′
K−1 · · ·L′

2L1.

L is a rule list. In addition, it is equivalent to T . To see this, compare what
happens when we apply L and T to an instance x. Let a be such that Pa(x) holds
and Pi(x) does not for i 6= a. Such an a exists because the Pi define a partition of the
instance space X. Let b be the rule of La that captures x when La is applied to x.
Then T (x) = Ta(x) = La(x) = ca,b. Now consider what happens when L is applied
to x. Since Pi(x) is false for i 6= a, the precondition of every rule in every L′

i, i > a,
is false. Suppose a < K. The j-th rule in L′

a has precondition Pa(x) ∧ ta,j(x). Since
ta,j(x) is false for j > b and true for j = b, rule b of L′

a captures x. Similarly, if a = K
then rule b of La captures x. So L(x) = ca,b = T (x).

Now we consider the number of rules and primitive tests in L. Clearly, L has
∑K

i=1 si = s rules. Let p be the number of primitive tests in L. In addition to the
primitive tests in each Li, L also has si occurrences of the primitive test Pi, for each
i > 1. Thus

p ≤
K
∑

i=2

si +
K
∑

i=1

si log4 si.

Since 1 ≤ si+1 ≤ si for all i, repeated application of Lemma 6.2 with u = si+1 and
v =

∑i
j=1 sj for i = 1, 2, . . . , K − 1 gives us

K
∑

i=2

si +
K
∑

i=1

si log4 si ≤ s log4 s,

and hence p ≤ s log4 s. But p is an integer, so p ≤ ⌊s log4 s⌋, and the theorem is
proven. 2

47

6.3 Generating Test Problems

It is not known whether there exists any polynomial algorithm for learning the strat-
ified hypothesis spaces of decision trees or rule lists, under the PAC model or PAO
model. The results of Chapter 5 are certainly enough to provoke some pessimism as
to the possibility of finding interesting PAO learnability results. Still, it is worthwhile
to look at heuristic approaches for learning using these hypothesis spaces; we may
find algorithms which, even if it is known that their worst-case behavior is terrible,
have acceptable performance in some “average-case” sense.

Heuristic learning algorithms, like heuristic optimization algorithms in general, are
usually evaluated and compared empirically. The usual procedure is to collect sets
of examples from various “real-world” or somewhat artificial, but standard, learning
problems and compare performance on these sets of examples. But it may be diffi-
cult to interpret the results of such a comparison, because little is known about the
structure of the particular problem. For example, it is generally not known what the
minimum achievable error is, nor how large of a hypothesis is required to approach
this minimum error, etc. This difficulty may be overcome by the use of synthetic data
sets. The idea is to have a parameterized procedure for randomly generating target
distributions D over X × C. The procedure itself defines a probability distribution
over target distributions. Once a target distribution has been generated, one can
then generate independent training and test samples by drawing examples randomly
and independently from the target distribution. The learning algorithms to be com-
pared are then given the training sample as input, and the hypotheses they output
are compared on the test sample. By iterating this procedure, each time randomly
choosing a new target distribution, and averaging the results, we can then estimate
the expected error of the learning algorithms for the particular parameter setting we
have chosen.

In the remainder of this chapter we look at some methods for randomly generating
target distributions. Each of these methods uses an instance space of the form X =
Dn, where D is a domain of nominal, discrete linear, or continuous values. Each of
these methods takes the following parameters:

• n (the number of attributes);

• k (the number of classes);

• η (the noise level);

• m (the size of training sample);

• m′ (the size of test sample).

Each method also takes one or more additional parameters depending on the method.
In outline, they all work as follows:

1. Randomly generate a target function h.

2. Construct a probability distribution DX over X.

48

3. Construct a distribution D over X × C by adding a level η of uniform noise.
Specifically, the probability of (x, c) under D is pq, where p is the probability
of x under DX , q = 1 − η if c = h(x), and q = η/(k − 1) if c 6= h(x).

4. The m training examples and m′ testing examples are randomly and indepen-
dently selected from the distribution D.

Note that the target h has an error of η on the distribution D, and that this is the
minimum error achievable by any hypothesis.

For the methods described below, the target function h is either a decision tree
or a rule list. We try to make it so that the subset of X captured by each rule (or
covered by each leaf) has roughly the same probability as the subset captured by
any other rule (or leaf). This is an attempt to make it unlikely that there exists a
hypothesis with near-optimal error that is significantly smaller than h.

6.3.1 BRGEN0

BRGEN0 generates a rule list for the target hypothesis h, with the instance space

X
def
= {0, 1}n, and primitive tests of the form xi and ¬xi. BRGEN0 takes additional

parameters r and l, which specify the number of non-default rules and total number
of literals h must have. The hypothesis h is generated as follows:

1. Classes are (nearly) evenly distributed among the r + 1 rules. Each class is
used between ⌊(r + 1)/k⌋ and ⌈(r + 1)/k⌉ times, with the (r+1) mod k classes
that occur an extra time being chosen randomly without replacement from a
uniform distribution over C. The assignment of classes to rules is obtained by
initializing an array of length r+ 1 with the appropriate numbers of each class,
then randomly permuting the array, with all permutations being equally likely.

2. The literals are randomly chosen by selecting l pairs (i, j) randomly without
replacement from a uniform distribution over {1, . . . , r} × {1, . . . , n}. For each
pair (i, j) we add either xj or ¬xj to the precondition of rule i, the choice being
made at random with equal probabilities.

3. Rule lists with superfluous rules are disallowed. A rule is superfluous if it
captures no x ∈ X. Superfluous rules are disallowed by repeatedly generating h
as described in the previous steps, until a hypothesis with no superfluous rules
is generated.

Let ti be the precondition of rule i of h, and let Wi be the set of x ∈ X captured
by rule i. The distribution DX is defined by the following two properties:

1. The rules are equally likely to be chosen, i.e. if x is randomly selected according
to DX then Pr[x ∈Wi] = 1/(r + 1) for all i.

2. The distribution is uniform “within” each rule, i.e. for each i the elements of
Wi are equally likely.

49

for (i := 0 to r) R[i] := {ti}
for (i := 1 to r)

for (j := 0 to r − 1)
R[j] :=

⋃

t∈R[j] AnotB(t, ti)

Figure 6.1: Computation of the sets R[i]

AnotB(t, u) :
if (there is a literal l in t with ¬l in u) return {t}
S := ∅
for (each literal l in u but not t)
S := S ∪ {t ∧ ¬l}; t := t ∧ l

return S

Figure 6.2: Computation of AnotB

To implement DX we first produce a disjunctive normal form expression Ei for
each rule i. Ei holds for an instance x iff rule i captures x. Ei has the form

∨li
j=1 ti,j,

where the ti,j are mutually exclusive conjunctions of primitive tests and li is the
number of terms in the disjunction. Thus the ti,j, 1 ≤ j ≤ li, partition the set
of instances captured by rule i. Note that rule i is superfluous iff Ei is the empty
disjunction (i.e., false). Corresponding to each ti,j , we compute

• cnt[i, j]
def
= the number of x ∈ X for which ti,j(x) holds; and

• sum[i, j]
def
=
∑i

a=1 cnt[a, j].

To generate an instance x, we first randomly choose a number i from 0 to r. We
then randomly choose a number p in the range 0 to cnt[li] − 1, and choose j =
min{j′ : sum[i, j′] > p}. This ensures that the parts ti,j are chosen with probability
proportional to the number of instances they contain. Since ti,j is a conjunction of
literals, it specifies the values of certain entries of x; these are fixed at the required
values, and the remaining entries of x are chosen independently and randomly.

Let ti be the precondition of rule i. If t and u are conjunctions of primitive tests,

let AnotB(t, u) be a set of conjunctions that partition t ∧ ¬u. Let R[i]
def
= {ti,j : 1 ≤

j ≤ li}. Figure 6.1 gives the algorithm to compute the sets R[i], and Figure 6.2 gives
the algorithm to compute AnotB.

There is one problem with the above scheme: the number of parts ti,j can grow
exponentially with the number of rules, since each time the last line of Figure 6.1
is executed the size of R[j] can grow by a factor of ki, where ki is the number of
literals in ti. The problem is only exacerbated when one tries to extend this approach
to nominal attributes with more than two possible values. This difficulty motivated

50

rtree(s, A):
if (s = 1) return leaf

if (s = 2) return mktree(rand(A), leaf, leaf)
(l, u) := setBounds(s, |A|)
ls := rand({l, . . . , u}); rs := s− ls
i := rand(A); A′ := A− {i}
return mktree(i, rtree(ls, A′), rtree(rs, A′))

Figure 6.3: rtree

the development of BRGEN1, described below. Nevertheless, I have successfully used
BRGEN0 with r (number of non-default rules) as high as 13, without execution times
of more than a few minutes.

6.3.2 BTGEN

BTGEN generates a decision tree for the target hypothesis h, with the instance space

X
def
= {0, 1}n, and primitive partitions of the form {xi,¬xi}. BTGEN takes the

additional parameter s, which specifies the size of h. The structure of h (the decision
tree with class labels omitted) is generated by calling rtree(s, {1, . . . , n}), where the
procedure rtree is given in Figure 6.3.

Mktree(i, t1, t2) returns the decision tree whose root node is partitioned on xi,
with left subtree t1 and right subtree t2. For any finite set F , rand(F) returns an
element of F randomly selected from the uniform distribution. We write leaf for an
unlabeled leaf node. SetBounds() computes the minimum and maximum values of ls
for which 1 ≤ ls, s− ls ≤ 2|A|−1. Choosing ls within these bounds ensures that each
subtree has at least one node, and that we won’t run out of attributes (A = ∅) on a
recursive call of rtree.

Leaf nodes are labeled as follows. If the leaf node is not the right sibling of a pair
of sibling leaf nodes then its class is randomly chosen from a uniform distribution over
C. Otherwise the leaf node’s class is randomly chosen from a uniform distribution
over C − {c}, where c is the class of its sibling leaf node. (There is no point in
having two sibling leaf nodes with the same class, as the tree could be simplified
by deleting them and labeling their parent with the common class.) In addition,
labelings in which some class labels more than twice as many leaves as another class
are disallowed. This is implemented by generating a labeling, testing to see if it is
disallowed, and if so repeating the process.

Let Wi be the set of x ∈ X covered by leaf i. The distribution DX is defined by
the following two properties:

1. The leaves are equally likely to be chosen, i.e. if x is randomly selected according
to DX then Pr[x ∈Wi] = 1/s for all i.

51

2. The distribution is uniform “within” each leaf, i.e. for each i the elements of Wi

are equally likely.

The implementation is as follows. Randomly and uniformly choose an integer i
between 1 and s. The instance x is then chosen among those covered by leaf i. Each
primitive test on the path from the root to the leaf is of the form xj = v for some
1 ≤ j ≤ n and v ∈ {0, 1}. Fix the corresponding bits of x at the required values, and
randomly and independently choose the remaining bits of x.

6.3.3 BRGEN1

BRGEN1 generates a rule list for the target hypothesis h, with the instance space

X
def
= {0, 1}n and primitive tests of the form xi and ¬xi. BRGEN1 takes an additional

parameter r, which specifies the number of non-default rules h must have. The
instance distribution DX is just the uniform distribution on X. The target hypothesis
h is generated as follows:

1. The output classes of the rules are generated as for BRGEN0.

2. Let ai
def
= log2(i + 1), li

def
= ⌊ai⌋, and pi

def
= ai − li. Then rule i’s precondition

has li literals (with probability 1 − pi) or li + 1 literals (with probability pi).
This gives an expected value of ai literals, and a geometric mean of 1/(i + 1)
of the instance space covered by the rule’s precondition. The attributes to test
are chosen by randomly permuting the list of attributes and choosing the first
li (or li + 1) of them. The test values (xi = 0 or xi = 1) are chosen at random,
with 0 and 1 equally probable.

This generation method is intended to make each class roughly equally probable, and
make each rule capture a roughly equal portion of the instance space. Those instances
that are not covered by rules i + 1 through r should be equally divided among the
remaining i+1 rules; thus rule i should cover a fraction 1/(i+1) of the instance space
not covered by rules i + 1 through r. This is approximated by having rule i cover a
fraction 1/(i + 1) of the entire instance space, and relying on the fact that the rule
preconditions are independently generated.

6.3.4 NRGEN

NRGEN is an extension of BRGEN1 to nominal attributes with more than two possi-
ble values. NRGEN takes the additional parameters r (number of non-default rules)
and V (number of possible values of an attribute). The instance space is {1, . . . , V }n.
The primitive tests are of the form xi = v, for 1 ≤ i ≤ n and 1 ≤ v ≤ V .

A problem with directly applying the method used with BRGEN1 is that too few
primitive tests are used. If rule i (i > 0) has an expected ai = logV (i+ 1) primitive
tests, so that it covers a geometric mean of 1/(i + 1) of the instance space, then we
will have ai < 1 for i < V − 1, giving a positive probability that the rule has the
precondition true. Furthermore, the expected number of primitive tests in a rule

52

precondition increases rather slowly — only logarithmically in the rule number. For
example, if V = 5, then ai < 2 until i ≥ 24. We need to increase the number of
primitive tests for a rule somehow, but this raises a problem of its own: the fraction
of the input space covered by non-default rules is thereby decreased, possibly leading
to most instances being captured by the default rule. The method we describe in the
following paragraphs handles this problem as well, by having DX be a non-uniform
distribution.

Let α > 0 be a number to be determined later. The target rule list h is generated
as follows:

1. The output classes of the rules are generated as for BRGEN0.

2. Letting ai
def
= logV (α+ i), rule i has either ⌊ai⌋ or ⌈ai⌉ primitive tests, with the

respective probabilities chosen to give an expected value of ai. The attributes
to test are chosen randomly without replacement from a uniform distribution
over {1, . . . , n}. The value v for an attribute test xj = v is chosen randomly
from a uniform distribution over {1, . . . , V }.

We choose α such that the total number of primitive tests is the same as for
BRGEN1. Define

L
def
=

r
∑

i=1

log2(i+ 1);

L is the expected total number of primitive tests that BRGEN1 produces. We want

f(α)
def
=

r
∑

i=1

logV (i+ α) = L.

Note that f is a strictly increasing and convex-∩ function. Thus, once we find
values α0, α1 such that f(α0) ≤ L and f(α1) ≥ L, we can use bisection (the continuous
version of binary search) to find that α for which f(α) = L, to within a precision of
(f(α1) − f(α0))/2

N when N iterations are used. Since V > 2 we have logV (i+ α) <
log2(i+ α), thus f(1) < L, and so we choose

• α0 = 1.

Note that f(α) ≥ r logV (1 +α). Then to obtain f(α1) ≥ L it suffices that r logV (1 +
α1) = L; solving for α1, we get

• α1 = V L/r − 1.

We now consider what fraction of the instance space is captured by each rule. We
make use of the following theorem.

Theorem 6.4 Suppose that, for each i > 0, rule i covers a fraction 1/(i + α) of
the instance space not covered by rules i+ 1 through r. Then each non-default rule
captures an equal fraction 1/(r + α) of the instance space.

53

Proof. We prove the theorem by downward induction on i, the rule number.
Base case (i = r): Rule r covers a fraction 1/(r + α) of the instance space; since

there are no rules preceding rule r, it also captures this same fraction.
Induction step (0 < i < r): Assume that rules i + 1 through r each capture a

fraction 1/(r + α) of the instance space. Then together they capture a total fraction
(r − i)/(r + α) of the instance space. Rule i then captures a fraction

(

1 − r − i

r + α

)(

1

i+ α

)

=
(

i+ α

r + α

)(

1

i+ α

)

=
1

r + α
.

2

As with BRGEN1, we use the facts that rule i covers a geometric mean fraction
1/(i+α) of the total instance space, and that the rules are generated independently,
as a substitute for rule i covering a fraction 1/(i+α) of the instance space not covered
by rule i+ 1 through r.

Assuming that each of the r non-default rules captures a fraction 1/(r + α) of
the input space, this leaves a fraction α/(r + α) of the input space captured by
the default rule. In order to make all rules equiprobable, we then use an instance
distribution DX that is uniform within the set of instances captured by the default
rule, and uniform within the set of instances captured by non-default rules, but assigns
different probabilities to the two types of instances. Since the default rule captures
a factor α more instances than a non-default rule, the instances captured by α must
be a factor α less probable than those captured by non-default rules. Thus we use
the following procedure to generate instances:

1. Randomly select an instance x from the uniform distribution over X.

2. If x is captured by a non-default rule, then exit outputting x.

3. If x is captured by the default rule, then, with probability 1/α, exit outputting
x.

4. Go to 1.

On each iteration of the above procedure, the probability of exiting is

r

r + α
+

1

α
· α

r + α
=
r + 1

r + α
.

Thus the procedure iterates an average of I
def
= (r + α)/(r + 1) times per instance

generated. How does this grow as a function of V and r? We can’t write a closed-
form expression for I in terms of V and r, since we don’t have a closed form for α.
However, we can bound I. In computing α by bisection we used V L/r −1 as an upper
bound on α. But from the definition of L it is clear that L/r ≤ lg(r + 1). Thus α is
at most V lg(r+1) − 1, which can be rewritten as (r+1)lg V − 1, so I < (r+1)lg V −1 +1.
This is only mildly superpolynomial in r and V . In addition, we can compute α given
V and r. Figure 6.4 plots the computed value of I for each value of V from 3 to 10
and each value of r from 1 to 50. Note that, even though I may grow faster than we
would like, it is not impractically large for even the worst case computed (V = 10
and r = 50).

54

5 10 15 20 25 30 35 40 45 50
1

2.5

5

10

25

50

100

250

500

r

I

V = 3

V = 4

V = 5

V = 6

V = 7

V = 8

V = 9

V = 10

Figure 6.4: I as a function of r.

55

6.3.5 LRGEN

LRGEN may be thought of as a modification of BRGEN1 for discrete linear attributes.
It takes the additional parameters r (number of non-default rules) and V (number

of possible values for an attribute). The instance space is X
def
= {1, . . . , V }n. The

instance distribution DX is just the uniform distribution on X. The primitive tests
have the form xi ≤ θ or xi > θ for 1 ≤ i ≤ n and 1 ≤ θ < V (a test xi ≤ V would
be satisfied by all elements of X). In generating the target hypothesis h, LRGEN
chooses the rule classes, number of attributes to test for a rule, and which attributes
to test, in exactly the same way as BRGEN1.

To generate the actual primitive tests in a rule’s precondition, LRGEN first gen-
erates for each attribute j to be tested an integer ϕj such that 1 ≤ ϕj ≤ V −1. Then
with equal probabilities LRGEN chooses the test xj ≤ ϕj or xj > V − ϕj . Thus we
never have a two-sided test (i.e., θ0 < xj ≤ θ1), which is an unfortunate limitation,
but it does considerably simplify the process of generating the rule list h.

We now discuss the choice of the ϕj. Let A be the set of attributes to be tested
in the precondition of rule i. The test on attribute j covers a fraction ϕj/V of the
instance space. For the same reasons as discussed with BRGEN1, we would like
the precondition of rule i to cover a fraction 1/(i + 1) of the instance space. Thus
we would like

∏

j∈A(ϕj/V) = 1/(i + 1). This won’t, in general, be possible, due
to the fact that the ϕj take on only a finite set of values. Instead we choose the
ϕj randomly and independently, with an expected value of Φj for ϕj , and enforce
∏

j∈A(Φj/V) = 1/(i + 1). This assures that the geometric mean fraction of the
instance space covered is 1/(i + 1). To keep the variance low, we choose ϕj to be
either ⌊Φj⌋ or ⌈Φj⌉, with the respective probabilities chosen to achieve an expected
value of Φj .

Now only the choice of the Φj remains. Note that

∏

j∈A

Φj

V
=

1

i+ 1
⇔

∑

j∈A

log Φj = |A| log V − log(i+ 1)
def
= Λ.

Let Φj = exp(λj). If A = {j} then we simply set λj = Λ. Otherwise |A| > 1, and
we randomly choose the vector (λj)j∈A from the uniform distribution over the set of
such vectors satisfying

∑

j∈A λj = Λ and 0 ≤ λj ≤ log(V − 1) for all j.

Let j0 be any element of A, and let A0
def
= A−{j0}. Figure 6.5 gives the procedure

that implements the above random choice of (λj)j∈A. One might be concerned about
the repeat-until loop of Figure 6.5; how many times, on average, does this loop iterate?
I answered this question experimentally for all values of V from 3 to 16, and all values
of i from 1 to 100. For each pair of values (V, i) I ran the above procedure 10,000
times and averaged the number of iterations of the repeat-until loop. This average
generally increased as V or i increased, but never exceeded 30.

6.3.6 Irrelevant Attributes

In addition to what I have described, BRGEN1, NRGEN and LRGEN have an ad-
ditional parameter ñ, which is the number of relevant attributes. If ñ 6= n, the only

56

repeat
s := 0
for j ∈ A0 do

randomly choose λj from the interval [0, log(V − 1)]
s := s + λj

until Λ − log(V − 1) ≤ s ≤ Λ
λj0 := Λ − s

Figure 6.5: Choice of (λj)j∈A

thing that changes is the generation of the target rule list. In this case the problem
generators first proceed as if there were only ñ attributes; then n − ñ additional,
irrelevant attributes are added, and the set of all attributes is randomly permuted, so
that the irrelevant attributes are randomly scattered throughout the attribute vector.

57

Chapter 7

Rule Induction

In this chapter I describe a heuristic approach to rule induction (learning using rule
lists as the hypothesis space) called BBG. The approach uses a combination of greedy
techniques (successively insert the best new rule into the existing rule list) with
branch-and-bound techniques (to find the best new rule); hence the acronym “BBG”.
BBG takes an Occam’s Razor approach to learning, in that it attempts to keep the
rule-list size low. It also naturally handles noisy or stochastic learning situations.
The current version of BBG is called BBG6.

An advantage of the BBG approach is that it allows the use of arbitrary loss
functions. Other algorithms for tree induction or rule induction, such as CART [7],
C4.5 [35], CN2 [9, 10] or PVM [44], are restricted to using the misclassification loss
or a limited variation of it having the form l(y′, y) = w(y) · (y′ 6= y).

7.1 Overview of BBG

The BBG approach to rule induction consists of two independent parts:

1. An algorithm GREEDY which produces a sequence of rule lists of increasing
size and decreasing empirical risk.

2. A method for trading off empirical risk and size to choose one of the rule lists
output by GREEDY. (As we saw in Chapter 2, there is a tendency for learning
algorithms to fit noise or statistical flukes of the data when excessively complex
hypotheses are allowed.)

We now consider these separately.

7.1.1 Algorithm GREEDY

Algorithm GREEDY, shown in Figure 7.1, works by succesively inserting new rules
into the current rule list. The rule to insert is chosen to maximize the ratio (decrease
in empirical risk) / (increase in hypothesis size). We call this the gain-cost ratio.

58

GREEDY(z, S):
i := −1
h := (true, c), where c is the most common class in z
repeat
i := i+ 1; hi := h
(t, c, p) := BESTRULE(h, z)
insert rule (t, c) into h just before rule p

until (r̂(h; z) ≥ r̂(hi; z) or siz(h) > S)

Figure 7.1: Procedure GREEDY

Definition 7.1 Suppose we are given a rule list h = λr . . . λ1λ0 and sequence of
examples z. Let λ be a rule and 0 ≤ p ≤ r. Then the gain of (λ, p), written gain(λ, p),
is r̂(h; z)− r̂(h′; z), where h′ is obtained from h by inserting λ immediately before rule
p. (Recall from Def. 3.4 that r̂(h; z) is the empirical risk of h on z.) The gain-cost ratio

of (λ, p), written gcr(λ, p), is gain(λ, p)/siz(λ). In addition, gain(λ)
def
= maxp gain(λ, p)

and gcr(λ)
def
= maxp gcr(λ, p).

GREEDY makes use of a procedure BESTRULE(h, z), which returns a pair (λ, p)
with high (hopefully maximum) gain-cost ratio. BESTRULE is discussed in Sec-
tion 7.2. GREEDY takes as input a sequence of training examples z and a size bound
S. It then outputs a series of rule lists h0, h1, . . ., stopping when it can no longer
decrease the empirical risk, or when the size bound is exceeded.

7.1.2 Trading Off Empirical Risk and Hypothesis Size

The literature contains various methods for the second part of the BBG approach
(trading off empirical risk and hypothesis size). These include cross-validation [7],
hold-out sets [12], the minimum description-length principle [36], structural risk min-
imization [42], and heuristic error estimates [35]. BBG6 uses 10-fold cross-validation
to choose the best size bound for algorithm GREEDY:

1. Partition the training sample z into ten (nearly) equal-sized parts z1, . . . , z10.
Let z̃i be z with the subsequence zi removed.

2. Run GREEDY ten times, each time using nine parts (z̃i) for training and the
remaining part (zi) to evaluate the rule lists produced. In these runs use S =
|z̃i|.

3. Let h[i, s] be the largest hypothesis output by GREEDY when trained on z̃i,
of size s or less. Since successive rule lists have increasing size and decreasing
empirical risk, h[i, s] is also the minimum-risk hypothesis output by GREEDY,
of size s or less. Choose S0 so as to minimize 1

10

∑10
i=1 r̂(h[i, S0]; zi)), the average

empirical risk on the test part.

59

4. Now run GREEDY(z, S0) and choose the last (lowest empirical risk) rule list
output by GREEDY.

The use of cross-validation is a heuristic approximation to having a separate hold-
out set on which to evaluate different size bounds. It has the practical advantage
that all the examples available are used for training, and all the examples available
are used for testing, but the training and test samples used in any one particular run
are separate and independent. In this light, the above learning strategy may be seen
as a heuristic approximation of the method analyzed in Chapter 3, based on the use
of a loose ERM algorithm. (Of course, we can’t really call G a loose ERM algorithm,
because we have proven no approximation bounds.)

An early version of BBG set the size bound S of GREEDY to the number of
training examples, and used a heuristic error estimate, based on the empirical risk
and hypothesis size, to choose one of the hi [40]. I abandoned this approach in favor
of cross-validation because I found the latter to be more robust. Of course, there
is a disadvantage to using 10-fold cross-validation: it increases the total run-time
of the learning algorithm about 10-fold. But in any practical application the time
and expense of collecting the training data is likely to exceed even that of running
a learning algorithm for several hours. Thus the increased running time of cross-
validation appears to be an acceptable price to pay for its advantages.

7.1.3 Instances and Primitive Tests

BBG6 handles nominal attributes and discrete linear attributes, but not continuous
attributes. For the purpose of demonstrating the promise of the BBG approach of
greedy rule insertion using the criterion of maximizing the gain-cost ratio, this is not
a serious deficiency; however, a practical system should have some means of dealing
with continuous attributes. The simplest approach is to do what other classification
algorithms restricted to discrete attributes have done, and apply a preprocessor to
discretize continuous attributes. Some methods of doing this are described by Kerber
[26] and Catlett [8]. There is, however, no fundamental reason why one could not
apply BBG’s greedy rule-insertion strategy in the presence of continuous attributes.

The primitive tests are as described in Section 6.1, with one exception. It is
common in many machine-learning tasks to have unknown attribute values. BBG6
treats “?” (don’t know) as just another possible value for every attribute. For linear
attributes the value “?” is considered incomparable to all the others. Thus the prim-
itive tests xi ≤ v and xi > v are false if xi = ?, and we add additional primitive tests
xi = ? and xi 6= ?. If there are V possible values for discrete linear attribute i, there
are a total of 2(V − 1) + 2 = 2V primitive tests for attribute i — there is no point in
including the tests xi ≤ V , which is always true, or xi > V , which is always false.

In the search for a rule of maximum gain-cost ratio, there are some combinations
of primitive tests that can be immediately rejected.

Theorem 7.1 The gain-cost ratio of a rule is 0 if its precondition contains two mu-
tually exclusive primitive tests P1 and P2. In particular, this holds if P1 and P2 have
any of the following forms:

60

1. xi = v1 and xi = v2, where v1 6= v2.

2. xi ≤ v1 and xi > v2, where v1 ≤ v2.

3. xi = ? and P , where P has the form xi 6= ?, xi ≤ v, or xi > v.

Proof. Obvious. 2

Definition 7.2 We say that a predicate P1 onX is stronger than P2, and P2 is weaker
than P1, if P1(x) ⇒ P2(x) for all x ∈ X.

Theorem 7.2 The gain-cost ratio of a rule λ having positive gain may be increased
by removing from the precondition any primitive test P2 for which a stronger test
P1 6= P2 is also in the precondition. In particular, this holds if P1 and P2 have any of
the following forms:

1. xi ≤ v1 and xi ≤ v2, where v1 < v2.

2. xi > v1 and xi > v2, where v1 > v2.

Proof. Removing the test P2 produces an equivalent precondition, hence the gain
is unchanged. But removing P2 decreases the rule size by 1. If gain(λ) > 0 then
decreasing the denominator of the gain-cost ratio while leaving the numerator un-
changed increases the gain-cost ratio. 2

Definition 7.3 A pair of primitive tests is incompatible if it has of any of the five
forms given in Theorems 7.1 and 7.2. The pair is compatible if it is not incompatible.
A rule (t, c) or conjunction t is proper if t contains no two incompatible primitive
tests.

BESTRULE need only consider proper rules, since by Theorems 7.1 and 7.2, if a
positive gain is achievable and (λ, p) maximizes the gain-cost ratio, then λ is proper.

BBG6 preprocesses the training sample, turning each instance into a bit vector
with a position for every primitive test indicating whether or not the test evaluates
true. The precondition of a rule can likewise be represented as a binary vector, with
1 indicating the presence of a primitive test in the conjunction and 0 its absence.
Thus in the remainder of this chapter we will take the precondition of a rule to be an
element of {0, 1}N , where N is the total number of primitive tests.

7.2 Implementation of BESTRULE

The difficult part, of course, is implementing BESTRULE. BBG6 uses a branch-and-
bound search algorithm with memory and time limits. Because of these limits there
is no guarantee of optimality, but optimal or near-optimal results are often obtained
(as determined by comparing the gain-cost ratio of the best solution found with an
upper bound on the gain-cost ratio for unexplored portions of the search tree).

61

7.2.1 Parameters

Throughout Section 7.2 we use the following:

• l is the loss function. This may be implemented as a matrix of the values l(y′, y),
for y, y′ ∈ C.

• h is the current hypothesis, passed as an argument to BESTRULE; it has r
non-default rules.

• z = (x1, y1) . . . (xm, ym) is the sequence of training examples, passed as an
argument to BESTRULE.

• N is the total number of primitive tests.

Actually, h itself is not passed to BESTRULE. All BESTRULE needs to know
about h is h(xi) and which rule of h captures xi, for each 1 ≤ i ≤ m. In place of h,
BESTRULE is passed the following:

• The number r of non-default rules in h.

• An array cap[0, . . . , r+ 1] such that examples cap[p] through cap[p+ 1]− 1 are
the examples captured by rule p, for all 0 ≤ p ≤ r. Note that cap[0] = 0 and
cap[r + 1] = m.

• An array hclass[1, . . . , m] such that hclass[i] = h(xi) for all 1 ≤ i ≤ m.

Note that the examples in z are ordered according to the rule that captures them;
i.e., the examples captured by rule 0 come first, followed by the examples captured
by rule 1, etc. The last thing BESTRULE does before returning its answer (λ, p) is
to update z, cap and hclass to reflect the insertion of λ just before rule p in h, in
preparation for the next call of BESTRULE.

7.2.2 Search Tree Structure

Branch-and-bound algorithms explore a search tree, the nodes of which correspond
to partial solutions. Equivalently, the nodes can be thought of as sets of solutions (all
completions of the partial solution). Leaf nodes are complete (single) solutions. The
children of a node comprise a partition of the set of solutions corresponding to the
node. The goal is to find a solution λ maximizing φ(λ), for some objective function φ.
When a node ν is reached one computes an upper bound u on φ(λ) for λ an arbitrary
completion of ν; if u ≤ φ(λ⋆), where λ⋆ is the best solution found so far, there is no
need to explore the subtree rooted at ν.

Definition 7.4 The search tree for BESTRULE has the following form:

• A non-root node is a tuple ν = (t, c), where t ∈ {∗, 0, 1}N , c ∈ C, and tests i
and j are compatible whenever ti = 1 and tj ∈ {∗, 1}. ν represents the set of
proper rules that can be obtained by replacing each ∗ entry of t with 0 or 1.

62

• If t has no ∗ entries then ν is a leaf node.

• If t has some ∗ entry then ν has two children, child(ν, i, 0) and child(ν, i, 1), for
some i s.t. ti = ∗. We define child(ν, i, 0) to be the node obtained by setting ti
to 0, and we define child(ν, i, 1) to be the node obtained by setting ti to 1 and
tj to 0 for all j incompatible with i.

• The children of the root node are the |C| nodes of form (t, c), where c ∈ C and
ti = ∗ for all i.

• The function we seek to maximize for a leaf λ is gcr(λ).

Leaf nodes are rules. The insertion position is not part of the node information
because the node evaluation procedure incrementally evaluates every possible position
for inserting the rule in a single pass through the data. Some additional useful
definitions follow.

Definition 7.5 We say that ν is expanded on test i if the children of ν are child(ν, i, 0)
and child(ν, i, 1).

Definition 7.6 A completion of node ν = (t, c) is any proper rule obtained by re-
placing each ∗ entry of t with 0 or 1. The trivial completion of ν, written ν◦, is
obtained by setting each ∗ entry to 0. A unit completion is obtained by replacing one
∗ entry with 1 and the remainder with 0.

The leaf descendants of a node ν are all the completions of ν. This holds regardless
of how the test on which to expand a node is chosen. Note that the precondition of
ν◦ is weaker than that of any other completion of ν.

Definition 7.7 Let t ∈ {0, 1}N . We write t ∧ [i] for the vector obtained from t by
setting ti to 1, or equivalently, the conjunction obtained from t by adding primitive
test i. We define a restriction of t to be any proper t′ obtained from t by changing
any number of 0 entries to 1, or equivalently, by adding any number of additional
primitive tests to the conjunction. A restriction of the rule (t, c) is any rule (t′, c),
where t′ is a restriction of t.

7.2.3 Good and Bad Examples

Let us consider how the insertion of a rule into h affects the empirical risk on z. Since
the empirical risk is the average loss on the examples, we look at how inserting a new
rule affects the loss for a single example.

Definition 7.8 Let z = (x, y). Then δ(z, c)
def
= l(c, y) − l(h(x), y), and δ(z, λ, p)

def
=

δ(z, h′(x)), where h′ is the rule list obtained by inserting rule λ at position p in h
(i.e., just before rule p of h).

Definition 7.9 κ(x) = j if x is captured by rule j of h.

63

Lemma 7.3 If λ = (t, c) and z = (x, y) then δ(z, λ, p) = (t(x) ∧ κ(x) ≤ p) · δ(z, c).

Proof. Write K(λ, p,x) for “rule λ captures x when inserted at position p.” If
K(λ, p,x) then h′(x) = c and so δ(z, λ, p) = δ(z, c). Otherwise h′(x) = h(x), so
δ(z, λ, p) = 0. Thus

δ(z, λ, p) = (K(λ, p,x)) · δ(z, c).
But K(λ, p,x) holds iff t(x) holds and x is not captured by any of the rules p+1, . . . , r;
i.e., K(λ, p,x) ⇔ t(x) ∧ κ(x) ≤ p. 2

It is useful to split the gain into two parts: the contributions of examples whose
loss decreases (“good examples”), and the contributions of the examples whose loss
increases (“bad examples”).

Definition 7.10 G(λ, p)
def
=
∑m

i=1 max{0,−δ(zi, λ, p)} and

B(λ, p)
def
=
∑m

i=1 max{0, δ(zi, λ, p)}.

If we use the misclassification loss, then G(λ, p) is just the number of misclassified
examples which become correctly classified after inserting rule λ at position p, and
B(λ, p) is the number of correctly classified examples which become misclassified. G
and B are useful for computing the gain and bounding it.

Lemma 7.4 gain(λ, p) = 1
m

(G(λ, p) − B(λ, p)).

Proof. Using the definitions of gain (Def. 7.1), empirical risk (Def. 3.4), and δ
(Def. 7.8), we obtain

gain(λ, p) = r̂(h; z) − r̂(h′; z) = 1
m

∑m
i=1 l(h(xi), yi) − l(h′(xi), yi)

= 1
m

∑m
i=1 −δ(zi, λ, p) = 1

m
(G(λ, p) −B(λ, p))

2

Lemma 7.5 If λ′ is a restriction of λ and p′ ≤ p, then G(λ′, p′) ≤ G(λ, p) and
B(λ′, p′) ≤ B(λ, p).

Proof. Follows directly from Lemma 7.3 and the definitions of G and B. 2

Corollary 7.6 1
m
G(ν◦, r) ≥ gain(λ, p) for any completion λ of ν.

Proof. Any completion λ of ν is a restriction of ν◦. Since p ≤ r, we then have by
Lemma 7.5 that G(ν◦, r) ≥ G(λ, p). The result then follows from Lemma 7.4 and the
fact that B(λ, p) ≥ 0. 2

We now present a procedure called goodAndBad, which is used in the evaluation
of a node ν. This procedure does the following:

64

goodAndBad(ν, da, ga, ba):
let (v, c) = ν and (t, c) = ν◦

g := 0; b := 0
for (j := 1 to N)
ga[j] := 0; ba[j] := 0

J := N + 1
for (p := 0 to r)

for (i := cap[p] to cap[p+ 1] − 1) if (t(xi))
for (j := 1 to N) if (Pj(xi))
ga[j] := ga[j] + max{0,−δ(zi, c)}
ba[j] := ba[j] + max{0, δ(zi, c)}

g := g + max{0,−δ(zi, c)}
b := b + max{0, δ(zi, c)}

ρ := (g − b)/siz(t, c)
if (ρ > ρ⋆)
ρ⋆ := ρ; p⋆ := p; J := 0

for (j := 1 to N) if (vj = ∗)
da[j] := max{da[j], ga[j] − ba[j]}
ρ := (ga[j] − ba[j])/(1 + siz(t, c))
if (ρ > ρ⋆)
ρ⋆ := ρ; p⋆ := p; J := j

if (J = 0) λ⋆ := (t, c)
if (1 ≤ J ≤ N) λ⋆ := (t ∧ [J], c)
return (g, b)

Figure 7.2: Procedure goodAndBad

• It computes G(t∧ [i], c, r) and B(t∧ [i], c, r) for all i, where ν◦ = (t, c), storing
the results in arrays ga and ba.

• It computes mgcr(ν◦, p) and mgcr(λ, p) for all unit completions λ of ν and
0 ≤ p ≤ r, updating as necessary λ⋆ and p⋆ (the current best rule and insertion
position), and ρ⋆ = mgcr(λ⋆, p⋆).

• It computes mgain(λ) for every unit completion λ of ν, storing the results in
the array da.

• It computes and returns the values G(ν◦, r) and B(ν◦, r).

We will see later how these computed values are used in the evaluation of a node.
The procedure goodAndBad does all of the above in the same asymptotic time as

needed to compute gcr(ν◦, r), i.e., Θ(mN) time. It makes use of the array hclass to
compute δ(zi, c) in constant time, using δ(zi, c) = l(c, yi) − l(hclass[i], yi). It uses the
array cap and the ordering of examples in z to compute κ(xi), since κ(xi) = p for

65

cap[p] ≤ i < cap[p + 1]. Figure 7.2 gives the algorithm. Pj stands for primitive test
j. Note that because of the preprocessing of examples, mentioned in Section 7.1.3,
the test Pj(x) can be carried out in O(1) time simply by checking bit j of (the
preprocessed) x.

7.2.4 Dominance

Besides the use of upper bounds, branch-and-bound algorithms often make use of
dominance relations to identify subtrees that are known not to contain the optimal
solution, and thus can be pruned.

Definition 7.11 A node ν θ-dominates node ν ′ of the search tree if for every com-
pletion of ν ′ with gain-cost ratio greater than θ, there exists a completion of ν that
has a higher gain-cost ratio.

Suppose the best rule found so far has a gain-cost ratio of θ, and ν θ-dominates
ν ′. Then every leaf of the subtree rooted at ν ′ is known to be either nonoptimal or
no better than the best rule found so far. Since an optimal rule does exist (there
are only a finite number of rules to consider), there is no need to explore the subtree
rooted at ν ′.

A trivial case of θ-dominance occurs when we know that no completion of a node
has a gain-cost ratio greater than θ.

Theorem 7.7 Suppose that gcr(ν◦) ≤ θ and G(ν◦, r) ≤ mθ(1 + siz(ν◦)). Then any
node θ-dominates ν.

Proof. We prove the theorem by showing that no completion of ν has gain-cost
ratio greater than θ. Certainly ν◦ does not. Any nontrivial completion λ of ν has

siz(λ) ≥ 1 + siz(ν◦)
def
= S. Using this together with Corollary 7.6 we have

gcr(λ, p) ≤ gain(λ, p)

S
≤ G(ν◦, r)

mS
≤ mθS

mS
= θ.

2

We shall find it useful to consider the quantity B(t, c, p)−B(t∧ [i], c, p), i.e., the
sum of the weights of the “bad” examples ruled out by adding a new primitive test i.
The following lemma shows that this quantity can only decrease for restrictions of t.

Lemma 7.8 Let t′ be a restriction of t ∈ {0, 1}N , and let t′i = 0. Then
B(t′, c, p) −B(t′ ∧ [i], c, p) ≤ B(t, c, r) −B(t ∧ [i], c, r).

Proof. Let us write Pi for primitive test i. Then

B(t′, c, p) − B(t′ ∧ [i], c, p)

=
∑

j

((t′(xj)) − (t′(xj) ∧ Pi(xj))) · (κ(xj) ≤ p) · max{0, δ(zj, c)}

66

=
∑

j

(t′(xj)) · (¬Pi(xj)) · (κ(xj) ≤ p) · max{0, δ(zj, c)}

≤
∑

j

(t(xj)) · (¬Pi(xj)) · max{0, δ(zj, c)}

=
∑

j

((t(xj)) − (t(xj) ∧ Pi(xj))) · max{0, δ(zj, c)}

= B(t, c, r) −B(t ∧ [i], c, r)

2

We are now ready to state and prove our main dominance theorem.

Theorem 7.9 Let θ ≥ 0, ν◦ = (t, c), ti = 0, and B(t ∧ [i], c, r) + mθ ≥ B(t, c, r).
Then child(ν, i, 0) θ-dominates child(ν, i, 1).

Proof. It suffices to prove the theorem for θ > 0. To see this, suppose that θ = 0.
Since there are only a finite number of rule-position pairs (λ, p) and at most N + 1
different rule sizes, there are only a finite number of different gain-cost ratios. Thus
there is some ǫ > 0 which is smaller than any positive gain-cost ratio. Since ǫ > 0 = θ
and B(t∧[i], c, r)+mθ ≥ B(t, c, r), we have B(t∧[i], c, r)+mǫ ≥ B(t, c, r). Applying
the theorem with ǫ in place of θ, we find that child(ν, i, 0) ǫ-dominates child(ν, i, 1).
But gcr(λ) > θ = 0 ⇔ gcr(λ) > ǫ for every rule λ, so we also have child(ν, i, 0)
θ-dominates child(ν, i, 1).

Thus we now assume that θ > 0. We prove the theorem by proving that
gcr(t′∧ [i], c, p) < gcr(t′, c, p) for every 0 ≤ p ≤ r and restriction t′ of t s.t. t′i = 0 and
gcr(t′ ∧ [i], c, p) > θ. In the following we write t′′ for t ∧ [i].

From Lemma 7.8 and the statement of the theorem, we have

B(t′, c, p) −B(t′′, c, p) ≤ B(t, c, r) − B(t ∧ [i], c, r) ≤ mθ < m gcr(t′′, c, p). (7.1)

From Lemma 7.5 we have G(t′′, c, p) − G(t′, c, p) ≤ 0; adding this difference to the
left-hand side of (7.1), applying Lemma 7.4, and dividing by m, we obtain

gain(t′′, c, p) − gain(t′, c, p) < gcr(t′′, c, p). (7.2)

Letting S
def
= siz(t′, c), we have

gain(t′′, c, p) − gcr(t′′, c, p) = ((1 + S) − 1) gcr(t′′, c, p) = S gcr(t′′, c, p). (7.3)

Rearranging (7.2), applying (7.3), and dividing by S, we then find that gcr(t′′, c, p) <
gcr(t′, c, p). 2

We make use of dominance as follows. Given a node ν = (v, c), we step through the

tests i such that vi = ∗. If ν̃
def
= child(ν, i, 1) is (ρ⋆/m)-dominated, then (conceptually)

we expand ν on test i and immediately prune the subtree rooted at ν̃. Operationally,
we simply set vi to 0. This is done by the dominate procedure, shown in Figure 7.3.
It uses Theorems 7.7 and 7.9, and the values ga, ba, and b computed by procedure
goodAndBad. The application of Theorem 7.7 is based on the following two facts:

67

1. 1 + siz(ν̃◦) = 2 + siz(ν◦).

2. gcr(ν̃◦) ≤ ρ⋆/m, since the preceding call of procedure goodAndBad evaluated
the rule ν̃◦.

The procedure dominate runs in O(N) time.

7.2.5 Choosing a test on which to expand

Part of evaluating a node is choosing a test on which to expand it. In general, because
of time and space limits, it will not be feasible to carry the branch-and-bound search
to completion; so we want the search to concentrate on finding good solutions early.
To this end, our goal is to expand on that test whose addition seems most likely to
lead to a good solution.

If ν = (v, c) is the node to be expanded and ν◦ = (t, c), one possibility is to
expand on the test i (with vi = ∗) that maximizes G(t ∧ [i], c, r), since this gives us
the greatest upper bound on the gain-cost ratio for completions of child(ν, i, 1). This
was tried in an early version of BBG, but it has the disadvantage that it is attracted
to weak tests, which can lead the search astray.

Another obvious choice is to expand on the test i (with vi = ∗) that maximizes
gain(t ∧ [i], c). This is in fact what BBG6 does when gain(t, c, r) > 0. But there is
a problem with this choice when gain(t, c, r) < 0: the simplest way to increase the
gain is to choose a test i sufficiently strong that gain(t ∧ [i], c, 0) = 0, i.e., no good
or bad examples at all are captured. This problem is especially severe when v has
few 1 entries (as is the case early in the search) and h already has a low empirical
risk. In this case we can expect gain(t, c, r) to be very negative, since there are few
examples whose classification can be improved, and many whose classification can be
worsened.

If we are using the misclassification loss, one possible solution to this problem is
to use an information gain criterion. Information gain is a concept from information
theory [30], and has been used in algorithms for learning decision trees [7, 35], as a
criterion for choosing a test on which to partition a node. If U is a binary random
variable with probability pi of being i, then the entropy of U is

H(U)
def
= H(p0, p1)

def
=
∑

i

−pi log2 pi,

dominate(ν, ga, ba, b):
Let (v, c) = ν
for (j := 1 to N) if (vj = ∗)

if (ga[j] ≤ ρ⋆ · (2 + siz(ν◦)) ∨ ba[j] + ρ⋆ ≥ b)
vj := 0

Figure 7.3: Procedure to restrict search using dominance

68

where we let 0 log2 0 = 0. H(U) is a measure of the uncertainty about U ’s actual
value. Suppose that there is another random variable V upon which U has some
dependence. In particular, U has probability pi,j of being j when V = i. Given that
V = i, U has an entropy of H(pi,0, pi,1). If V has probability qi of being i, then the
conditional entropy of U , given V , is

H(U |V)
def
=
∑

i

qiH(pi,0, pi,1) = −
∑

i,j

qipi,j log2 pi,j;

this measures the expected amount of uncertainty remaining about U after V has
been observed. Then the amount of information about U we can expect to gain from
observing V is

I(U ;V)
def
= H(U) −H(U |V).

Recall that there is a target distribution D over X × C from which examples are
drawn. Let D′ be the conditional distribution obtained from D by restricting it to
examples which are either good or bad for ν◦ (recall that some examples may be
neither good nor bad). Let z = (x, y) be a random variable distributed as D′. Let

U
def
= (z is good), and Vi

def
= Pi(x) (where Pi is primitive teste i). If I(U ;Vi) is high,

then Pi would seem to be a good test to add to the precondition of ν◦, assuming that

Pr[U | Pi(x)] ≥ Pr[U | ¬Pi(x)]; (7.4)

otherwise, ¬Pi is the test we really want. Let an available test be one for which
vi = ∗. Then our strategy is to pick an available test i satisfying (7.4) that maximizes
I(U ;Vi), which is equivalent to maximizing −H(U |Vi). If there is no available test
i satisfying (7.4), then none of the available tests looks promising, and we choose
among them arbitrarily.

In reality, we estimate (7.4) and −H(U |Vi) by calculating the corresponding em-
pirical quantitities on the training examples. Let g and b be the number of good and
bad examples for ν◦ = (t, c), let gi and bi be the numbers of good and bad examples

for (t ∧ [i], c), and let g̃i
def
= g − gi and b̃i

def
= b − bi. Then the empirical equivalent of

(7.4) is
gi

gi + bi
≥ g̃i

g̃i + b̃i
. (7.5)

The empirical equivalent of −H(U |Vi) is proportional to

score(g, b, gi, bi)
def
= gi log2

gi

gi + bi
+ bi log2

bi
gi + bi

+ g̃i log2

g̃i

g̃i + b̃i
+ b̃i log2

b̃i

g̃i + b̃i
.

From the fact that H(p, 1−p) has a maximum possible value of 1, it is straightforward
to show that score(g, b, gi, bi) has a minimum possible value of −(g + b) given that

0 ≤ gi ≤ g and 0 ≤ bi ≤ b. If we let si
def
= score(g, b, gi, bi) when (7.5) holds, and

si
def
= −2(g + b) otherwise, then choosing a test i maximizing si will implement the

preference for tests satisfying (7.5).

69

chooseTest(ν, g, b, ga, ba, da):
let ν = (v, c)
if (there is at most one j for which vj = ∗)

return 0
S := −∞
for (j := 1 to N) if (vj = ∗)

if (g > b)
s := da[j]

else if (ga[j]/ba[j] ≥ g/b)
s := score(g, b, ga[j], ba[j])

else
s := −2(g + b)

if (s > S)
S := s; J := j

return J

Figure 7.4: Procedure to choose test on which to expand node

The above discussion assumed that we were using the misclassification loss. If this
is not the case, then we can think of the examples as being weighted, each example z
having a weight of |δ(z, c)|, with z a good example if δ(z, c) < 0 and a bad example
if δ(z, c) > 0. We can then continue to use equation (7.5) and the function score if
we redefine g, b, gi, and bi as follows:

• g
def
= G(t, c, r), b

def
= B(t, c, r), gi

def
= G(t ∧ [i], c, r), and bi

def
= B(t ∧ [i], c, r).

Figure 7.4 gives the algorithm to pick a test on which to expand a node. It uses
the values g, b, ga, ba, and da computed by procedure goodAndBad (recall that
da[j] = m gain(t ∧ [j], c)). If there is at most one j s.t. vj = ∗ then all completions
of ν have already been considered (in procedure goodAndBad), so there is no need
to expand this node, and chooseTest returns 0. The running time of chooseTest is
O(N).

7.2.6 Computing the Upper Bound

Once a test J on which to expand ν = (v, c) is chosen, we want to compute, for each
of the two child nodes, an upper bound on gcr(λ) for any completion λ of the child
node. In doing so we may omit from consideration any completion whose gain-cost
ratio is known not to exceed ρ⋆/m (the gain-cost ratio of the best rule found so far).
To see why, let u be an upper bound on gcr(λ) for any completion λ whose gain-cost
ratio exceeds ρ⋆/m, and let u′ = max{u, ρ⋆/m}. Then u′ is an upper bound for all
completions λ, and u < u′ only if u′ = ρ⋆/m, in which case the node can be pruned
anyway.

70

saBnd0(ν, i, J, ga):
let (v, c) = ν
w := v; wJ := 0
a := attr(i)
if (a is a nominal attribute) return 0
if (w[k < xa] 6= ∗ for all k) return 0
k1 := the least k such that w[k < xa] = ∗
if (w[xa ≤ k] 6= ∗ for all k > k1) return 0
k2 := the greatest k such that w[xa ≤ k] = ∗
return ga[xa ≤ k2] − (ga[xa 6= ?] − ga[k1 < xa])

Figure 7.5: Procedure to compute saBnd0

Recall that the procedure goodAndBad computes the gain-cost ratio for the trivial
completion of ν and every unit completion of ν, updating λ⋆, p⋆ and ρ⋆ as necessary,
hence after goodAndBad finishes the gain-cost ratios of these completions are known
not to exceed ρ⋆/m. Thus in computing the upper bounds for the children of ν, we
need only consider completions with at least two additional tests beyond those in ν◦.
These two additional tests may be on different attributes, or on the same attribute.
In handling the latter case, we make use of the functions saBnd0 and saBnd1, which
we now discuss.

Definition 7.12 We write attr(i) for the attribute tested by primitive test i.

Definition 7.13 We define saBnd0(ν, i, J) to be the maximum value of G(λ, r),
where λ ranges over all completions of ν obtained by adding two additional, dis-
tinct primitive tests i1, i2 6= J s.t. attr(i1) = attr(i2) = attr(i). If no such λ exists

then saBnd0(ν, i)
def
= 0.

Definition 7.14 If v is a vector or array of N elements, we write v[k < xa] for vj or
v[j], where “k < xa” is test j. We define v[xa ≤ k] similarly.

Figure 7.5 gives the algorithm used to compute saBnd0. It take O(N) time, since
there are at most N tests to examine.

Theorem 7.10 If ga[j] = G(t∧[j], c, r) for all j, where ν◦ = (t, c), then the algorithm
of Figure 7.5 correctly computes saBnd0(ν, i, J).

Proof. The two added tests must be compatible, since a completion of a node is,
by definition, proper. If a is a nominal attribute, then no two distinct tests on a are
compatible, and saBnd0(ν, i, J) = 0. If a is a linear attribute and tests i1 and i2 are
distinct and compatible tests on attribute a, then they must be of the form k1 < xa

and xa ≤ k2 for some k1 < k2. Furthermore, if we are to complete ν by adding tests

71

saBnd1(ν, J, ga):
let (v, c) = ν
a := attr(J)
if (a is a nominal attribute) return 0
if (test J is xa = ? or xa 6= ?) return 0
if (test J is of form k < xa)
k1 := that k such that test J is k < xa

if (v[xa ≤ k] 6= ∗ for all k > k1) return 0
k2 := the greatest k such that v[xa ≤ k] = ∗

else
k2 := that k such that test i is xa ≤ k
if (v[k < xa] 6= ∗ for all k < k2) return 0
k1 := the least k such that v[k < xa] = ∗

return ga[xa ≤ k2] − (ga[xa 6= ?] − ga[k1 < xa])

Figure 7.6: Procedure to compute saBnd1

i1, i2 6= J to t, then we must have wi1 = wi2 = ∗. If no such tests i1 and i2 on a exist,
then saBnd0(ν, i, J) = 0. Otherwise, to maximize G(t ∧ [k1 < xa] ∧ [xa ≤ k2], c, r),
k1 must be as small as possible and k2 must be as large as possible, subject to the
restriction that w[k1 < xa] = w[xa ≤ k2] = ∗ (by Lemma 7.5).

To finish the proof, it remains only to show that

G(t ∧ [k1 < xa] ∧ [xa ≤ k2], c, r) =

G(t ∧ [xa ≤ k2], c, r) − (G(t ∧ [xa 6= ?], c, r) −G(t ∧ [k1 < xa], c, r)). (7.6)

Let ei
def
= (t(xi)) max{0,−δ(zi, c)}. Then using Lemma 7.3 we have G(t′, c, r) =

∑

i(P (xi))ei for all t′ and P s.t. t′(xi) = t(xi) ∧ P (xi). Thus (7.6) holds if

(k1 < xa ≤ k2) = (xa ≤ k2) − (xa 6= ?) + (k1 < xa)

when k1 < k2. If k1 ≤ xa ≤ k2, then the LHS above is 1 and the RHS is 1−1+1 = 1.
If xa = ?, then the LHS is 0 and the RHS is 0 − 0 + 0 = 0. If xa ≤ k1 then the LHS
is 0 and the RHS is 1− 1 + 0 = 0. Finally, if k2 < xa then the LHS is 0 and the RHS
is 0 − 1 + 1 = 0. Thus the equality holds, and the theorem is proven. 2

Definition 7.15 We define saBnd1(ν, J) to be the maximum value of G(λ, r), where
λ ranges over all completions of ν obtained by adding one additional primitive test

i 6= J s.t. attr(i) = attr(J). If no such λ exists then saBnd1(ν, J)
def
= 0.

Figure 7.6 gives the algorithm used to compute saBnd1. The algorithm takes
O(N) time, since there are at most N tests to examine.

72

upperBound(ν, J, ga):
let (v, c) = ν
g1 := max{ga[j] : vj = ∗, j 6= J}
j1 := the maximizing j above
g2 := max{ga[j] : vj = ∗, j 6= J, attr(j) 6= attr(j1)}
u0 := max{g2, saBnd0(ν, j1, ga)}/(2 + siz(ν◦))
g3 := (attr(j1) = attr(J) ? g2 : g1)
g4 := min{g3, ga[J]}
u1 := max{g4, saBnd1(ν, J, ga)}/(2 + siz(ν◦))
return (u0, u1)

Figure 7.7: Procedure to compute upper bound

Theorem 7.11 If ga[j] = G(t∧[j], c, r) for all j, where ν◦ = (t, c), then the algorithm
of Figure 7.6 correctly computes saBnd1(ν, J).

Proof. Any test i added must be compatible with J . There exists no test on
attribute a compatible with test J if a is a nominal attribute, or if test J is xa = ?
or xa 6= ?, hence saBnd1(ν, J) = 0 in these cases. The remainder of the proof follows
that of Theorem 7.10. 2

Figure 7.7 gives the algorithm for computing the upper bounds for child(ν, J, 1)
and child(ν, J, 0). We now prove its correctness.

Theorem 7.12 Let (v, c) = ν and ν◦ = (t, c). Suppose that vJ = ∗, vj = ∗ for some
j 6= J , and ga[j] = G(t ∧ [j], c, r) for all j s.t. vj = ∗. Then the value u0 computed
in Figure 7.7 is an upper bound on m gcr(λ) for any completion λ of child(ν, J, 0)
containing at least two additional primitive tests.

Proof. We first bound G(t′, c, r) for any restriction t′ of t containing exactly two

additional tests i1, i2 6= J (i.e., t′ = t ∧ [i1] ∧ [i2]). Let a
def
= attr(j1). There are two

cases to consider:

1. attr(i1) 6= a or attr(i2) 6= a. Then g2 ≥ ga[i1] or g2 ≥ ga[i2]. But ga[i1] =
G(t ∧ [i1], c, r) ≥ G(t′, c, r), and ga[i2] = G(t ∧ [i2], c, r) ≥ G(t′, c, r) (using
Lemma 7.5), hence g2 ≥ G(t′, c, r).

2. attr(i1) = attr(i2) = a. Then saBnd0(ν, j1) ≥ G(t′, c, r) by definition.

Thus M
def
= max{g2, saBnd0(ν, j1)} bounds G(t′, c, r). But from Lemma 7.5 and the

fact that G(λ, p) ≥ m gain(λ, p), this implies that M ≥ m gain(λ) for any completion
λ of child(ν, J, 0) containing at least two additional primitive tests. Since all such
rules λ have siz(λ) ≥ 2 + siz(ν◦), we then see that u0 = M/(2 + siz(ν◦)) is an upper
bound on m gcr(λ). 2

73

eval(ν):
(g, b) := goodAndBad(ν, da, ga, ba)
dominate(ν, ga, ba, b)
J := chooseTest(ν, g, b, ga, ba, da)
if (J = 0)

return (0, 0, 0, 0, 0)
(u0, u1) := upperBound(ν, J, ga)
(l0, l1) := lowerBound(ν, J, g, b, ga, ba, da)
return (J, u0, l0, u1, l1)

Figure 7.8: Node evaluation procedure

Theorem 7.13 Let (v, c) = ν and ν◦ = (t, c). Suppose that vJ = ∗, vj = ∗ for some
j 6= J , and ga[j] = G(t ∧ [j], c, r) for all j s.t. vj = ∗. Then the value u1 computed
in Figure 7.7 is an upper bound on m gcr(λ) for any completion λ of child(ν, J, 1)
containing at least one additional primitive test (i.e., two more than ν◦).

Proof. We first bound G(t′, c, r) for any restriction t′ of t ∧ [J] containing exactly

one additional test j 6= J (i.e., t′ = t ∧ [J] ∧ [j]). Let a
def
= attr(J). There are two

cases to consider:

1. attr(j) 6= a. If attr(j1) = a then g3 = g2 ≥ ga[j], otherwise attr(j1) 6= a so
g3 = g1 ≥ ga[j]; in either case, g3 ≥ ga[j]. But ga[j] = G(t ∧ [j], c, r) ≥
G(t′, c, r) and ga[J] = G(t ∧ [J], c, r) ≥ G(t′, c, r) (using Lemma 7.5), hence
g4 = min{g3, ga[J]} ≥ G(t′, c, r).

2. attr(j) = a. Then saBnd1(ν, J) ≥ G(t′, c, r) by definition.

Thus M
def
= max{g4, saBnd1(ν, J)} ≥ G(t′, c, r). But from Lemma 7.5 and the fact

that G(λ, p) ≥ m gain(λ, p), this implies that M ≥ m gain(λ) for any completion λ
of child(ν, J, 1) containing at least one additional test. Since all such rules λ have
size at least 2 + siz(ν◦), we then see that u1 = M/(2 + siz(ν)) is an upper bound on
m gcr(λ). 2

7.2.7 Node Evaluation

Figure 7.8 gives the complete procedure for evaluating a node. The procedure lower-
Bound is discussed in Section 7.2.9. Since goodAndBad runs in O(mN) time and the
remaining procedure calls run in O(N) time, the entire procedure runs in O(mN)
time.

In this approach the eval procedure is run on a node that is about to be expanded.
An alternative approach would be to run eval on a node when it is created, taking
max{u0, u1} as the upper bound, and storing with the node the test J on which it

74

updateArrs(λ, p, z, cap, hclass):
let (t, c) = λ
j := 0; i := 1
for (q := 0 to p)
k := i
for (s := cap[q] to cap[q + 1] − 1)

if (t(xs))
j := j + 1; buf[j] := zs

else
zi := zs; hclass[i] := hclass[s]; i := i+ 1

cap[q] := k
for (q := r + 1 downto p+ 1)

cap[q + 1] := cap[q]
cap[p+ 1] := i
for (s := 1 to j)
zi := buf[s]; hclass[i] := c; i := i+ 1

Figure 7.9: Procedure to update cap, hclass and z

is to be expanded, for future use when the node is selected for expansion. This has
the advantage of giving a tighter upper bound, at the cost of twice as many calls
of eval (eval is called for each child of a node after it is expanded, versus a single
call to eval before the node is expanded). Experiments with this alternate approach
showed results slightly inferior to the approach taken here, for the same number of
node evaluations.

7.2.8 Updating cap, hclass, and z

Recall from Section 7.2.3 that the examples are grouped together according to the
rule that captures them, with examples cap[p] through cap[p+1]−1 captured by rule
p, and hclass[i] = h(zi). Once a rule λ and position p at which to insert it are chosen,
the last thing BESTRULE must do before returning (λ, p) is to update the arrays z,
cap and hclass to reflect the insertion of the new rule. This is done in O(mN) time
by the procedure of Figure 7.9.

7.2.9 Search control

We are now ready to consider the branch-and-bound search itself. As previously
mentioned, the search has a time bound τ and space bound µ, meaning that the
search stops after τ nodes have been evaluated, and that the search tree may have
at most µ unexpanded nodes at any time (which may require pruning some nodes to
make room for more promising ones). BESTRULE uses the following variables:

• ρ⋆, λ⋆ and p⋆: already described.

75

insert(u, l, ν, F):
if (u > ρ⋆)

if (|F | < µ)
F := F ∪ {(u, l, ν)}

else
let (u′, l′, ν ′) be an element of F minimizing u′

if (u > u′)
F := F − {(u′, l′, ν ′)} ∪ {(u, l, ν)}

Figure 7.10: Conditional insertion procedure

• k, ki and kd: the number of nodes evaluated so far, the number evaluated by
the intensification strategy, and the number evaluated by the diversification
strategy (details follow).

• F : the frontier of the search tree, i.e., the set of “open” or unexpanded nodes,
with some associated information.

The elements of F have the form (u, l, ν), where ν is the node, u its associated upper
bound, and l is an associated lower bound (to be discussed shortly).

When a new node is created and not immediately chosen for expansion, it is either
placed in F or discarded. Whether it is discarded depends on whether its upper bound
is greater than ρ⋆, whether there is room in F , and if not, whether its upper bound is
better than that of the worst element of F . Figure 7.10 gives the conditional insertion
procedure.

In the absence of time and space bounds, the optimal search strategy would be
to always expand the node with the highest upper bound. However, the search will
often have to be cut short before every part of the search tree has been explored or
shown not to contain any improvement over the current best solution. Thus it is
important that the search strategy quickly find good solutions. Ideally, the best (or
nearly best) solution would be found early in the search, with the rest of the search
only confirming (near) optimality, thus minimizing the effects of stopping the search
early.

BBG6 uses two different search strategies in parallel. The first is to repeatedly
remove from F the node with the highest upper bound and explore a linear path down
from the node, adding a new primitive test at every step, until reaching a descendant
whose upper bound does not exceed ρ⋆. The greedy, downward search tends to quickly
find a reasonably good solution. By starting each downward search from the node
with the highest upper bound, we concentrate on those areas of the search space that
have the greatest potential of containing high-quality solutions. Note that the nodes
ν = (v, c) with high upper bounds tend to be high in the search tree — fewer 1’s
in v means a smaller denominator in the g.c.r. bound, and fewer “good” examples
ruled out, while fewer 0’s means more possible additional tests to choose from. This
causes somewhat of a “diversification” effect, to use a term from the literature on

76

DIVERSE-SEARCH:
(u, l, ν) := remove from F an element maximizing u
while (u > ρ⋆)

(J, u0, l0, u1, l1) := eval(ν)
k := k + 1; kd := kd + 1
if (J 6= 0)

insert(u0, l0, child(ν, J, 0), F)
(u, l, ν) := (u1, l1, child(ν, J, 1))

else
u := 0

Figure 7.11: One downward search of diversification strategy

INTENSE-STEP:
(u, l, ν) := remove from F an element maximizing l
if (u > ρ⋆)

(J, u0, l0, u1, l1) := eval(ν)
k := k + 1; ki := ki + 1
if (J 6= 0)

insert(u0, l0, child(ν, J, 0), F)
insert(u1, l1, child(ν, J, 1), F)

Figure 7.12: One step of intensification strategy

tabu search [14, 15], in which different downward searches tend to explore dissimilar
regions of the search space. Figure 7.11 gives the procedure for a single downard
search. The variable kd keeps count of the number of nodes evaluated by this first
strategy.

The second search strategy complements the first by providing an “intensification”
effect (again borrowing a term from the tabu search literature), in which the search
is concentrated in the vicinity of known good solutions. Associated with each node
ν is a lower bound for ν, i.e., (m times) the gain-cost ratio for some completion of ν.
This lower bound may be either (m times) the gain-cost ratio of ν◦ or of the best unit
completion of ν (or 0 in certain cases). The second search strategy is to repeatedly
pick the node with the best lower bound and expand it. The second strategy is
used only when there is some node ν in F with gain(ν◦) > 0. Figure 7.12 gives the
procedure for a single step of this second strategy, and the variable ki keeps count of
the number of nodes it evaluates.

We compute the lower bounds for ν1 = child(ν, J, 1) and ν0 = child(ν, J, 0) when
node ν is evaluated, after it is determined that ν will be expanded on test J . The
lower bound for ν1 is just m gcr(ν1

◦), or 0 if gain(ν1
◦) ≤ 0. We have more information

about the potential of ν0: not only do we know gcr(ν0
◦), but also gcr(λ) for every unit

77

lowerBound(ν, J, g, b, ga, ba, da):
let (v, c) = ν
l1 := (ga[J] ≤ ba[J] ? 0 : da[J]/(1 + siz(ν◦)))
s := max{da[j] : vj = ∗, j 6= J}
l0 := (g ≤ b ? 0 : s/(1 + siz(ν◦)))
return (l0, l1)

Figure 7.13: Procedure to compute lower bound

BESTRULE(r, cap, hclass, z):
F := ∅; k := 0; ρ⋆ := 0
for (each class c ∈ C)
ν := ((∗, . . . , ∗), c)
(J, u0, l0, u1, l1) := eval(ν)
k := k + 1
if (J 6= 0)

insert(u0, l0, child(ν, J, 0), F)
insert(u1, l1, child(ν, J, 1), F)

ki := 0; kd := 0
while (F 6= ∅ ∧ k < τ)

while (ki < kd ∧ F 6= ∅ ∧ k < τ ∧ bestlb(F) > 0)
INTENSE-STEP

if (F 6= ∅ ∧ k < τ)
DIVERSE-SEARCH

updateArrs(λ⋆, p⋆, z, cap, hclass)
return (λ⋆, p⋆)

Figure 7.14: Procedure BESTRULE

completion λ of ν0. Thus we set the lower bound for ν0 to be the maximum value of
m gcr(λ) for λ a unit completion of ν0, or 0 if gain(ν0

◦) ≤ 0.
The procedure for computing the lower bounds is given in Figure 7.13. Recall

that da[j] is m gain(λ), where λ is the unit completion of ν obtained by adding test
j. The procedure runs in O(N) time.

All the parts are put together in Figure 7.14, which gives the BESTRULE proce-
dure. The function bestlb(F) finds an element (u, l, ν) of F maximizing l, and returns
l.

Note that the following are all the operations performed on F :

1. Find |F |.

2. Find the record (u, l, ν) ∈ F maximizing u, minimizing u, or maximizing l.

78

3. Remove an extremal record (a record (u, l, ν) ∈ F maximizing u, minimizing u,
or maximizing l).

4. Insert a record.

We implement F with the following data structure:

1. An integer s giving the number of node records in F .

2. An array A of node records such that F = {A[1], . . . , A[s]}.

3. Three priority queues Q+, Q−, and Ql, whose elements are indices into A, with
Q+ ordered by best upper bound, Q− ordered by worst upper bound, and Ql

ordered by best lower bound. The priority queues are implemented by heap
structures.

4. Arrays I+, I−, and Il such that Q+[I+[i]] = i, Q−[I−[i]] = i, and Ql[Il[i]] = i,
for 1 ≤ i ≤ s.

We can find |F | in O(1) time, as it is just s. We can find the record (u, l, ν) ∈ F
maximizing u, minimizing u, or maximizing l in O(1) time also using the appropriate
priority queue. Inserting a record into F requires O(N+log |F |) = O(N+logµ) time:
O(1) time to increment s, O(N) time to copy the record into A[s], and O(log |F |)
time to insert the index s into each of the three priority queues and simultaneously
update I+, I−, and Il as elements in their respective queues are swapped. Removing
an extremal record requires O(log |F |) = O(logµ) time: O(1) time to find the record
and update s, and O(log |F |) time to delete it from each of the three priority queues
and simultaneously update I+, I− and Il.

We now analyze the time complexity of BESTRULE. It will simplify our analysis to
consider the time-cost for removing a record to be incurred when the record is inserted.
Since every record that is removed was previously inserted, but some inserted records
may never be removed, this can only overestimate the total time. Thus we will
consider the insertion of a record to take O(N + logµ) + O(logµ) = O(N + log µ)
time, and the removal to take 0 time.

For each call of eval we have O(mN) time for the call itself, plus O(N + log µ)
time for creating the children of the evaluated node and inserting one or both into
F , for a total of O(mN + log µ) time per call of eval. The call to updateArrs takes
O(mN) time, returning the answer takes O(N) time, and the remaining variable
initializations take O(1) time, for a total of O(mN) time, which is less than the time
for a single call to eval. There are |C| calls of eval in the initialization. If |C| < τ
then there are at most a total of τ + N − 1 calls of eval. The term N − 1 arises
from the fact that we do not check for k < τ in the body of DIVERSE-SEARCH,
which calls eval at most N times, thus we may have as many as N − 1 extra calls of
eval beyond our bound τ . Putting this all together, the total time for BESTRULE is
O((|C|+ τ +N)(mN + log µ)). In practice, it is generally true that τ ≥ N + |C| and
µ ≤ 2mN , in which case we can simplify the time bound to O(τmN).

79

7.3 Evolution of BBG

I first tested the basic BBG strategy with an algorithm called BBG0 [40, 41]. This
early version of BBG differs from BBG6 in the following ways:

1. It is restricted to Boolean attributes only.

2. It uses a heuristic algorithm, based on hypothesis size and empirical error, to
choose one of the hypotheses output by GREEDY, instead of cross-validation.

3. It makes no use of dominance relations nor the intensification search strategy.

4. The search tree structure is somewhat different. A node is a pair (t, c, p),
with c ∈ C, p the position at which to insert the rule, and t ∈ {∗, –, 0, 1}n.
If ti = v ∈ {0, 1}, this means that the test xi = v is included in the rule’s
precondition; if ti = –, this means that there is no test on attribute i. A node
has three children, obtained by choosing some i for which ti = ∗ and setting ti
to –, 0, or 1.

5. It expands a node ν on the test i which gives the highest upper bound on the
gain-cost ratio of (child(ν, i, 1), p).

6. It uses a weaker upper bound.

7. The alternate node evaluation approach mentioned in Section 7.2.7 is used: eval
is run on a node when it is created, and the test J on which it is to be expanded
is stored with the node for future use when the node is selected for expansion.

Next came BBG1–4. These improved on BBG0 as follows:

1. Arbitrary nominal attributes and discrete linear attributes were allowed, using
the preprocessing step mentioned in Section 7.1.3. This also necessitated a
change in the search-tree structure to its present form, where an interior node
has only two children.

2. The use of dominance relations was introduced.

3. The upper bound computation was strengthened.

4. The node evaluation was altered. Rather than choose the test on which to
expand on the basis of the best upper bound, both the information-gain cri-
terion (by itself) and the combined strategy discussed in Section 7.2.5 were
investigated. I also tried both the alternate node evaluation approach used in
BBG0 (and mentioned in Section 7.2.7) and the node evaluation approach used
in BBG6 (when a node is evaluated, compute the upper bound for both of its
children). These two choices gave a total of four possibilities, hence BBG1–4.
BBG4 used the same node evaluation strategy as BBG6.

80

In comparing BBG1–4 with each other and with BBG0’s node evaluation strategy
I removed the second part of BBG (choice of an appropriate size bound), and com-
pared them under the assumption that the best size bound was always chosen. My
experiments indicated that BBG1–4 needed far fewer node evaluations than BBG0
to achieve the same level of performance. In comparing BBG1–4 with each other I
found that BBG4 had a small but significant advantage over BBG1–3.

I then added to BBG4 the use of cross-validation to choose the best size bound. In
comparing BBG4 with the learning algorithms described in Section 7.4 I found a great
advantage on somewhat noisy problems with binary attributes, but a much smaller
advantage on problems with discrete linear attributes. With BBG5 I added the inten-
sification search strategy running in parallel with the diversification search strategy,
and this improved performance somewhat on problems with linear attributes. With
BBG6 I added the notion of incompatible tests, with an associated strengthening of
the upper bound computation, and this gave a marked performance improvement on
problems with linear attributes.

7.4 Results

To evaluate BBG, I compared it to two well-known machine-learning algorithms, C4.5
[35] and CN2 [9, 10] (version 5.1). I used both the tree induction and rule induction
variants of C4.5, referred to here as C4.5T and C4.5R respectively. There are two
variants of CN2: one in which rule ordering is important, and one in which rule
ordering is irrelevant; I used both, calling them CN2O and CN2U respectively. I
used the default parameter settings with both C4.5 and CN2, with one exception: I
increased the star size (width of the beam search) for CN2 to 30 or 50 from its default
size of 5, in order to allow a more thorough search. Since CN2 and C4.5 don’t allow
arbitrary loss functions, in all experiments herein reported I used the misclassification
loss.

7.4.1 Overview of C4.5 and CN2

C4.5T is a tree induction algorithm. It works by starting with a single-node tree,
and successively splitting leaf nodes, by choosing a primitive partition on which to
split the node. The choice of primitive partition is related to the information gain
criterion discussed in Section 7.2.5. After the tree has been grown as far as possible,
it is pruned back in order to avoid overfitting the data. C4.5T uses a pessimistic
heuristic estimate of the actual error at each leaf of the tree to estimate whether the
actual error will increase or decrease by pruning a node.

C4.5R is a rule induction algorithm. It starts with the tree produced by C4.5T
and turns it into a set of rules, one for each leaf. Then it simplifies the rules, taking
each rule and generalizing it by successively removing what appear to be unnecessary
primitive tests in the precondition, until its heuristic indicates that the remaining
primitive tests are all necessary. A criterion based on the Minimum Description
Length Principle [36] is then used to choose a subset of the rules thus produced.

81

CN2O is a rule induction algorithm that works by successively adding new rules
to the tail of the list of rules. Thus only the examples not captured by any of the
existing rules need be considered in constructing a new rule to add to the tail of the
list. CN2O chooses a new rule by trying to maximize a heuristic estimate of a rule’s
accuracy. Note that this may be an inappropriate criterion for problems where there
is not a deterministic relation between instance and class (e.g., in the presence of
classification noise).

CN2U is a rule induction algorithm which produces an unordered list of rules.
When used to classify an instance that is covered by more than one rule, the class
frequency vectors for each of the covering rules are combined to produce a new class
frequency vector, and the most frequent class is output. CN2U runs a modified version
of the CN2O algorithm once for each class c ∈ C, looking only for rules with output
class c, and outputs the union of the resulting sets of rules.

7.4.2 Results for BBG0

We begin with some results for BBG0, the earliest version of BBG. These results are
of interest because they demonstrate what even an unsophisticated implementation
of the BBG approach can achieve; they also demonstrate the use of the data-set
generators BRGEN0 and BTGEN.

I tested BBG0 on 1050 synthetic data sets generated using BRGEN0 and BTGEN,
comparing its performance with C4.5 (at that time I had not yet obtained CN2). Each
data set consisted of 500 training examples and 30000 test examples for estimating
the actual error of the hypothesis output by a learning algorithm.

For BBG0 I set the startsize ς to 1 (see Def. 6.7), and I set the memory limit µ and
time limit τ as follows. Let m be the number of examples (500) and n the number of
Boolean attributes. For the 500 data sets summarized in Table 7.1 I set µ to 2mn.
For the 550 data sets summarized in Table 7.2 I set µ to max(50000, 2mn). In both
cases I set τ to max(250000, 10mn). (For n = 50 and m = 500 we get 2mn = 50000
and 10mn = 250000.) Average execution times on an HP 710 workstation were
around 20 minutes, but could be as much as 50 minutes. Examination of execution
traces revealed that often the optimum rule-position pair was found, resulting in
BESTRULE terminating long before the time bound was reached.

I generated 50 data sets for each of 10 different parameter settings of BRGEN0
(a total of 500 data sets), and compared BBG0 with C4.5 on these. I always set
m = 500, m′ = 30000, and r+ l = 41, giving a size of 42 for all of the target rule lists.
Beyond this, I came up with the 10 parameter settings by choosing them at random.

The results are summarized in Table 7.1. The column labeled BBG0 gives the
amount by which the average error of BBG0 exceeds the noise level η, and the columns
labeled c4.5 and c4.5rules give the amounts by which the average errors of the corre-
sponding algorithms exceed that of BBG0. Each of these amounts is in percent, with
a 95% confidence interval computed. The noise level η is also shown in percent. For
each of the ten settings of parameter values for rgenex, BBG0 outperforms both c4.5
and c4.5rules by wide margins.

I next generated 50 data sets for each of 11 different parameter settings of BTGEN

82

l r n k η BBG0 c4.5 c4.5rules
29 12 38 3 3 1.85 ± 0.84 9.47 ± 1.79 8.31 ± 1.49
32 9 38 5 2 1.38 ± 0.51 12.20 ± 2.04 9.76 ± 1.57
30 11 45 5 0 0.45 ± 0.26 11.41 ± 1.58 8.30 ± 1.62
34 7 50 4 4 3.56 ± 0.77 13.22 ± 2.42 13.21 ± 2.20
34 7 52 2 5 4.05 ± 1.01 8.17 ± 1.42 7.44 ± 1.32
30 11 54 6 0 0.58 ± 0.30 12.57 ± 1.82 9.31 ± 1.58
32 9 61 4 2 2.19 ± 0.82 12.50 ± 1.78 10.99 ± 1.73
36 5 64 3 5 6.21 ± 0.93 6.75 ± 1.43 8.17 ± 1.41
31 10 67 3 4 2.97 ± 0.80 13.73 ± 2.11 12.10 ± 2.14
28 13 79 2 2 4.36 ± 1.02 6.39 ± 1.50 5.30 ± 1.42

Table 7.1: Comparison of BBG0 and C4.5 on rule-oriented problems

s n k η BBG0 c4.5 c4.5rules
20 38 3 3 2.33 ± 0.56 8.94 ± 1.94 3.25 ± 1.22
20 38 5 2 0.69 ± 0.28 2.87 ± 1.14 0.86 ± 0.67
20 45 5 0 0.58 ± 0.32 3.88 ± 1.30 0.09 ± 0.35
20 50 4 4 1.43 ± 0.49 6.33 ± 1.72 3.13 ± 1.16
20 52 2 5 10.69 ± 1.90 14.46 ± 2.49 12.84 ± 2.63
20 54 6 0 0.76 ± 0.43 1.63 ± 0.84 −0.18 ± 0.48
20 61 4 2 1.77 ± 0.54 7.01 ± 2.02 2.14 ± 1.38
20 64 3 5 4.68 ± 0.96 12.93 ± 2.78 8.40 ± 2.58
20 67 3 4 4.66 ± 1.36 12.22 ± 2.82 6.24 ± 2.42
20 79 2 2 12.95 ± 2.63 15.79 ± 2.78 12.98 ± 3.20
20 50 2 0 3.33 ± 0.93 21.31 ± 2.38 14.71 ± 2.49

Table 7.2: Comparison of BBG0 and C4.5 on tree-oriented problems

(a total of 550 data sets), and compared BBG0 with C4.5 on these. I set s = 20,
and, except for the eleventh parameter setting, kept the same values for n, k, and η
as used for BRGEN0.

The results are summarized in Table 7.2. In each case the average performance
of BBG0 exceeds that of c4.5 and either is very close to or exceeds that of c4.5rules.
BBG0’s performance advantage is greater when there are few classes, and is quite
striking when k = 2 and η = 0 (the last case).

7.4.3 Results for BBG6 on UC Irvine data sets

I compared BBG6 with C4.5 and CN2 on ten data sets taken from the UC Irvine
machine learning repository [31], using a star size of 50 for CN2. These data sets
were chosen because they had only nominal or discrete linear attributes. On all but

83

data set abbrev nom attr lin attr classes trn examp
solar flare SF 8 2 2 710.67

chess CH 36 0 2 2130.67
tic-tac-toe TTT 9 0 2 638.67

breast cancer BRC 0 9 2 466
zoo ZOO 16 0 7 60

led display LED 24 0 10 500
audiology AUD 66 3 24 150.67

soybean (large) SB 29 6 19 455.33
mol. biology MB 57 0 2 70.67
mushroom MSH 22 0 2 508

Table 7.3: UCI data sets used for comparison

two data sets I randomly partitioned the data into three (nearly) equal parts and ran
each learning algorithm three times, using two of the parts as the training sample
and the remaining part as the test sample, and averaged the results. The data sets
are summarized in Table 7.3, which gives the number of nominal attributes, linear
attributes, output classes, and average number of training examples used.

The exceptions were the mushroom and LED display data sets. The mushroom
data set does not discriminate well between learning algorithms, since many achieve
perfect classification on it due to its size (8124 examples). To make the problem
more difficult I randomly divided it into 3 training samples of 508 examples each, and
one test sample of 6600 examples. The LED display data set is actually an example
generator. It is of interest because it has a large number of irrelevant attributes (17)
and 10% noise in each relevant attribute; thus it stresses the ability of a learning
algorithm to separate actual regularities in the data from statistical fluctuations. I
generated 10000 examples, which I divided into 3 training samples of 500 examples
each, and one test sample of 8500 examples. For these two data sets I averaged the
test-sample error over runs on the 3 training samples.

For both this experiment and the experiments in Section 7.4.4, I set the time limit
τ for BBG6 to 3000 node evaluations and the space limit µ to 3000 nodes. I also set
the start size ς to 2, based on some previous experiments indicating a slight advantage
to this choice over other possible settings.

Table 7.4 gives the results. The columns labeled with algorithm names give the
average classification error, in percent. BBG6’s performance is usually near that of
CN2U, CN2O, and C4.5R, and superior to that of C4.5T. The exceptions are the AUD
and LED data sets. BBG6 does rather worse than all the other algorithms on the AUD
data set. We can compute a confidence interval for the BBG6 misclassification rate

using the formula σ =
√

p(1 − p)/n for the standard error (where p is the measured

proportion of misclassifications and n = 226 the number of test examples); we find
that the 95% confidence interval is [21.61%, 33.25%], which contains the measured
misclassification rates for all the other algorithms. On the LED data set BBG6

84

data set time bbg6 cn2u cn2o c4.5r c4.5t
SF 31.92 18.15 20.92 21.01 21.39 19.61
CH 42.45 0.72 1.13 0.94 0.78 0.81

TTT 0.26 1.57 0.94 0.00 0.94 14.82
BRC 7.13 4.72 5.01 5.29 4.43 5.15
ZOO 0.03 8.89 7.78 8.89 8.89 11.11
LED 47.88 28.86 38.72 36.46 35.47 33.02
AUD 29.30 27.43 22.55 25.23 23.87 23.43
SB 41.46 10.25 11.71 9.81 9.67 11.13
MB 0.04 19.84 22.67 20.63 21.75 27.35
MSH 0.20 0.30 0.11 0.29 0.35 1.35

best 5 4 4.5 4.5 1

Table 7.4: Comparison of algorithms on UCI data sets

does rather better than all the other algorithms. The 95% confidence interval for
the best of these (C4.5T), with n = 8500, is [32.02%, 34.02%], and the measured
misclassification rate for BBG6 is an additional 6.2σ below the bottom of this interval.
Thus the measured differences on the LED data set are clearly significant, whereas it
is questionable whether the differences on the AUD data set are significant or merely
due to chance.

The last row of Table 7.4 gives the number of times (out of 10) each algorithm
performs better than BBG6, with ties counting for 1/2. On this basis BBG6 is perhaps
a bit better than C4.5R, CN20 and CN2U, and substantially better than C4.5T.

The column “time” gives the average time used by BBG6 on an HP710 work-
station, in minutes. This time includes the 10-fold cross-validation used to choose a
size bound, and hence can probably be reduced by about a factor of 10 by replacing
cross-validation with a less time-consuming sizing heuristic.

7.4.4 Results for BBG6 on Synthetic Data

I next compared BBG6 with C4.5 and CN2 in 13 experiments using synthetic data
sets. Each experiment was carried out by selecting one of the data-set generators of
Chapter 6, fixing all but one of its parameters, and varying the remaining parameter.
The fixed parameter settings for each experiment are given in Table 7.5, which also
gives the number of the figure reporting the results of the experiment, and a mnemonic
for the experiment. A * indicates the parameter that is varied. Recall that r is the
number of rules, V is the number of different values an attribute can have, n is the
number of attributes, ñ is the number of relevant attributes, η is the noise level, and
m is the number of training examples. Omitted are parameters k (number of classes)
and m′ (number of test examples), which were set at k = 2 and m′ = 3000 for all
experiments. I fixed k at 2 because this maximizes the number of rules per class, with
the intention of fragmenting as much as possible the portion of the instance space

85

fig name gen r V n ñ η m
7.15 NR BRGEN1 * (2) 20 20 0.05 500
7.16 NM BRGEN1 8 (2) 20 20 0.05 *
7.17 NE BRGEN1 8 (2) 20 20 * 500
7.18 LR LRGEN * 5 20 20 0.05 500
7.19 LM LRGEN 6 5 20 20 0.05 *
7.20 LE LRGEN 6 5 20 20 * 500
7.21 NE0R BRGEN1 * (2) 30 10 0 500
7.22 NE0M BRGEN1 12 (2) 30 10 0 *
7.23 LE0R LRGEN * 5 30 10 0 500
7.24 LE0M LRGEN 8 5 30 10 0 *
7.25 NV5R NRGEN * 5 30 10 0.05 500
7.26 NV5M NRGEN 7 5 30 10 0.05 *
7.27 NV5E NRGEN 7 5 30 10 * 500

Table 7.5: Settings of fixed parameters

corresponding to each class, thus presumably making the problem harder to learn.
For each of 8 different values of the variable parameter I generated 30 data sets,

ran the various learning algorithms on these data-sets, and computed the average
misclassification error. The results are plotted in the figures indicated in Table 7.5.
The key for all of these plots is given in Figure 7.15. Note that in Figures 7.17, 7.20,
and 7.27 I have plotted the difference between the average error and the noise level
η.

I used a star size of 30 for CN2 on these problems, as CN2 sometimes ran out
of memory and crashed when I used a star size of 40 or 50. Note that this is still
substantially larger than the star size of 15 or 20 used by the developers of CN2 in
their papers [9, 10].

Unlike the UC Irvine problems, these test problems were designed to be well-
represented by rule lists, to require the full representational power of rule lists, and
to be difficult induction problems in the sense that the portion of the input space
corresponding to each class is fragmented, and often obscured by noise. The results
show generally superior performance for BBG6, often by substantial amounts. BBG6
almost always has the best error rate; the major exception is when η = 0. In this
case CN20 sometimes has superior performance, but it is interesting to note that the
performance of both CN20 and CN2U degrade rapidly as the the noise level η rises;
this may be for the reason discussed in Section 7.4.1, i.e., that estimated rule accuracy
is an inappropriate criterion for choice of a rule in the presence of noise. C4.5R has
average error slightly better than BBG6 in the LE0R experiment when the number
of rules is small, but as the number of rules r increases BBG6 gains the advantage.

86

rules in target

%

e
r
r
o
r

4 6 8 10 12 14 16 18
5

10

15

20

25

30

35

""
""
"
�
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�
�
�
�����

��

bbg6
cn2u
cn2o
c4.5r
c4.5t

Figure 7.15: Average error as # rules varied (NR)

training examples

%

e
r
r
o
r

125 250 375 500 625 750 875 1000
5

10

15

20

25

30

L
L
L
L
L
L
L
L
L
L
L
L
L
L
J
J
J
J
J
J
J
JPPPPPhhhhhXXXXX `̀ `̀ `

Figure 7.16: Average error as # examples varied (NM)

87

% noise

e
r
r
o
r

e
x
c
e
s
s

0.00 1.67 3.33 5.00 6.67 8.33 10.00 11.67
0

5

10

15

20

(((((!
!!
!!XXXXX ��

��
�hhhhh

Figure 7.17: Average excess error as noise varied (NE)

rules in target

%

e
r
r
o
r

3 4 5 6 7 8 9 10
5

10

15

20

25

30

(((((!
!!!
!((

(((,
,
,
,
,
��
��
�
(((((

Figure 7.18: Average error as # rules varied (LR)

88

training examples

%

e
r
r
o
r

167 333 500 667 833 1000 1167 1333
5

10

15

20

25

30

A
A
A
A
A
A
A
A
A
A
A
ZZZZZ XXXXX(((((

Figure 7.19: Average error as # examples varied (LM)

% noise

e
r
r
o
r

e
x
c
e
s
s

0.00 1.67 3.33 5.00 6.67 8.33 10.00 11.67
0

5

10

15

20

25

��
��
�XXXXX

 (((((

 "
""
""

Figure 7.20: Average excess error as noise varied (LE)

89

rules in target

%

e
r
r
o
r

4 6 8 10 12 14 16 18
0

5

10

15

20

((((("
""
""
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
""
""
"
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 7.21: Average error as # rules varied (NE0R)

90

training examples

%

e
r
r
o
r

125 250 375 500 625 750 875 1000
0

5

10

15

20

25

30

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@
@
@
@
@
bbbbb

ZZZZZhhhhh`̀ `̀ `

Figure 7.22: Average error as # examples varied (NE0M)

91

rules in target

%

e
r
r
o
r

3 4 5 6 7 8 9 10
0

5

10

15

20

(((((�
��
��
""
""
"
�
�
�
�
�
##
##
#
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 7.23: Average error as # rules varied (LE0R)

92

training examples

%

e
r
r
o
r

125 250 375 500 625 750 875 1000
0

5

10

15

20

25

30

A
A
A
A
A
A
A
A
A
A
A
S
S
S
S
S
S
S
S
e
e
e
e
e
e
e PPPPP`̀ `̀ `hhhhh

Figure 7.24: Average error as # examples varied (LE0M)

rules in target

%

e
r
r
o
r

4 5 6 7 8 9 10 11
5

10

15

20

25

""
""
"hhhhh!!

!!!
!!XXXXX(((((�

���
�

Figure 7.25: Average error as # rules varied (NV5R)

93

training examples

%

e
r
r
o
r

125 250 375 500 625 750 875 1000
5

10

15

20

25

30

\
\
\
\
\
\
\
bbbbbaaaaahhhhhXXXXXXX PPPPP

Figure 7.26: Average error as # examples varied (NV5M)

% noise

e
r
r
o
r

e
x
c
e
s
s

0.00 1.67 3.33 5.00 6.67 8.33 10.00 11.67
0

5

10

15

20

����
� ���

��hhhhh ���
��

Figure 7.27: Average excess error as noise varied (NV5E)

94

Chapter 8

Conclusion

8.1 Summary

The following summarizes the accomplishments of this dissertation.

1. Chapters 3 and 4 give some new results relating learning and optimization:

(a) Theorem 4.2 quantifies how minimizing the number of non-bias weights
used in PAC learning a linear threshold function reduces the VC dimension
of the effective hypothesis space. Since the sample complexity bound of
Theorem 2.1 is linear in the VC dimension of the hypothesis space, this
gives an improved sample complexity bound for learning linear threshold
functions when only some of the input features are actually needed.

(b) Chapter 3 defines loose ERM algorithms and the associated “hold-out”
algorithms as an analog, for Haussler’s very general learning model, of
Blumer et al.’s Occam algorithms (which are for learning under the re-
strictive PAC model). Theorem 3.5 gives sample-complexity results un-
der Haussler’s model that are similar to the sample-complexity results of
Blumer et al. for their Occam algorithms. This shows quantitatively how
Occam’s Razor applies in a very general learning setting.

(c) Chapter 3 also outlines an alternative way of applying Occam’s Razor, in
terms of loose Occam Algorithms. Theorems 3.6 3.7 show that, under some
weak assumptions, a polynomial-time loose Occam with bound p(s)ma ex-
ists for a learning problem iff a polynomial-time loose ERM algorithm
with the same bound p(s)ma exists for the problem. This shows that two
different strategies for applying Occam’s Razor — using a loose ERM algo-
rithm or using a loose Occam algorithm — have equivalent computational
complexities.

2. Chapters 4 and 5 demonstrates the extreme computational difficulty of appar-
ently simple machine learning problems:

(a) Theorem 4.3 and Corollary 4.4 show that minimizing the number of non-
zero non-bias weights needed to produce a linear threshold function con-

95

sistent with a training sample is very hard: not only is this problem NP-
complete, but it cannot even be approximated to within a constant factor
unless P = NP, and it cannot be approximated to within an o(logm) factor
(m the number of examples) unless NP ⊆ DTIME[nlog log n].

(b) Chapter 5 gives a series of results culminating in Corollaries 5.15 and
5.16. These results show that no polynomial learning algorithm can even
approximate to within a constant factor the minimum classification error
achievable with linear threshold functions (unless RP = NP); variations
of this result are also proven for monomials and decision lists, and for the
problem of using linear threshold functions to approximate the minimum
error achievable with monomials. But note that it is possible to PAC learn
a linear threshold function in polynomial time and sample complexity.
The difference is that for PAC learning it is assumed that some hypothesis
with zero error exists. Removing this one artificial assumption turns a
polynomial-time problem into one that cannot even be approximated to
within a constant factor in polynomial time.

3. Chapter 6 examines the expressive power of decision trees and rule lists, and
quantifies the oft-reported expressive advantage of rule lists. In particular,
Theorem 6.3 shows that, under reasonable definitions of the size of a rule list
and the size of a decision tree, for any decision tree there exists an equivalent rule
list whose size is at most log-linear in the size of the decision tree. Theorem 6.1,
on the other hand, shows that there exists a class of rule lists for which the size
of the smallest equivalent decision tree grows exponentially in the size of the
defining rule list. Thus rule lists are more expressive than decision trees, since
any function expressible with a decision tree is expressible with a rule list that
is not much larger, while the reverse is not true.

4. Chapter 6 describes the random generation of learning problems whose target
distribution is defined by a decision tree or rule list. Several generation algo-
rithms are described, with parameters such as the kind of attributes, number
of attribute values, number of attributes, size of hypothesis or number of rules,
noise level, etc. These algorithms are designed so that every rule (resp. leaf) of
the defining rule list (resp. decision tree) is likely to capture a significant frac-
tion of the instance space. This is so that if one specifies a certain hypothesis
size, the generated problem will (most likely) actually require a hypothesis of
nearly that size in order to approach the minimum possible error.

Chapter 7 demonstrates the use of the problem generators. In contrast to
the use of standard machine-learning data sets, running learning algorithms on
synthetic data sets and varying the parameters shows how the average error of
the learning algorithms depends on the different parameters. A number of such
error curves are plotted in Figures 7.4.4–7.27, comparing BBG6 with CN2O,
CN2U, C4.5T, and C4.5R. Note that these curves demonstrate a weakness of
CN2O and CN2U that is not shared by BBG6: although CN2O and CN2U are

96

quite good on problems with nominal attributes and no noise, their performance
rapidly degrades with the addition of even a little noise.

5. Chapter 7 describes a greedy rule-insertion approach to learning rule lists, de-
scribing in detail a particular implementation of this strategy, BBG6. The
high-level BBG strategy was inspired by the results of Chapter 3 on applying
the hold-out method with a loose ERM algorithm. BBG6 has the advantage
over other rule induction algorithms that it handles arbitrary loss functions.
Although Table 7.4 shows only a small advantage for BBG6 over other rule
induction algorithms on the UC Irvine problems, Figures 7.4.4–7.27 show that
BBG6 has a marked advantage on problems that were specifically designed to
be difficult learning problems requiring the full representational power of rule
lists. Thus BBG6 shows superior performance on the kinds of problems for
which it was designed. Furthermore, Figures 7.17, 7.20, and 7.27, as well as the
results on the LED data set, indicate that BBG6 is much more robust in the
face of noise than CN2O or CN2U.

8.2 Further Research

Let us conclude by looking at some possible avenues for further research:

1. Continue the work of Chapter 5 by examining other hypothesis spaces known
to have polynomial learning algorithms under the PAC model, to see if they
also suffer from unlimited degradation when we move to PAO learning. In
particular, it might be interesting to examine the hypothesis space of k-DNF
formulae (Boolean functions representable by a disjunction of terms, with each
term being the conjunction of at most k Boolean variables) or k-CNF formulae
(the dual of k-DNF, switching the roles of conjunction and disjunction).

2. Extend the work of Chapter 6 on random generation of learning problems.

(a) The noise parameter η could be replaced by some means of generating
nonuniform noise, or even a second hypothesis that is sufficiently complex
that it looks like noise. In the latter case we could reduce the misclassi-
fication error to η using a moderately-sized hypothesis, but reducing the
error to zero (or even significantly less than η) would require a much larger
hypothesis.

(b) It could also be interesting to provide means of introducing various kinds
of correlations between attributes, including the case of some attributes
having a functional dependence on others.

(c) Finally, it might be useful to carefully investigate some statistical prop-
erties of the problem generators. For example, one could experimentally
verify, for a wide variety of parameter settings, that instances do in fact
tend to be equally distributed among the rules; and one could check for
any significant systematic bias favoring the capture of instances at one

97

rule position over another. (I did some informal experiments of this sort
in developing and debugging the problem generators.)

3. Improve BBG6. Sections 8.2.1 and 8.2.2 discuss two possible modifications of
BBG6: handling inconsistent training samples, and handling continuous at-
tributes.

8.2.1 Inconsistent Training Samples

An inconsistent training sample z is one which contains examples zi = (xi, yi) and
zj = (xj , yj) such that xi = xj but yi 6= yj. If the instance space is large and
the probability distribution over instances is not too concentrated in any region of
the instance space, then it is unlikely that the training sample will be inconsistent,
simply because it is unlikely that the same instance will be drawn twice. However,
these assumptions do not always hold, and thus it is useful to consider what happens
when we have an inconsistent training sample.

The difficulty with an inconsistent training sample is that it may cause the com-
puted upper bound on the gain-cost ratio to be overly optimistic. The upper-bound
computation made use of G(λ, p) to compute the gain that could be obtained if we
could somehow restrict λ to capture only the “good” examples and none of the “bad”
examples. But if the training sample contains two examples zi and zj with xi = xj

and δ(zi, λ, p) > 0 > δ(zj, λ, p), then we know that we cannot capture the good ex-
ample zj without also capturing the bad example zi; similarly, we cannot rule out the
bad example zi without also ruling out the good example zj .

Thus in computing G and B it may be advantageous to consider maximal groups
of examples with the same instance — call these “clans” — instead of just looking at
individual examples. Let us suppose that the examples in z have been ordered such
that each clan occupies a contiguous subsequence of z. Let χ(j) be the set of indices
i such that zi is a member of clan j. Then we can redefine G and B as

1. G(λ, p)
def
=
∑

j max{0,−∑i∈χ(j) δ(zi, λ, p)};

2. B(λ, p)
def
=
∑

j max{0,∑i∈χ(j) δ(zi, λ, p)}.

8.2.2 Continuous Attributes

As mentioned in Section 7.1.3, the simplest approach to handling continuous at-
tributes is to discretize them, using methods such as those discussed by Kerber [26]
and Catlett [8]. Both of their methods take the classes of examples into account when
discretizing. A refinement of this approach would be to re-discretize for every call of
BESTRULE, with a different discretization for every class, using the categorization
of each example zi as “good” or “bad” to drive the discretization (and perhaps taking
into account the magnitude of δ(zi, c)).

It would be preferable, however, to handle continuous attributes directly. The
current implementation of BESTRULE makes much use of the assumption that we

98

have relatively few possible primitive tests per attribute, and hence would not be
easily-modifiable to handle continuous attributes, where there may be upwards of
m (the number of examples) thresholds v to consider for a primitive test of the
form xj ≤ v. A more promising approach might be to use tabu search [14, 15] to
implement BESTRULE. Tabu search is a general optimization strategy which extends
local search in a number of ways, among them allowing the search to escape from a
local minimum. Local search is a strategy of starting with some possible solution, and
repeatedly evaluating a set of small changes to the current solution, choosing that
change which most improves the objective function, until no further improvement can
be found. These small changes are called moves. For maximizing the gain-cost ratio
of a rule, possible moves would be the removal of a primitive test or the addition of a
primitive test. I do not include changing the rule’s class, since this would be a major
change, unlikely to result in improvement; thus one would run a separate tabu search
for each class.

We would like to evaluate all possible moves in not much more than O(mN)
time; I outline how to do this in O(mN + mn logm) time. I describe in detail only
the evaluation of all ways of adding a new test of the form xj ≤ v on a continuous
attribute (tests of form xj > v are handled similarly). Evaluating all possible ways
of removing a test or adding a test on a discrete attribute can be done in a manner
similar to the computation of ga, ba and da in the procedure goodAndBad, with one
added twist: we want to also consider examples for which all but one of the current
primitive tests hold. This takes O(mN) time.

Here is how to evaluate all possible new tests of the form xj ≤ v on a continuous
attribute. Let the sequence z be those training examples for which the precondition
of the current solution holds; this could be determined when we evaluate all ways
of adding a new test on a discrete attribute. Assume that we have stored with each
example zi the rule κ(zi) which captures zi. Assume also that we have a data structure
S which has the following operations:

1. initialize(S, r). Initialize S to have r bins, each containing the value 0; this is
done in O(r) time.

2. insert(S,w,R). Add w to bin R of S. This is done in O(log r) time.

3. best(S). Return a pair (R,W) such that W = f(R) and f(R) ≥ f(R′) for all
0 ≤ R′ ≤ r, where

f(R) is the sum of the values in bins 0 through R.

This is done in O(1) time.

We then evaluate all possible additions of a new test of form xj ≤ v on a continuous
attribute, as follows. For a given continous attribute j, we sort the examples in z on
the value of attribute j. Then we call initialize(S, r) and step through the examples
one by one, starting with the lowest attribute value. For each example zi we call
insert(S, δ(zi, c), κ(zi)), where c is the current rule’s class. After each insertion we

99

compute (R,W) = best(S); if W is better than the best gain we have seen so far,
then we update the best new test to be xj ≤ v, where v is the value of attribute j for
example zi. This whole process is repeated for every continuous attribute. The total
sorting time is O(mn logm), the initialization takes O(r) time, and the calls to insert
and best take a total of O(mn log r) time; since r ≤ m, the total time is O(mn logm).

S is implemented using a binary tree of depth d = ⌈log2(r + 1)⌉, with each leaf i
being associated with bin i of S. Thus the leaves descended from the a-th node at
level b of the tree are associated with bins 2d−ba through 2d−b(a+ 1) − 1. Each node
ν contains five pieces of information:

1. ν.sum. This is the sum of the values in the bins associated with ν.

2. ν.bestR. This is the bin R maximizing f(R).

3. ν.bestf. This is f(ν.bestR).

4. ν.left and ν.right. The left and right children of ν. Note that the bins associated
with ν.left all precede the bins associated with ν.right.

The procedure initialize(S, r) constructs the tree and initializes ν.sum and ν.bestf
to 0 for every node ν. ν.bestR is initialized to the lowest-numbered bin associated
with ν. Since the tree has O(r) nodes, this takes O(r) time.

The procedure best(S) simply returns the pair (ν.bestR, ν.bestf), where ν is the
root of the tree. This takes O(1) time.

The procedure insert(S,w,R) does the following:

1. It works its way down from the root of the tree to the leaf associated with bin
R, adding w to ν.sum for each node ν encountered.

2. Upon reaching the desired leaf node λ and updating λ.sum, it sets λ.bestf :=
λ.sum. It leaves λ.bestR unchanged from its initial value of R.

3. It then works its way back up to the root of the tree, recomputing ν.bestf and
ν.bestR for every non-leaf node ν it encounters, as follows:

f0 := ν.left.bestf
f1 := ν.left.sum + ν.right.bestf
if (f0 ≥ f1)
ν.bestf := f0; ν.bestR := ν.left.bestR

else
ν.bestf := f1; ν.bestR := ν.right.bestR

This runs in O(d) = O(log r) time. It is straightforward to verify that the above
procedure maintains ν.sum, ν.bestf, and ν.bestR at their proper values.

100

Bibliography

[1] N. Abe & M. K. Warmuth (1990). On the computational complexity of approxi-
mating distributions by probabilistic automata. In Proceedings of the 3rd Annual
Workshop on Computational Learning Theory, 52–66.

[2] T. M. Apostol (1969). Calculus, second edition, volume II. New York: John
Wiley & Sons.

[3] E. B. Baum & D. Haussler (1989). What size net gives valid generalizations?
Neural Computation 1, 151–160.

[4] M. Bellare, et al. (1993). Efficient probabilistically checkable proofs and applica-
tions to approximation. In Proceedings of the 25th Annual ACM Symposium on
Theory of Computing, 294–304.

[5] A. Blum (1992). Personal communication.

[6] A. Blumer, et al. (1989). Learnability and the Vapnik-Chervonenkis dimension.
Journal of the ACM 36, 929–965.

[7] L. Breiman, et al. (1984). Classification and Regression Trees. Belmont, CA:
Wadsworth.

[8] J. Catlett (1991). On changing continuous attributes into ordered discrete at-
tributes. In Machine Learning — EWSL-91 (Lecture Notes in Artificial Intelli-
gence 482), 164–178.

[9] P. Clark & R. Boswell (1991). Rule induction with CN2: some recent improve-
ments. In Machine Learning — EWSL-91 (Lecture Notes in Artificial Intelligence
482), 151–163.

[10] P. Clark & T. Niblett (1989). The CN2 induction algorithm. Machine Learning
3, 261–283.

[11] T. H. Cormen, C. E. Leiserson, & R. Rivest (1990). Introduction to Algorithms.
Cambridge, MA: MIT Press.

[12] L. Devroye (1988). Automatic pattern recognition: a study of the probability
of error. IEEE Transactions on Pattern Analysis and Machine Intelligence 10,
530–543.

101

[13] M. R. Garey & D. S. Johnson (1979). Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York, NY: W. H. Freeman and Company.

[14] F. Glover & M. Laguna (1993). Tabu search. In Modern Heuristic Techniques for
Combinatorial Problems, Colin R. Reeves (Ed.), 70–150. Oxford, MA: Blackwell
Scientific Publications.

[15] F. Glover & D. de Werra (Eds.) (1993). Annals of Operations Research, vol. 41:
Tabu Search.

[16] R. L. Graham, D. E. Knuth, & O. Patashnik (1989). Concrete mathematics: a
foundation for computer science. Reading, MA: Addison-Wesley.

[17] D. Haussler (1988). Quantifying inductive bias: AI learning algorithms and
Valiant’s learning framework. Artificial Intelligence 36, 177–221.

[18] D. Haussler (1992). Decision theoretic generalizations of the PAC model for neu-
ral net and other learning applications. Information and Computation 100, 78–
150.

[19] Haussler, D., et al. (1988). Equivalence of models for polynomial learnability. In
Proceedings of the 1988 Workshop on Computational Learning Theory.

[20] K.-U. Höffgen & H.-U. Simon (1992). Robust trainability of single neurons. In
Proceedings of the Fifth Annual ACM Workshop on Computational Learning
Theorey, 429–439. New York: Association for Computing Machinery.

[21] K.-U. Höffgen H.-U. Simon, & K. S. Van Horn (1994). Robust trainability of
single neurons. To appear, Journal of Computer and System Sciences.

[22] V. Kann (1992). On the Approximability of NP-complete Optimization Problems.
Ph.D. thesis, Royal Institute of Technology, Dept. of Numerical Analysis and
Computing Science, Stockholm, Sweden.

[23] M. Kearns (1990). The Computational Complexity of Machine Learning. Cam-
bridge, MA: MIT Press.

[24] M. Kearns, et al. (1987). On the learnability of boolean formula. In Proceedings
of the 19th ACM Symposium on Theory of Computing, 285–295.

[25] M. J. Kearns, R. E. Schapire, & L. M. Sallie (1992). Toward efficient agnostic
learning. In Proceedings of the 5th Annual Workshop on Computational Learning
Theory, 341–353.

[26] R. Kerber (1992). ChiMerge: discretization of numerica attributes. In Proceed-
ings of the 10th National Conference on Artificial Intelligence, 123–127.

[27] P. G. Kolaitis & M. N. Thakur (1991). Approximation properties of NP mini-
mization classes. In Proceedings of the 6th Annual Conference on Structures in
Complexity Theory, 353–366.

102

[28] J. van Leeuwen (editor) (1990). Handbook of Theoretical Computer Science, Vol-
ume A: Algorithms and Complexity. Cambridge, MA: The MIT Press.

[29] N. Littlestone (1988). Learning quickly when irrelevant attributes abound: a new
linear-threshold algorithm. Machine Learning 2, 285–318.

[30] R. J. McEliece (1977). The Theory of Information and Coding. Reading, MA:
Addison-Wesley.

[31] P. M. Murphy & D. W. Aha (1992.) UCI Repository of machine learning
databases. Irvine, CA: University of California at Irvine, Dept. of Information
and Computer Sciences.

[32] B. K. Natarajan (1991). Machine Learning: A Theoretical Approach. San Mateo,
CA: Morgan Kaufmann.

[33] G. Pagallo & D. Haussler (1990). Boolean feature discovery in empirical learning.
Machine Learning 5, 71–99.

[34] L. Pitt & L. Valiant (1988). Computational limitations on learning from exam-
ples. J. Assoc. Comput. Mach. 35, 965–984.

[35] J. R. Quinlan (1993). C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann.

[36] J. R. Quinlan & R. L. Rivest (1989). Inferring decision trees using the Minimum
Description Length Principle. Information and Computation 80, 227–248.

[37] R. L. Rivest (1987). Learning decision lists. Machine Learning 2, 229–246.

[38] J. T. Tou & R. C. Gonzalez (1974). Pattern Recognition Principles. Reading,
MA: Addison-Wesley.

[39] L. G. Valiant (1984). A theory of the learnable. Communications of the ACM
27, 1134–1142.

[40] K. S. Van Horn & T. R. Martinez (1993). The Design and Evaluation of a
Rule Induction Algorithm. Technical Report BYU-CS-93-11, Computer Science
Department, Brigham Young University.

[41] K. S. Van Horn & T. R. Martinez (1993). The BBG rule induction algorithm.
In Proceedings of the 6th Australian Joint Conference on Artificial Intelligence,
Melbourne, Australia.

[42] V. N. Vapnik (1982). Estimation of Dependences Based on Empirical Data. New
York: Springer-Verlag.

[43] V. N. Vapnik (1989). Inductive principles of the search for empirical dependences.
In Proceedings of the 2nd Annual Workshop on Computational Learning Theory.
San Mateo, CA: Morgan Kaufmann.

103

[44] S. M. Weiss, R. S. Galen, & P. V. Tadepalli (1990). Maximizing the predictive
value of production rules. Artificial Intelligence 45, 47–71.

104

