
to appear in Knowledge and Information Systems

Adapting ADtrees For Improved
Performance on Large Datasets with
High Arity Features

Robert Van Dam, Irene Langkilde-Geary and Dan Ventura
Computer Science Department

Brigham Young University

rvandam00@gmail.com, i.l.geary@gmail.com, ventura@cs.byu.edu

Abstract. The ADtree, a data structure useful for caching sufficient statistics, has
been successfully adapted to grow lazily when memory is limited and to update se-
quentially with an incrementally updated dataset. However, even these modified forms
of the ADtree still exhibit inefficiencies in terms of both space usage and query time,
particularly on datasets with very high dimensionality and with high arity features. We
propose four modifications to the ADtree, each of which can be used to improve size
and query time under specific types of datasets and features. These modifications also
provide an increased ability to precisely control how an ADtree is built and to tune its
size given external memory or speed requirements.

Keywords: ADtree, Sufficient Statistics, Caching, Large Data Sets, High Arity Fea-
ture

1. Introduction

As fields such as machine learning and data mining continue to mature and are
applied to new problems, the need arises to model and manipulate datasets that
are substantially larger than those that have traditionally been attempted. The
higher dimensionality of many of these datasets exceeds the capacity of current
techniques for storing model parameters, but higher dimensionality is correlated
with more relevant, meaningful, and interesting problems.

This explosion of data has become manifested in a variety of knowledge and
information processing areas and recent advances have been demonstrated in

Received Oct 01, 2010
Revised Nov 17, 2011
Accepted Feb 25, 2012



2 Van Dam, Langkilde-Geary and Ventura

algorithms for tackling variations of the problem in many domains. For classifi-
cation tasks, training data must be compressed into a model for decision making.
This can be challenging if the data cannot fit in memory, and one approach to
handling this case is a piecewise training algorithm (for linear SVM in particular)
on blocks of training data that produces a single model for classification (Yu,
Hsieh, Chang and Lin, 2010). The problem of predicting rare (outlier) events
in massive amounts of data has recently been applied in both the context of
fraud detection, where condensed representations are employed (Koufakou, Sec-
retan and Georgiopoulos, 2011) and of advertising where a hierarchical approach
admits scalability (Agarwal, Agrawal, Khanna and Kota, 2010). Computing sim-
ilarities or distances in very high-dimensional spaces is becoming common place
as large repositories of multimedia data become available. Recent techniques
for efficiently computing similarities of such data include preprocessing with a
dimensionality reduction step and computing an approximate distance in low di-
mensional space (Kim, Chung, Lee and Kim, 2011) and clever indexing schemes
that allow efficient bucketing of similar data into equivalence classes (Zhang and
Alhajj, 2010). A related piece of work addresses the problem in a different way
by considering the case when the distance function is the computational bottle-
neck and applies indexing of the distance function itself (by precomputing key
values) to quickly acquire bounds for the real distance (Chen, Liu, Furuse, Yu
and Ohbo, 2011). Processing and mining data streams is another instantiation
of the massive data problem, and becomes even worse when users are allowed
different sub-space views of the stream (Huang, Sun and Wang, 2010).

The problem we consider here is one of counting sufficient statistics, specif-
ically in the context of statistical approaches to Natural Language Processing.
Such approaches are well-known to require very large corpora to support statis-
tics gathering. Further, many NLP approaches treat data as living in very high-
dimensional spaces (because objects consists of many words) and many of these
dimensions as having very high arity (because each word can take on many val-
ues). Unfortunately, most existing models suffer from practical (if not theoretical)
problems of tractability with high dimensional (and high arity) data. The prob-
lem is particularly acute for statistical models that can make use of a full joint
probability distribution, because these generative models require the ability to
model the probability of any potential event or arbitrary tuple of feature/value
combinations. Early efforts for addressing this counting problem include index-
ing structures such as the BSP tree (Fuchs, Kedem and Naylor, 1980; Gaede
and Gunther, 1998), the kd-tree (Bentley, 1975; Gaede and Gunther, 1998) and
the SE-tree (Rymon, 1993), but all of these demonstrate significant deficiencies
for many problems that involve massive amounts of high dimensional, high arity
data.

A caching data structure called the ADtree has been proposed that over-
comes many of the time and space problems suffered by these earlier approaches
(Moore and Lee, 1998); it is a generalization of the kd-tree that provides ac-
cess to all (statistical) events while still improving memory usage. Additionally,
the ADtree can benefit from both independence and correlations among its fea-
tures in order to create a structure that is orders of magnitude smaller than
its theoretical upper bound and capable of meeting memory requirements for
higher dimensional datasets. ADtrees have proven useful in a variety of settings
including for learning association rules (Anderson and Moore, 1998), for n-gram
counting in sequential data (such as large natural language corpora) (Van Dam



Adapting ADtrees... 3

and Ventura, 2007), and for incremental environments in which data is collected
over time (Roure and Moore, 2006).

The ADtree provides a substantially improved mechanism over näıve methods
for algorithms that require frequent counting over a dataset. Unfortunately, the
problem of counting is fundamentally an exponential problem and many datasets
are still much too large even for an ADtree. The structure that Moore and Lee
presented was designed to be built in its entirety and then used by the algorithm,
after which it could either be stored for future use or simply discarded. However,
it was later noted that what are usually termed static ADtrees (those that are
completely built before being used) often waste space (and therefore waste time
in generation) on parts of the tree that will not be used by the algorithm for
which the tree was built (Komarek and Moore, 2000). If these parts of the tree
were easily identifiable a priori, then a simple modification could create the tree
without including the unnecessary subtrees.

The unnecessary parts of the tree can often be the result of a complicated
interaction between the specific machine learning algorithm and dataset (that
is, changing either the algorithm or the dataset would change which parts of the
tree are extraneous). Komarek and Moore’s solution was to create a dynamic
adaptation of the ADtree that functions as a lazy caching structure that grows
the tree only when presented with specific requests (queries) that are not already
cached. Their adaptation again makes use of several clever techniques to avoid
repeatedly iterating over the dataset as might otherwise seem necessary.

Static ADtrees provide a memory-efficient mechanism for utilizing large data-
sets with high dimensionality in machine learning algorithms. Dynamic ADtrees
extend those capabilities even further. However, real-world sized datasets can
still be difficult or impossible to manage as they can still generate an ADtree
that does not fit into memory. Furthermore, although dynamic ADtrees can be
applied to high arity features, they give extremely poor average access times
and very minimal space savings on these attributes since one of the space-time
tradeoffs used to reduce the size of the tree is no longer applicable for high
arity features. Additionally, the trade-offs between the amortized runtime and
re-usability of static ADtrees and the space-savings and flexibility of dynamic
ADtrees remain relatively unexplored.

We present four modifications to the ADtree that address these issues and
that improve performance on large, high-arity datasets: new indexing strategies
(Van Dam, Langkilde-Geary and Ventura, 2008), static/dynamic tree hybridiza-
tion, feature ordering strategies, and pruning techniques.

2. Background

The full ADtree contains two types of nodes that alternate along every path in
the tree. ADnodes store the count of one conjunctive query. Vary nodes group
ADnodes according to a single feature. The Vary node child of an ADnode for
feature ai has one child for each value vj . These grandchildren ADnodes specialize
the grandparent’s query Q by storing the counts of Q∧ai = vj . Such a full ADtree
contains every combination of feature-value pairs and is not yet efficient in its
memory usage.

The original ADtree included three approaches that can be combined to re-
duce its overall size. First, the tree is sparsified by removing all zero counts.
Second, the ADnodes near the bottom of the tree are not expanded. Instead



4 Van Dam, Langkilde-Geary and Ventura

they are replaced with “leaf lists” of indices into the dataset whenever the num-
ber of relevant rows (the count) drops below a pre-determined threshold. Third,
certain counts are removed from the tree in such a way that they can be recov-
ered from other counts still stored in the tree. The trick is for each Vary node to
remove the child ADnode (called the MCV) that has the largest count among all
its child nodes, providing the largest expected space-savings without sacrificing
the ability to recover any counts. This last technique assumes that the trade-off
of increasing average query time (due to recovering the implicitly stored counts)
is reasonable in comparison to the expected space savings.

The dynamic tree follows the same basic structure; however, since it is built
lazily, at any given point only a portion of the tree will have been expanded. The
dynamic tree also contains some additional support information used to tem-
porarily cache information needed for later expansion. Fully expanded portions
of the tree no longer require these extra support nodes.

2.1. WSJ Dataset and Constraint-based Part-of-Speech Tagger
Client

Because both the space and time requirements of the ADtree depend on the
sequence of queries it is used to answer, testing our proposed modifications re-
quires generating various query sequences. For this purpose, we use a client
algorithm that performs part-of-speech tagging on a modified version of the
Wall Street Journal (WSJ) corpus (University of Pennsylvania Linguistic Data
Consortium, n.d.). In order to isolate the timing and memory usage of just the
ADtree building code, the tagger was used only to generate query logs for each
feature set. All of the experiments reported here were performed using only the
query logs to generate the ADtrees, and each query log can be thought of as
a unique “dataset”. The nature of the tagging task results in the generation of
query logs that exhibit high variability and thus constitute an ideal platform for
testing the ADtree because such variability in general requires fast access to all
possible queries.

The WSJ corpus includes each word along with its Part-of-Speech (POS)
tag as well as the syntactic structure of each sentence. The dataset used here
is a modified version that maintains the word and POS tag as features but ig-
nores the syntactic sentence structure. Four additional features were derived from
the POS tags: category (simplified POS class), subcategory, tense, and number.
Seven additional features were derived solely from the word itself: whether or
not the word was “rare” in the dataset, capitalization style, orthographic repre-
sentation (e.g. contractions), has-hyphen, and has-digit, the last 3 characters of
the word, and if it contained one of a short list of derivational suffixes. Several of
these features have been used in previous part-of-speech taggers (Toutanova and
Manning, 2000). Each of these features breaks what would be a single tagging
decision into a set of smaller, related decisions. In addition, three more features
were added to the new dataset related to morphology. Those features were a
base word form and the corresponding inflectional morphological rule (pattern)
as well as whether the base stem was also “rare”.

This enhanced WSJ corpus is large enough, in terms of dimensionality and the
arity of its features, that building a static ADtree is not feasible. Table 1 shows
the number of unique values in the corpus for each feature. This corresponds
to slightly less than 1023 possible events (or conjunctive queries). The “code”



Adapting ADtrees... 5

Table 1. All available features, their arity (number of values) and how skewed is the Most
Common Value (MCV). ‘Original Word’ (‘w’) and ‘Part of Speech’ (’c’) come from the original
WSJ corpus, the remaining features are derived from one or both of these (except for the
two ‘Rare’ features, which are derived from the corpus as a whole). “MCV skew” measures the
independent skew of each feature across the entire dataset. When calculated given a conditional
context of other feature/value assignments, this measure can change dramatically (as can the
MCV itself).

Code Feature Values MCV Skew

w Original Word 42136 5%
b Word Stem 35698 5%
3 Last 3 Characters 4591 5%
p Inflectional Suffix 255 94%
c Part of Speech 45 14%
0 Simplified POS 22 32%
1 POS subcategory 15 38%
s Derivational Suffix 10 81%
t Tense 5 86%

C Capitalization Style 5 86%
n Number 3 53%
z Orthographic Style 3 98%
h Has Hyphen 2 99%
8 Has Digit 2 97%
o Rare Word 2 95%
a Rare Stem 2 94%

Table 2. Each code represents a subset of features (+ means that neighboring words were
included). There is not a ’+’ feature set corresponding to every plain feature set because the
client algorithm could not complete enough sentences to create usable query logs.

Feature Sets Event Space

wc 1.90 × 106

wcCh8 3.79 × 107

wc01tn 9.39 × 109

wc01tns3 4.31 × 1014

wbcp 1.73 × 1013

wbcpCh8 3.45 × 1014

wbcps3 7.92 × 1017

wbc01tnps3 3.92 × 1021

wbc01tnzps3Ch8ao 9.41 × 1023

wc+ 6.82 × 1018

wcCh8+ 1.36 × 1020

wc01tn+ 6.75 × 1021

wc01tns3+ 3.10 × 1026

wbcp+ 6.21 × 1025

wbc01tnps3+ 3.07 × 1029

wbc01tnzps3Ch8ao+ 7.37 × 1031

character for each feature is used as shorthand to represent different groupings
of features (see Table 2).

Several different groupings of features were chosen, in part because they rep-
resent natural feature groupings for the tagger client application but also as
a mechanism for distinguishing how the proposed modifications interact with
features of different arities. Table 2 lists several different feature sets by a short-



6 Van Dam, Langkilde-Geary and Ventura

hand “name”, which consists of one character for each feature in the set using
the single character “codes” in Table 1. Feature sets that were also combined
with the word and POS tag for both the left and right words (adding four extra
features to each group) are distinguished in the results using a ‘+’ at the end
of the name. Each of these different feature sets produces a unique query log
and thus a unique dataset for testing the performance of the ADtree and our
modifications.

3. ADtree Modifications

We propose four different modifications to the ADtree to facilitate its use for
large, high-arity datasets, with each modification depending upon slightly vary-
ing data and usage characteristics. The situations in which each modification
can be applied are detailed both in this section and in Section 4. It is worth
noting that the ADtree used in most of these cases is a dynamic version of the
tree. However, many of these improvements can also be used in a static tree
(although that sometimes implies a change in the expected space-time tradeoff).
The applicability of each modification to a static ADtree will be discussed as
part of each of the following sections.

3.1. Improved Space-Time Tradeoffs for High Arity Features

It is noteworthy that the majority of previously published results using ADtrees
have used datasets with relatively low arity features. Although there is no techni-
cal limit to the arity of features used in an ADtree, there are practical limitations.
In particular, the space-saving technique of removing all MCV ADnodes makes
the assumption of a reasonable space-time trade-off that is more easily violated
with high arity features. Dynamic trees can suffer additional problems when
removing MCV nodes even for low arity features. Below we will present two
modifications to the ADtree that decrease the overall space usage when using
high arity features while still maintaining reasonable build/query times.

The key problem is that removing the MCV ADnode for high arity features
can dramatically increase query time and only slightly decreases space usage. If
a query involves the MCV of feature ai, it is necessary to sum at least ni − 1
values (where ni is the arity of ai). Given a query Q that specifies values for q
features, the worst case scenario could require summing over

∏q
i=1 (ni − 1) + 1

values due to recursive MCV “collisions”. Although this worst case is rare (since
data sparsity and/or correlation tend to cause Vary nodes lower in the tree to
have fewer ADnodes), it helps to illustrate the potential for longer query times
when the ni are large. For instance, a query involving 3 features with 10 values
each has a worst case of summing over 93 values. If the 3 features had 10, 000
values, this becomes 99993.

Figure 1 illustrates the “best” case for a feature of 10, 000 values in which
every sibling node is a leaf node (or at least a leaf list). If a query that encounters
that MCV ADnode involves further features in the missing subtree then it will
need to traverse the subtrees (if they exist) of all 9999 siblings. This increases
the potential for further MCV “collisions”, eventually leading to the worst case
scenario where every path involves one MCV ADnode for every feature in the
query.



Adapting ADtrees... 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 . . . 999

Fig. 1. Iconic representation of a vary node for a high arity feature ignoring any further
subtrees. This effectively illustrates the “best case” scenario with respect to the base problem
of summing over so many counts in order to retrieve a single number. A real-world situation
could be far worse if the subqueries had to descend subtrees and potentially encounter more
missing MCV nodes. (Although node size is not represented graphically, the only assumption
is that the MCV is not highly skewed).

Although there are many more queries that don’t require summing, higher
arity increases the possibility for very slow queries. Additionally, since the more
common values have a higher prior probability of being queried (at least for some
client algorithms), the most expensive queries are the most likely to occur (or
more likely to occur often).

The original justification for excluding MCV ADnodes was that it provided
significant space savings in exchange for a minor increase in query time. For
binary features, there is no significant increase in query time and each Vary
node’s subtree is cut at least in half. For a feature with 10 values, the Vary
node’s subtree is reduced by at least 10% in exchange for summing over at least
9 values. With 10, 000 values, the subtree is reduced by at least 0.01% in exchange
for summing over at least 9999 values. The space savings becomes increasingly
insignificant and conversely the query time becomes increasingly significant with
higher arity features.

There is a further complication when using a dynamic tree. If a query is made
that involves at least one MCV then all ni − 1 of its siblings must be expanded.
If those nodes are never directly queried then they are simply wasted space. (In
the previous example of 3 features with 10, 000 values there are 99993 unique
paths consisting of nearly 1012 nodes1). Although not as dramatic for lower arity
features, this is true for any arity above two2. Therefore, if the algorithm does
not query all combinations exhaustively then excluding all MCV ADnodes can
actually create a larger tree than if they had been included.

3.1.1. Solution 1: Complete Vary Nodes and RatioMCVs

The first solution is to establish a threshold for high arities, above which the MCV
ADnode is included. Note that this does not entail making a list of features for
which the MCV will always be included. The “arity” used to determine whether
or not to include the MCV is the number of children of the parent Vary node.
This means that the exclusion of MCVs becomes context sensitive and a given
feature may have its MCV included in one part of the tree and excluded in
another (just as the actual MCV is context dependent). The threshold, however,
is kept constant throughout the tree. A Vary node that has an intact MCV
ADnode child will be referred to as a Complete Vary Node.

Although an arity threshold should help provide an improved balance of
space and time, there are still some cases where using a simple threshold might

1 There are 99993 + 2 ·99992 + 2 ·9999 = 999, 900, 009, 999 total nodes (AD and Vary) needed.
2 With binary features, it is always redundant to include both nodes so we keep the smaller
(non-MCV) one.



8 Van Dam, Langkilde-Geary and Ventura

MCV . . .

Fig. 2. Vary node for a feature with skewed MCV (high proportional count). Relative node
size represents the relative counts at each node (as well as the a priori potential size of the
corresponding subtrees). Although it is still necessary to sum over many nodes to recover some
queries, the MCV subtree is so large and the potential for further MCV collisions in the smaller
subtrees so small that the trade-off is more reasonable (contrast Figure 1).

incorrectly indicate the need to include the MCV. In particular, if a feature is
highly skewed due to a large MCV (given the context in the tree) then the MCV
may represent a significant portion of a Vary node’s subtree. In such a case, the
subtree of the MCV may be so large that including it would be too expensive,
even if it has a large number of siblings. For instance, including the MCV ADnode
shown in Figure 2 based solely on arity while ignoring its disproportionately large
count could be worse than leaving it out (as it would have been by default).

Indeed, a strong skew towards the MCV implies smaller counts for its sibling
nodes and therefore shorter subtrees. This eliminates the possibility of the worst
case scenarios noted above and mitigates the need to include the MCV ADnode.
We therefore introduce the concept of a RatioMCV that is an MCV that has
a count above a parameterized threshold ratio of the total of the grandparent
ADnode. Then, any MCV that is also a RatioMCV will be removed, regardless of
the number of sibling values. The combination of arity threshold and RatioMCV
should appropriately handle all possible situations since the thresholds can be
adjusted to accomodate different datasets and feature arities.

3.1.2. Solution 2: Clump nodes

As was noted, excluding MCV ADnodes can interact negatively with dynamic
expansion of the tree, counter-intuitively increasing its size. Although the con-
sequences of this interaction are worse for higher arity features, the problem can
occur with any number of values above 2. Since the usefulness of excluding the
MCV ADnodes is well documented (except as noted here), some other solution
is needed.

One feasible solution stems from the fact that this problem does not occur
with binary features. A query involving the MCV of a binary feature follows the
same path as a similar query switching only the MCV value to its complement.
If all of the sibling values of the MCV were “clumped” together as a single
“other” value, then any query involving the MCV could be found using this
Clump node and performing the appropriate subtraction. This eliminates the
need to calculate a sum and does not expand any nodes not explicitly queried
(see Figure 3). Furthermore, Clump nodes can be built on demand just like any
other node in the tree.

There is a slight catch when using the Clump node, however. A Clump node
cannot be used to answer queries involving any of the “clumped” values. There-
fore, a query involving such a value will require the expansion of the correspond-
ing node, resulting in some redundancy in the tree. One expensive way to deal



Adapting ADtrees... 9

MCV
⋃

i
ni n1 n2 n3 n4 n5 n6 n7 n8 n9 . . . ni

Fig. 3. Here the issue of skew is ignored and so the nodes are represented as uniform in size.
However, the Clump node represents both the sum of the counts of the other nodes as well as
the union of the rows (represented here) for that node’s partition of the datasest.

with this would be to delete the Clump node and create a new one without the
newly expanded value. Using this method, the time needed to query the MCV
will slowly increase until the Clump node is completely removed. The approach
used in this paper takes the alternative approach of temporarily permitting the
redundancy until some percentage of the “other” values are expanded. At that
point, the Clump node is deleted.

3.2. Static and Dynamic ADtree Hybridization

Static trees provide excellent amortized conjunctive counting query retrieval
time, particularly if they are reused multiple times. However, if a dynamic tree
is required due to memory limitations, the tree must be regenerated on each run
of the client algorithm.

Even if the series of queries produced by different runs of an application are
not identical, it is likely that the ADtrees from each run share some structure.
One reasonable solution is to hybridize the benefits of the static and dynamic
trees by generating some of the shared portions of the tree in advance. This
can reduce the time needed to dynamically generate the tree without wasting
space on unneeded portions of the tree. In general, the first and second levels
of the tree are the most likely to be needed by an arbitrary algorithm. These
levels represent all possible single and paired feature queries and constitute par-
tial computation of higher-order queries. So it would generally be beneficial to
statically precompute these portions of the tree. Additionally, this hybridization
could be parameterized to statically generate only a subset of features or values.

In many respects, this hybridization technique is a way to memoize a query-
based analog to “currying”, a function generation technique used in some higher-
order functional languages. The simplest form of currying takes an n-argument
function and a value for one of those arguments and returns a new, (n − 1)-
argument function in which all occurrences of the first argument have been re-
placed with the given value. This can be generalized to replacing k of the original
function’s arguments, where k < n, by repeatedly currying the result of the pre-
vious currying. The hybrid ADtree, essentially “curries” the query function for
all values of each feature independently. The second level can then be generated
by taking the results of the first level and currying each query/node with all
possible values of a second, distinct feature3. The result is an efficiently stored,

3 Fortunately, the actual 2-level tree generation is more efficient than the currying analogy
implies since all ADnodes (values) of a particular feature can be generated together in a single
step.



10 Van Dam, Langkilde-Geary and Ventura

memoized table of all (or a parameterized subset of) 2-feature full and partial
queries.

3.3. Feature Ordering Strategies

The original ADtrees maintain a predetermined fixed order on features that
determines the path that a query should follow through the tree. Any conjunctive
query is first sorted according to this ordering and then the tree is traversed
in that same order. This fixed order is generally a naive ordering such as the
original order from the dataset or even a simple alphabetical ordering (assuming
descriptive feature names exist). A more tailored ordering (to be used with either
static or dynamic ADtrees) would determine the relative ordering of features
that minimizes the overall size of the tree. Maximum benefit would come from
a context-specific ordering because of the increased flexibility to use different
relative orderings of features that best minimize the tree given the context.

A context specific ordering requires the use of a heuristic to determine, at
each level of the tree, which feature is next along a particular path. A well-defined
heuristic is necessary that can be used both for generating the tree as well as for
determining the path that should be followed for any given query. Unfortunately,
it is not known whether there is a generally optimal heuristic or even whether
the same heuristic would work equally well for any two distinct datasets or
applications. In particular, a metric that selects for strongest correlation may
miss an opportunity to exploit independence and vice versa.

Besides the canonical and alphabetical orderings, several simple heuristics
can be designed based on some of the characteristics of the ADtree. The two
simplest characteristics on which to base an ordering are arity of the features
and size (count) of the MCV of each feature. A third, and somewhat less obvious
measure on which to base an ordering is the overall entropy of the values of a
feature. Entropy in this context can be defined as

H(ai) = −Σni
j=1p(vj) · log2(p(vj)) (1)

where the ai is the i-th feature in the dataset, ni is the arity of ai and v1 · · · vni

are the possible values of ai. The value of p(vj), the conditional probability that
vj occurs given the current context in the tree, is estimated using the observed
counts such that

p(vj) = count(Q ∧ ai = vj)/count(Q) (2)

where Q is the grandparent query (in the case that Q is the empty query,
count(Q) is defined to be the total number of rows in the dataset.) In essence,
entropy is a measure of the context-specific distribution of values of ai given
Q. A uniform distribution will have maximal entropy, while a single value (and
therefore terminating MCV) will have an entropy of 0.

In general, these three heuristics are not uncorrelated. For instance, (rela-
tively) large MCV counts imply smaller sibling counts and therefore lower over-
all entropy. High arity features automatically have a higher potential maximum
entropy (since the entropy of a perfectly uniform distribution is log2(ni)) and so
an ordering based on largest arity will be identical to one based on highest en-
tropy given a set of independently and uniformly distributed features. However,
such a dataset is not likely to be considered sufficiently interesting to perform an
analysis on, and so it is reasonable to assume that an entropy-based ordering will



Adapting ADtrees... 11

be more tailored to the specific distributions of a given dataset. That does not,
however, imply that such a tailored ordering is inherently “better” in terms of
the resulting size of the tree. In fact, it is not readily obvious in which “direction”
to use each ordering (that is, will a lower or higher entropy, a larger or smaller
MCV result in a smaller tree). The usefulness of each ordering will generally be
very data dependent.

Superficially, ordering based strictly on arity essentially trades depth for
width. If the largest arity features are ordered first, the levels of the tree af-
ter the first (which is always essentially fixed in size) will likely be very wide
because so many feature/value combinations will occur in the first few levels.
This has the fortunate side-effect that it partitions the fixed rows of the dataset
quickly and therefore presumably, the tree will not grow very deep as strong
correlations lead to terminal MCVs and smaller counts lead to terminal leaf-
lists. Furthermore, strong correlations among the high arity features can greatly
reduce the width of the tree because fewer combinations of the first few fea-
ture/value pairs are encountered. In the reverse ordering, the top levels of the
tree are smaller because there are many fewer value combinations. However, if
the reverse ordering is used and there is a strong correlation between the lowest
arity features and the highest, there will be many occurrences at the lower levels
of features with a single possible value determined by those correlations. As a
result, the tree could be much smaller since it started out “narrow” and many
paths terminated prematurely.

Similar analysis of the orderings based on MCV counts and entropy reveal
that it could be very difficult (likely impossible) to establish a single, universally-
optimal ordering. It may not even be possible to determine an optimal ordering
for a given dataset unless the correlations among all features is known a priori
(which implies a prior analysis of the dataset not unlike that accomplished by
the process of building the ADtree). As a result, it may be necessary in many
cases to try some or all of the orderings empirically. We will provide results
of all five orderings (canonical, alphabetical, by MCV count, by feature arity,
and by entropy) performed forward and reversed on the different subsets of
features of the enhanced WSJ dataset with the expectation that varying degrees
of correlation among the features in each set satisfactorily gauges each ordering’s
effectiveness on different types of datasets.

3.4. Pruning in Limited Space Scenarios

Komarek and Moore noted that dynamic ADtrees could be extended beyond
their implementation to provide both internal and external pruning mechanisms.
External pruning could be as simple as providing an interface to permit the client
application to specify to the ADtree which subtrees to prune. Internal pruning
could be based on the raw internally stored counts4 or on a priority queue based
on frequency of use as suggested by Komarek and Moore. It is not unreasonable
to imagine a system that utilizes both mechanisms by pruning using default rules
while also permitting the client to submit requests to prune specific subtrees.

4 Without additional knowledge of the client algorithm, the most reasonable prior probability
that a node will be used is simply the Maximum Likelihood Estimate taken directly from the
counts, which are readily available.



12 Van Dam, Langkilde-Geary and Ventura

The fundamental problem of pruning nodes from the ADtree is to simul-
taneously maximize the freed memory gained from the pruning of a subtree
while minimizing the risk of pruning some portion of the tree that will need
to be regrown. It is also possible that the low-level implementation of the tree
could associate a time cost with pruning (due to extra garbage collection for in-
stance). This formulation of maximizing payoff versus minimizing risk provides
some immediate insight into certain classes of subtrees that it would generally
be disadvantageous to prune. Leaf nodes/lists provide a very minimal reward for
freed space (assuming an implementation using only indices, not duplicated data
rows). Nodes at the top level that have high counts would generally provide the
largest reward but also imply the biggest risk since they (or a subtree) have a
high probability of being needed again later.

On the other hand, if a high arity feature occurs early in the feature order-
ing then its subtrees will often be larger than subtrees of other features at that
level because they have more features on which to split. However, the high arity
feature’s lower count values have a lower likelihood of being needed again (and
less penalty for regeneration). Therefore, any reasonable internal pruning mech-
anism would generally expect to avoid pruning the most expensive subtrees and
would instead focus on infrequently used mid-level subtrees or top-level subtrees
of high arity features with lower counts.

The results given in Section 4.4 represent a simple compromise between in-
ternal and external pruning. Given the above specifications for what kind of
pruning is likely to be generally applicable, implementing the pruning itself is
very straightforward. In this case, the pruning algorithm chosen is reasonably
general but also noticably biased by the particular dataset being used. The al-
gorithm removes all ADnodes (values) with a count less than a pre-determined
threshold (1000 was chosen somewhat arbitrarily) in the first level for high arity
features. Since the majority of the high arity features for the enhanced WSJ are
based on words, their distributions are generally similar to a power law and so
the algorithm basically prunes the “long tail”. The difficulty in using this or any
pruning algorithm really lies in determining an opportune moment in the process-
ing to perform the pruning. If used as a purely internal mechanism, the easiest
and most reasonable approach is to prune if and when memory usage exceeds a
predetermined (or possibly parameterized) threshold, resulting in essentially an
inverted-greedy pruning algorithm (greedy in the sense of using as much mem-
ory as possible). However, this is not likely to correspond to a “convenient” time
with respect to the client application. The aforementioned compromise used in
this case was to provide the client application with the ability to initiate prun-
ing externally (although not with any external parameters as suggested above).
Since the tagger application treats sentences as a whole, while a sentence is being
tagged, the words of the sentence are repeatedly used in queries. Therefore, the
completion of a sentence (or a set of sentences) seems the most natural event
to trigger pruning in the tree. Other client algorithms might also have natural
boundaries where pruning is least likely to remove needed counts. The results
discussed here were obtained by pruning after every 100 sentences were finished
tagging. With feature sets for which the tree grows only gradually, this is likely
to provide a reasonable tradeoff between the relatively expensive operation of
pruning and risk of running out of memory. With feature sets that cause the tree
to grow more rapidly, this 100 sentence gap between prunings may not happen
frequently enough to avoid known memory limitations.



Adapting ADtrees... 13

Fig. 4. Results of varying the arity threshold from 5 to 50000 on tree size (number of nodes)
for each of the 16 feature sets. Notice the x-axis uses a logarithmic scale. The individual lines
are less important than the overall trend. The large scale of the y-axis disguises the fact that
most of the feature sets show a small upward curve at the low end of the x-axis.

4. Validation and Analysis of Results

Here we analyze the results of ADtrees for each of the datasets discussed in
Section 2.1. Note that there are a few reported results for which specific datasets
are either marked or excluded. Where the results are marked (such as with hash
marks), this should be understood to mean that experiment terminated early,
resulting in a slightly larger margin of error than the others. On the other hand,
some experiments completed so few sentences (if any) that the margin of error
was considered to be too large to report. In those cases, there may be a gap in
a line graph or a missing bar in a bar graph. This does not necessarily imply
that the missing dataset would always be too large or too difficult to use in
conjunction with ADtrees and/or the specific modification being analyzed.

4.1. High Arity Features

The first set of experiments was designed to determine how the tree size varied
with respect to the arity threshold. Eleven threshold values were chosen between
5 and 50000. Figure 4 shows the tree size (number of nodes) for each feature
set as the arity threshold is varied. Additionally, it is important to note that
since the highest arity feature has only slightly more than 40,000 values, an arity
threshold of 50,000 is actually equivalent to an unmodified ADtree. One detail



14 Van Dam, Langkilde-Geary and Ventura

Fig. 5. Percent tree size reduction relative to the baseline (higher is better). Bars with hash
marks did not finish constructing the tree due to memory complications.

obscured by the scale of the graph is that several of the feature sets exhibit a
slight upturn at the low end of arity threshold. In fact, the lowest point is usually
between threshold values of 20 - 50. This is of course a function of this dataset
and the correlations among features and could vary greatly from one dataset
to another. Additionally, the optimal tree size for a feature set does not always
correspond to the lowest average query time. The remaining experiments use a
threshold of 100 (when applicable) since most of the feature sets are still close
to their optimal size at that threshold. It is, however, readily apparent from the
graph that almost any choice of threshold will generally be an improvement over
the baseline.

Once a reasonable value for the arity threshold was established, both the
MCV ratio threshold and the Clump node deletion threshold were investigated.
Each of these two thresholds correspond to a ratio that can vary between 50-
99%. The MCV ratio threshold establishes how skewed the MCV of a high arity
feature has to be before it will be included despite the feature’s arity. The Clump
node deletion threshold establishes how much (partial) redundancy is permitted
before the Clump node is removed. Interestingly, it was not possible to establish
a correlation between the exact value for either of these thresholds and their
effectiveness. Both the size of the tree and average query time were found to be
very robust with respect to these two ratio thresholds.

For this reason, it was decided to arbitrarily use a ratio threshold of 50%,
meaning that the MCV is at least as large as the sum of all the other possi-
ble values. Similarly, the Clump node deletion threshold was also set at 50%.
Three variations of the ADtree were built: using just the Complete Vary Node
+ RatioMCV modification, using just the Clump node modification, and using
both modifications together. Then ADtrees were built for each combination of
parameters (including the feature set) and the tree size (node count), elapsed
runtime and cumulative memory usage were all measured. Elapsed runtime is a
fairly reasonable estimate for average query time because each experiment rep-
resents only the time required to build the tree using the query logs recorded
from the POS tagger. Cumulative memory usage is primarily dominated by the
amount of memory used in temporary data structures needed to perform calcu-



Adapting ADtrees... 15

Fig. 6. Relative difference in runtime (in hours) from the baseline (lower is better). Bars with
hash marks did not finish constructing the tree due to memory complications.

Fig. 7. Difference in cumulative memory usage (in GB) from the baseline (lower is better).
Bars with hash marks did not finish constructing the tree due to memory complications.

lations while dynamically generating the tree. The results of these experiments
are summarized in Figures 5-7.

In general, it is clear that both modifications achieve the desired results of
reducing tree size without substantially increasing build/query time. In partic-
ular, the smaller feature sets (those not including neighboring words) obtained
on average better reduction in tree size but take a few hours longer to construct
the tree and use more cumulative memory. The feature sets that included the
neighboring words on the other hand generally performed faster while still ob-
taining reasonable tree size reductions. Although there is some variation among
feature sets, it is not unreasonable to conclude that either modification success-
fully mitigates the unintended consequences of using MCVs in an ADtree with
high arity features.

Even though each modification reduces the tree size, the use of Complete Vary
Nodes (and RatioMCVs) appears to achieve equal or better results in terms of



16 Van Dam, Langkilde-Geary and Ventura

Fig. 8. Example of how tree size varies as sentences are tagged using the feature set
wbc01tnzps3Ch8ao. Tree growth tapers off towards the right as fewer unique words (and cor-
respondingly unique value assignments) are encountered. Although using a clump node does
slightly increase tree size, it is still significantly less that the unmodified tree.

tree size but takes on average slightly longer to do so. This is most evident in
Figures 8 and 9 as the performance corresponding to Complete Vary Node and
RatioMCV with respect to the number of sentences completed slowly separates
from that of the Clump node. However, there is a potential advantage to be
gained by this difference in tree size versus elapsed time. Even though the original
motivation for using both of these modifications was to improve performance on
a dynamically generated ADtree, the RatioMCV modification can be applied just
as easily to a statically built ADtree, resulting in the same tree size reduction. In
that case, the cost of building the tree is a one time cost that can be amortized
over all future uses of that tree. Furthermore, generating a static tree can be
optimized in ways that can’t be applied to a dynamic tree, potentially eliminating
the extra time cost of using Complete Vary Nodes with RatioMCVs. Because
the Clump node always represents 100% redundant information in a static tree,
it is less easily justified (though still potentially useful if space is available).

It is also apparent from the results that combining both modifications to-
gether in the same ADtree only rarely gives any advantage over using whichever
modification proved most effective for the given feature set. However, since it
is not necessarily obvious before hand which modification will provide the best
performance, using both seems to be an effective way to “hedge your bet” as
to which modification will perform best (assuming that a dynamic tree will be
used).



Adapting ADtrees... 17

Fig. 9. Example of how much runtime elapses as sentences are tagged using the feature
set wbc01tnzps3Ch8ao. The extra computation time needed for each modification is clear,
particularly for the Complete Vary Node and RatioMCV.

From the cumulative memory usage metric, it is clear that the implementation
of ADtrees used here is not optimal in memory utilization, particularly with
respect to the temporary data structures that are built and then discarded very
frequently in the course of dynamically building the tree. It may be possible to
achieve nearly universal build/query time improvements (rather than the mixed
results achieved here) by minimizing the amount of temporary memory used and
therefore the amount of time spent doing garbage collection.

4.2. Hybridization

Because of the improvements achieved by the use of Complete Vary Nodes and
RatioMCVs, the experiments using the hybrid version of the tree used Complete
Vary Nodes and a RatioMCV threshold of 0.5. Correspondingly, Figures 10, 12,
and 14 compare the results of creating a hybrid tree in combination with a Com-
plete Vary Node/RatioMCV tree to the results in Figures 5-7 for just the Com-
plete Vary Node/RatioMCV. As in the previous graphs, the results are relative
to a baseline that uses none of these modifications. Additionally, Figures 11, 13,
and 15 show just the improvement (or lack thereof) of just the hybrid tree using
the Complete Vary Node/RatioMCV results as a new baseline.

In order to understand these results, it is important to understand that a
single static tree was built in advance. This tree consists of the first two levels



18 Van Dam, Langkilde-Geary and Ventura

Fig. 10. Percent tree size reduction relative to the baseline (higher is better). Because the
same partial static tree is used for each feature set, the smaller feature sets actually perform
much worse. Bars with hash marks did not finish all of the queries in the respective query logs
due to memory complications.

Fig. 11. Percent tree size reduction relative to the RatioMCV results in Figure 10 (higher is
better). Here the poorer performance (larger tree size) for smaller feature sets is very clear.
Note that since this graph does not use the baseline as a comparison point, the scale of this
graph is not relevant to that of Figure 10.

of a tree using all of the available features (including the neighboring features).
In other words, it is the first two levels of the ’wbc01tnzps3Ch8ao+’ tree. This
means that for all other feature sets the tree starts out containing paths that will
never be used. The result is that the hybrid, although still greatly outperforming
the baseline in terms of tree size, is actually larger than the RatioMCV version
of the tree. This difference is most pronounced for the smallest feature subset
(wc) and reduces to near zero for larger subsets (particularly those involving the
neighboring words).

On the other hand, the runtime of the hybrid trees is unaffected by the excess
tree nodes and all but one of the feature sets improved over both the original



Adapting ADtrees... 19

Fig. 12. Relative difference in runtime (in hours) from the baseline (lower is better). The
improvement in runtime is not always large but it is consistent across (almost) all feature
sets. It also consistently larger for larger feature sets since the partial static amortizes a larger
percentage of the work done constructing the tree. Bars with hash marks did not finish all of
the queries in the respective query logs due to memory complications.

Fig. 13. Relative difference in runtime (in hours) relative to the RatioMCV results in Figure 12
(lower is better). The apparently poorer performance of those bars marked with hash marks
is due to early termination caused by memory management bugs. It is reasonable to infer that
the trend of increased improvement for larger feature sets would have continued without these
complications.

and the RatioMCV baselines (with the one outlier performing the same as the
RatioMCV baseline). Additionally, the cumulative memory usage substantially
improves over the RatioMCV baseline in almost every case, in most cases at least
canceling the extra memory used by the RatioMCV tree. It is also interesting
to add back in the one-time cost of building the static portion of the hybrid
tree. Building a static tree is generally more efficient in terms of both time and
temporary data structures than dynamically building the same set of nodes.
However, the cost of building the tree will still generally be greater than the
improvements seen in some of the least improved feature sets (particularly those
farthest right in the graph that use neighboring words). Therefore, if the tree



20 Van Dam, Langkilde-Geary and Ventura

Fig. 14. Difference in cumulative memory usage (in GB) from the baseline (lower is better).
Bars with hash marks did not finish all of the queries in the respective query logs due to
memory complications.

Fig. 15. Difference in cumulative memory usage (in GB) relative to the RatioMCV results in
Figure 14 (lower is better). Again, the bars with hash marks presumably would have continued
the trends if all queries had been completed.

is to be built only once, building a hybrid tree is not useful for all datasets.
However, if that one-time cost can be amortized over many builds of the same
or similar trees, both space and time savings will generally be achievable in most
situations and for most problems/datasets.

Regarding the issue of using one only static tree with all features, obviously
it would also be possible to generate a static two-level tree for use in a hybrid
using exactly the features with which the tree would be built. For instance, one
such static tree could have been pre-built for all of the feature sets experimented
with here. However, this is not representative of many real-world scenarios. It is
often the case that at the outset of solving a new research problem, the exact
set of features that will be used is still unknown. If it is known that a dynamic
ADtree will be needed (due to expected memory constraints), a hybrid tree



Adapting ADtrees... 21

Fig. 16. Tree size of each ordering strategy relative to High Entropy feature ordering (lower
is better). A value of 10 is 10 times worse than High Entropy. The ordering strategies tend
to cluster into two groups, with the notable exception of Reverse Dictionary and to a lesser
extent Dictionary (over only a portion of the feature sets).

will almost always be a reasonable compromise. However, the question of which
features should be included in the static portion of the tree would still be an
open question. Rather than generate one static tree for each possible subset of
features, a single static tree with all possible features could be generated and
used throughout the solution development stages. Then, once the set of features
has been fixed, a new static tree could be built to exactly those specifications.
The results obtained here show that using a hybrid with unnecessary features,
though clearly not optimal, will still provide a significant improvement in runtime
over a simple dynamic approach without exhausting available memory resources.
Then, once the feature set has been determined, the excess memory use can be
eliminated by simply generating a single, new two-level tree.

4.3. Ordering

Throughout the experiments presented here, it has been assumed that the variety
of subsets of features of the enhanced WSJ corpus could serve as a reasonable
substitute for comparing results across a wider range of datasets. The results for
Complete Vary Nodes, RatioMCVs, Clump nodes, and hybrid trees indicated
that this was not an unreasonable assumption to make, with interesting and
illustrative differences among the various feature sets. Unfortunately, the results
of trying different ordering strategies bring to the forefront a particular weakness
in this assumption. As can be seen in Figures 16 and 17, the tree sizes tend to
cluster into relatively clean groups. Those two groups are almost entirely defined
by where in the ordering each strategy places the features ‘word’ (w) and ‘base’
(b). More specifically, the two main clusters are determined by the placement of
feature ‘word’ (w) and instances where alphabetical (dictionary) and its reverse
break from the clusters is determined by placement of the feature ’base’ (b).



22 Van Dam, Langkilde-Geary and Ventura

Fig. 17. Runtime in minutes of each ordering strategy relative to High Entropy feature ordering
(lower is better). A value of 10 is 10 times worse than High Entropy. Again, the orderings
tend towards two main groups (although Dictionary and Reverse Dictionary again show some
deviation from this.)

There are likely two main reasons why ‘word’ (and to a lesser extent ‘base’)
so clearly dominate these results. The first is that all the features for the cen-
tral word (that is, excluding the neighboring words) are very strongly correlated
to word. Therefore, if ‘word’ occurs high in the tree, there should be signifi-
cantly less branching in those paths following ‘word’. Similarly, since ‘base’ is
the morphological stem of ‘word’, in many ways its behavior in the tree mimics
that of ‘word’ (although the relative ordering of ‘word’ and ‘base’ appears to be
the primary cause of the distinct paths of the dictionary and reverse dictionary
orderings). The second reason is simply that ‘word’ and ‘base’ are the two high-
est arity features and so they quickly subdivide the dataset such that, as was
anticipated, very little further branching occurs before the leaf-list threshold is
reached.

In general, the four orderings that appear to perform the best (both in terms
of tree size and runtime) are high entropy, high arity, canonical, and reverse
dictionary (alphabetical) in roughly that order. Figures 18-21 show the data
from Figures 16-17 transposed so that trends with respect to each feature set
can be better observed. Figures 18 and 20 present the ordering strategies sorted
such that pairs of forward and reverse strategies are adjacent to one another.
Figures 19 and 21 sort the ordering strategies according to the tree size of the
feature set ‘wbc01tnzp3ch8ao’5 (even though the runtimes are then not exactly
in order) making the difference between the two clusters of ordering schemes
very explicit.

Interestingly, both strategies based on the count of MCVs faired poorly,
whereas for all other pairs, one of each pair performed well. Although this is
certainly due in part to relative placement of ‘word’ and ’base’ in the orderings,
it may also be likely that the absolute size of the MCV is not a useful indicator.

5 ‘wbc01tnzp3ch8ao’ was chosen because it is the largest set for which all the orderings finished.



Adapting ADtrees... 23

Fig. 18. Actual tree size of each ordering strategy (lower is better). The x-axis is sorted such
that pairs of forward and reverse ordering strategies are next to each other. Note the log scale
for the y-axis. Most of the pairs have one ordering which clearly outperforms the other. Only
the orderings related to MCV both perform poorly.

Fig. 19. Actual tree size of each ordering strategy (lower is better). The x-axis is sorted
according to the tree size obtained by wbc01tnzp3ch8ao. This sorting more clearly illustrates
the two basic groups of orderings. Note the log scale for the y-axis.

In particular, it is likely that relative MCV size (meaning, what percentage is the
MCV among its siblings) could perform somewhat better that an absolute com-
parison. On the other hand, the absolute and relative MCV size metrics would be
indentical at the first level of the tree (at which point all rows in the dataset are
still relevant) and at least in cases observed here, the first level ordering appears
to generally dominate the overall tree size.



24 Van Dam, Langkilde-Geary and Ventura

Fig. 20. Actual runtime of each ordering strategy (lower is better). The x-axis is sorted such
that pairs of forward and reverse ordering strategies are next to each other. The alternating
pattern of ordering pairs repeats as with tree size. Note the log scale for the y-axis.

Fig. 21. Actual runtime of each ordering strategy (lower is better). The groupings remain
approximately the same as with the tree size. The x-axis is sorted the same as in Figure 19.
Note the log scale for the y-axis.

Another interesting trend, which can’t as easily be discerned from the fig-
ures, occurs among those datapoints that have been left out. As was explained
previously, the trees for each set of features are built using a log of queries as gen-
erated by the original tagger, rather than re-running the tagger in each instance.
This establishes an upper limit for each feature set in terms of number of sen-
tences, which no amount of modifying the tree can surpass. The cases where the



Adapting ADtrees... 25

combination of feature set and ordering strategy did not finish all of the avail-
able sentence taggings have been removed from the graphs, resulting in some
gaps in the lines. Although these cases are incomplete and therefore less reliable,
there are some trends that indicate that for some of the largest feature sets, the
ordering strategies that performed well actually swap with their reversed pair.
Although further research would have to be performed to determine whether
these trends are meaningful, the possibility still exists that highest entropy is
not always the best ordering as it appears to be from the current results.

4.4. Pruning

The purpose of performing pruning within a dynamic ADtree is to try to reduce
the overall tree size without significantly increasing build time. The particular
pruning strategy, therefore, has to balance the reward of pruning with the risk
of wasting time re-generating parts of the tree. The pruning strategy chosen in
this case removes the low count ADnodes of high arity features after every 100
sentences are tagged. Figures 23 - 28 summarize the results in a format similar
to that used for the hybrid tree. There are fewer feature sets represented here
because several of the larger feature sets had query logs that covered less than
100 sentences and therefore no pruning occurred.

As was expected, pruning contributed significant tree size reductions to all
feature sets, ranging from 5-25% on top of the already reduced RatioMCV trees.
Interestingly, pruning appears to have contributed little to no additional runtime
or cumulative memory usage. The largest runtime increase (‘wbcp+’) was 1.65
hours or approximately 2%, and the largest memory usage increase (‘wcCh8+’)
was 8.7 GB or about 0.6%. Since pruning requires no additional data struc-
tures, no significant increase in either memory usage or runtime is expected.
However, it is not unreasonable to consider the possibility that extra garbage
collection could cause a slower overall runtime for some implementations. Unfor-
tuantely, for the purposes of measuring memory usage, garbage collection was
artificially triggered after each sentence was tagged and this likely masked any
extra garbage collection triggered by pruning. Furthermore, since this particu-
lar pruning strategy prunes the tree at most 13 times (there are slightly more
than 1300 sentences), it is not anticipated that garbage collection could cause a
significant increase in runtime.

Additionally, the values shown in Figures 23 - 28 represent the values ob-
tained after the last sentence was tagged. However, since this is not necessarily
immediately after the occurrence of a pruning, these numbers represent approx-
imately “average” performance over the RatioMCV baseline. As can be seen in
Figure 22, after each pruning the tree size continues to grow. This continued
growth occurs due to a combination of regrowing some pruned nodes and adding
previously unqueried nodes. The higher the rate of increase of the regrowth (rel-
ative to the unpruned rate of increase), the more nodes are being regenerated.
Some sections appear to have more replacement growth than others but overall
it appears that despite this pruning strategy’s overall risk averse design, nodes
are being removed that are later needed again. However, there are sufficient
nodes that are never used again that the pruned tree always remains below the
unpruned tree.

On the other hand, in some situations in which memory is severely limited,
this pruning strategy might be considered insufficient. In that case, since the



26 Van Dam, Langkilde-Geary and Ventura

Fig. 22. Example of how tree size varies as sentences are tagged using the feature set
wbc01tnzps3Ch8ao with and without pruning. The pruning strategy only removes a small
percentage of the tree, some of which is re-built over the course of subsequent queries.

Fig. 23. Percent tree size reduction relative to the baseline when using pruning compared the
results for Complete Vary Nodes and RatioMCVs (higher is better). Tree size is slightly better
for all feature sets and performs the best for larger feature sets.

pruning here seems to perform without using significantly more time (given the
caveat about garbage collection above), a very aggressive pruning approach (such
as pruning the tree to a predetermined size) could still be usable despite the
expected increase in the space/time tradeoff.

5. Conclusion

Despite the generally efficient design of the ADtree, the preceding results clearly
illustrate that the modifications presented provide both generally applicable im-
provements as well as improvements that can be targeted at the specific charac-
teristics of a given dataset. In particular, the addition of Complete Vary Nodes,
RatioMCVs, and Clump nodes provide substantial improvements for datasets
containing high arity attributes. The hybridization technique and pruning strat-
egy presented here can be readily applied to any application of ADtrees in which



Adapting ADtrees... 27

Fig. 24. Percent tree size reduction relative to the RatioMCV results in Figure 23 (higher is
better). Here the trend of improved performance as feature set size increases is fairly clear.

Fig. 25. Relative difference in runtime (in hours) from the baseline (lower is better). Pruning
is a fairly inexpensive operation timewise and so the results are not significantly different.

using a dynamic tree is expected to be necessary. The ordering strategy based
on highest entropy appears in these initial results to be generally applicable.
Although this might not turn out to be true for all datasets, it certainly pro-
vides a beginning from which more advanced and/or more data specific ordering
strategies can be developed.

Although there are several ways in which each of these modifications might
individually be explored and developed further, in general, the results presented
here would be complemented by further study involving a wider range of data-
sets. Then, need for more variety in the datasets is most pronounced in the
results obtained from the tested ordering strategies, but the ability to duplicate
the positive results on additional datasets would help to firmly establish the ef-
ficacy of each modification. Additionally, by testing on more, distinct datasets,
it would be possible to develop a better sense of what data characteristics in-
fluence each technique. For instance, it could be very informative to determine



28 Van Dam, Langkilde-Geary and Ventura

Fig. 26. Relative difference in runtime (in hours) relative to the RatioMCV results in Figure 25
(lower is better).

Fig. 27. Difference in cumulative memory usage (in GB) from the baseline (lower is better).

if the improvements for high arity attributes are maintained outside of the do-
main of natural language. It would also be interesting to explore a wider variety
of pruning strategies in order to help determine how often and how much of
the tree is reasonable to prune, given different memory and time requirements
and/or restrictions.

References

Agarwal, D., Agrawal, R., Khanna, R. and Kota, N. (2010), Estimating rates of rare events
with multiple hierarchies through scalable log-linear models, in ‘Proceedings of the 16th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining’, pp. 213–222.

Anderson, B. and Moore, A. (1998), Adtrees for fast counting and for fast learning of association
rules, in ‘Proceedings of the Fourth International Conference on Knowledge Discovery in
Data Mining’, AAAI Press, pp. 134–138.



Adapting ADtrees... 29

Fig. 28. Difference in cumulative memory usage (in GB) relative to the RatioMCV results in
Figure 27 (lower is better).

Bentley, J. (1975), ‘Multidimensional binary search trees used for associative searching’, Com-
munications of the Association for Computing Machinery 18(9), 509–517.

Chen, H., Liu, J., Furuse, K., Yu, J. X. and Ohbo, N. (2011), ‘Indexing expensive func-
tions for efficient multi-dimensional similarity search’, Knowledge and Information Systems
27(2), 165–192.

Fuchs, H., Kedem, Z. and Naylor, B. (1980), On visible surface generation by a priori tree
structures, in ‘International Conference on Computer Graphics and Interactive Techniques’,
pp. 124–133.

Gaede, V. and Gunther, O. (1998), ‘Multidimensional access methods’, Association for Com-
puting Machinery Computing Survey 30(2), 170–231.

Huang, Z., Sun, S. and Wang, W. (2010), ‘Efficient mining of skyline objects in subspaces over
data streams’, Knowledge and Information Systems 22(2), 159–183.

Kim, Y., Chung, C.-W., Lee, S.-L. and Kim, D.-H. (2011), ‘Distance approximation techniques
to reduce the dimensionality for multimedia databases’, Knowledge and Information Sys-
tems 28(1), 227–248.

Komarek, P. and Moore, A. (2000), A dynamic adaptation of ad-trees for efficient machine
learning on large data sets, in ‘Proceedings of the International Conference on Machine
Learning (ICML)’, pp. 495–502.

Koufakou, A., Secretan, J. and Georgiopoulos, M. (2011), ‘Non-derivable itemsets for fast
outlier detection in large high-dimensional categorical data’, Knowledge and Information
Systems 29(3), 697–725.

Moore, A. and Lee, M. S. (1998), ‘Cached sufficient statistics for efficient machine learning
with large datasets’, Journal of Artificial Intelligence Research 8, 67–91.

Roure, J. and Moore, A. (2006), Sequential update of adtrees, in ‘Proceedings of the 23rd
International Conference on Machine Learning’, pp. 769–776.

Rymon, R. (1993), An se-tree based characterization of the induction problem, in ‘International
Conference on Machine Learning’, pp. 268–275.

Toutanova, K. and Manning, C. (2000), Enriching the knowledge sources used in a maximum
entropy part-of-speech tagger, in ‘Proceedings of the Joint Conference on Empirical Meth-
ods in Natural Language Processing and Very Large Corpora’, pp. 63–70.

University of Pennsylvania Linguistic Data Consortium (n.d.).
URL: http://www.ldc.upenn.edu/

Van Dam, R., Langkilde-Geary, I. and Ventura, D. (2008), Adapting adtrees for high arity
features, in ‘Proceedings of the Association for the Advancement of Artificial Intelligence’,
pp. 708–713.

Van Dam, R. and Ventura, D. (2007), Adtrees for sequential data and n-gram counting, in
‘Proceedings of the IEEE Conference on Systems, Man, and Cybernetics’, pp. 492–497.

Yu, H.-F., Hsieh, C.-J., Chang, K.-W. and Lin, C.-J. (2010), Large linear classification when



30 Van Dam, Langkilde-Geary and Ventura

data cannot fit in memory, in ‘Proceedings of the 16th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining’, pp. 833–842.

Zhang, M. and Alhajj, R. (2010), ‘Effectiveness of naq-tree as index structure for similarity
search in high-dimensional metric space’, Knowledge and Information Systems 22(1), 159–
183.

Robert Van Dam received a B.A. degree in Mathematics and a B.S. degree
in Computer Science from the University of Rochester in 2005 and a M.S. degree
from Brigham Young University in 2008. His research interests include natural
language processing, fraud detection, large datasets, data structure optimization,
and sentiment analysis.

Irene Langkilde-Geary received her PhD from the University of Southern Cal-
ifornia. She has worked as an Assistant Professor at Brigham Young University in
Provo, Utah, as a consultant for Southwest Research Institute in Layton, Utah,



Adapting ADtrees... 31

and as a Research Fellow at the University of Brighton, in the U.K. She cur-
rently conducts independent research in machine learning and natural language
processing while mothering five young children.

Dan Ventura is a Professor of Computer Science at Brigham Young Uni-
versity, where he has been since 2001. His research interests include artificial
intelligence, machine learning, neural networks, computational creativity and



32 Van Dam, Langkilde-Geary and Ventura



Adapting ADtrees... 33

the application of intelligent systems to real-world domains, including problems
in medicine, chemistry and business.


