
Learning Quantum Operators
From Quantum State Pairs

Neil Toronto and Dan Ventura

Abstract— Developing quantum algorithms has proven to be
very difficult. In this paper, the concept of using classical
machine learning techniques to derive quantum operators
from examples is presented. A gradient descent algorithm
for learning unitary operators from quantum state pairs is
developed as a starting point to aid in developing quantum
algorithms. The algorithm is used to learn the quantum Fourier
transform, an underconstrained two-bit function, and Grover’s
iterate.

I. INTRODUCTION

By making use of quantum superposition and entangle-
ment as new computational resources, quantum computing
holds the promise of superlinear speedup over classical
computation. However, because of its inherent limitations—
such as the unitary transformation requirement and the non-
clonability of generic qubit states—developing quantum al-
gorithms is difficult, which is evidenced by the paucity of
quantum algorithms in general. One possible remedy is to
enlist the help of classical learning algorithms.

This research area is relatively unexplored. The most
notable investigations are successful attempts at using ge-
netic algorithms to invent small decomposed quantum op-
erators [1] [2] [3]. In [4], what may be characterized as
a thought experiment is given, demonstrating a possible
iterative method for training whole quantum operators. In [5],
limitations of the algorithm as given in [4] are pointed out
(i.e. no gaurantees of convergence nor a unitary result) and
a genetic algorithm is developed to address them. However,
the general approach of iteratively refining an estimate using
a simple training rule is valid. This paper adopts that ap-
proach via gradient descent, addressing the same limitations
as [5], to provide a solid basis for future iterative refinement
techniques.

It is fairly easy to derive a quantum operator from a full
set of basis states and the operator’s outputs for those basis
states. What is difficult, and currently not well understood,
is deriving a quantum operator from a function that is not
fully specified, or which implies a non-unitary operator. An
algorithm that performed such a task would be quite useful
for inventing new operators, for checking or approximating
functions, and in general analysis and exploration. This paper
develops just that: a classical gradient descent algorithm for
learning quantum operators.

Neil Toronto and Dan Ventura are with the Department of Com-
puter Science, Brigham Young University, Provo, UT 84602, USA (email
ntoronto@cs.byu.edu and ventura@cs.byu.edu).

II. LEARNING QUANTUM OPERATORS

This section starts with a formal description of the prob-
lem, presents a relatively well-known analytic solution, and
explains why that solution is not satisfactory. An iterative
solution is presented as a starting point for future, more
robust algorithms.

A. Formal Description

Given a training set of quantum states S =
{(|x1〉 , |y1〉), ..., (|xm〉 , |ym〉)} in Cn, we wish to train
a quantum operator U , such that U |xk〉 = |yk〉 for all
k ∈ [1..m]. In other words, the goal is to find some unitary
matrix U which is consistent with the training set.

Of course, this is not possible for all training sets (indeed,
the set of all training sets is dense with members that imply
non-unitary operators), so an approximation will have to
suffice. First, as a notational convenience, let X and Y be
n × m matrices [x1|x2|...|xm] and [y1|y2|...|ym]. Then the
goal becomes to find some unitary matrix U such that

UX ≈ Y (1)

Notice that U = Y X−1 if m = n and Y X−1 is unitary.
UX ≈ Y can be satisfied by defining and minimizing an

error function, ε:

ε(U) =
1
2
‖UX − Y ‖2F (2)

‖A‖2F denotes the squared Frobenius norm, which is defined
as:

‖A‖2F =
n∑

i=1

m∑
j=1

|aij |2 = Tr(AA†)

For real matrices, the squared Frobenius norm is equivalent
to sum-squared error. For complex matrices, it is a sum-
squared error analogue. Use of this norm is largely motivated
by the fact that derivatives of traces of matrices have simple
definitions (see the Appendix for details). Also, because there
is no natural ordering over C, ε(U) must be real-valued, as
is the Frobenius norm.

B. The Orthogonal Procrustes Solution

Those familiar with factor analysis may immediately rec-
ognize the above formulation as an instance of the orthogonal
Procrustes problem, the solution of which is proven in [6]. In
short, if the singular value decomposition of Y X† = WΣZ†,
the unitary matrix that minimizes ‖UX−Y ‖2F is U = WZ†.

Though the solution is guaranteed to produce a correct
answer given any set of training data, it cannot be extended

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

2607

to problems with tighter constraints (factorizability, for ex-
ample), nor can it be extended to problems involving “don’t-
care” outputs and ancillary bits. Error functions with such
extended and complex constraints are better minimized using
more general optimization techniques. One such algorithm is
presented here.

C. Gradient Descent Training Rule

A gradient-descent algorithm is developed for the follow-
ing reasons:

1) It is easy to extend criteria and add constraints.
2) It produces an answer with minimum perturbation from

the first estimate. In the algorithm presented here, it
tends to preserve ones along the main diagonal, which
may be helpful in factorization and analysis.

3) Like all other searches that are informed by first-order
derivatives, it requires the calculation of a gradient.
How to derive the gradient of a real-valued function
of complex matrices is not immediately obvious, and
should be addressed.

The training rule takes this form:

Ut+1 = Ut − ηOε(Ut)

where Oε(U) is a gradient matrix, η is the learning rate and
0 < η � 1. Oε(U), the derivation of which is reproduced in
the appendix, is simply

Oε(U) = (UX − Y)X† (3)

where X† denotes the conjugate transpose (Hermitian trans-
pose) of X . The training rule becomes

Ut+1 = Ut − η(UtX − Y)X† (4)

For small enough values of η, a process using this training
rule will converge to a local least-error solution. When the
input matrix, X , is invertible, it will converge to a global
minimum with ε(Ut) = 0. This is because, at the minimum,
(UtX − Y)X† = 0, or UtX = Y . This is demonstrated in
the following example.

D. Testing the Training Rule

We wish to train a 4×4 unitary operator using four linearly
independent examples in order to verify that the training
rule works at least as well as the closed-form solution U =
Y X−1. The examples were produced by applying a quantum
Fourier transform operator to instances of the well-known
discrete combk(t) function for various integer values of k.
Figure 1(a) shows the training inputs, and Figure 1(b) shows
the target states. (Keep in mind that the quantum states are
the matrix columns.) In this example, U0 = I4 and η = 0.1.
Training until ε(Ut) < 10−16 took 2018 epochs. Figure 1(c)
is the result of training, which is indeed the quantum Fourier
transform.

1

2

266664
1

√
2

√
2 2

1 0 0 0

1
√

2 0 0

1 0
√

2 0

377775
(a) Input state matrix

1

2

266664
2

√
2

√
2 1

0 0 ei7π/4 1

0
√

2 0 1

0 0 eiπ/4 1

377775
(b) Target state matrix

1

2

266664
1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

377775
(c) Learned quantum operator

Fig. 1. Learning the quantum Fourier transform with
Ut+1 = Ut − η(UtX − Y)X†.

E. Obtaining Unitary Results

For the learning algorithm to be useful in developing
quantum algorithms, it must produce unitary operators. Con-
ventional approaches to unitarization include the Graham-
Schmidt procedure, and randomly rebuilding single basis
vectors to be normal and orthogonal to the remaining n− 1
basis vectors. However, it is not obvious how to use these
types of procedures with a penalty method of constraint
satisfaction, which this paper adopts.

The definition of unitary, UU† = I, suggests the error
measure

υ(U) =
1
4
‖UU† − I‖2F (5)

As before, the derivation of Oυ(U) is reproduced in the
appendix. It is simply

Oυ(U) = (UU† − I)U (6)

The gradient descent rule, then, is

Ut+1 = Ut − ν(UtU
†
t − I)Ut (7)

where ν is the learning rate and 0 < ν � 1.
Assuming ν is small enough, this rule can transform any

invertible matrix into a unitary matrix. Indeed, when any Ut

is singular, all successors are singular. For convenience, let
Et = UtU

†
t − I. Substituting Et and solving for det(Ut+1),

Ut+1 = Ut − νEtUt

= (I− νEt)Ut

det(Ut+1) = det(I− νEt) det(Ut)

Thus, if det(Ut) = 0, det(Ut+1) = 0. It is therefore
imperative that this process never produce a singular matrix.
Fortunately, this can be guaranteed by setting ν to a value
within the correct range.

At ν = 0, det(I−νEt) = 1. For values of ν between zero
and the smallest positive root of the polynomial function

2608

det(I − νEt) = 0, det(I − νEt) is positive. If ν is in
this range, the determinant cannot cross zero, so det(Ut+1)
cannot be zero. The roots of det(I− νEt) = 0 can be found
by using the identity det(kA) = kn det(A) to transform this
problem into the eigenvalue problem:

(−1)n

(
1
ν

)n

det(I− νEt) = 0 ⇒ det(Et −
1
ν
I) = 0

Therefore, the roots of det(I− νEt) = 0 are the reciprocals
of the eigenvalues of Et. A safe range for ν, then, is
0 < ν < max(λEt

)−1, where λEt
denotes the set of real

eigenvalues of Et. Setting ν = 1
2 max(λE0)

−1 works well in
practice, and if an iteration results in det(Ut) = 0, ν can be
recalculated. This happens infrequently—if at all—because
as Et approaches 0, max(λE0)

−1 approaches infinity.
If Ut is at a minimum and is invertible, the minimum is

global and equal to zero—or, Ut is unitary. This is because,
at the minimum, (UtU

†
t − I)Ut = 0, or UtU

†
t = I.

F. The Learning Algorithm

In the penalty method1 of constraint satisfaction, the level
of adherence to the constraint is assigned a real value. In this
case, Ut’s “unitariness” is determined from the error measure
given in Equation 5. The penalty method has one strong
advantage in this case: having derived the error measure’s
gradient, it is easy to add it to the existing training algorithm.
The new iteration step is

Ut+1 = Ut − ηOε(Ut)− νOυ(Ut)

= Ut − η(UtX − Y)X† − ν(UtUt† − I)Ut

Figure 2 shows a sketch of the algorithm. Notice that it
performs gradient descent twice: once to train on the training
set, and once to ensure that the result is unitary.

For simplicity, two aspects of the algorithm have been
omitted. First, though rare, it is possible for the training
loop to yield a singular matrix. The full algorithm would
unitarize the last invertible matrix. Second, there is no code
to recalculate ν2 and roll back if unitarization produces a
singular matrix. In practice, it is easy to select an initial value
that is small enough to always stay within safe bounds. Using
ν2 = 0.01 tends to work for any size matrix.

The ratio ν1/η affects the behavior of the algorithm.
If ν1/η = 0, there is no unitarization penalty, and all
unitarization is performed after training. With greater values,
satisfying the unitary constraint is given more importance.
A ratio of 1 has worked well for many training sets, with
(usually) ν1 = η = 0.01.

1A preservation method of constraint satisfaction would guarantee that
every Ut is unitary, either by unitarizing Ut after each step or operating
on Ut in such a way that successors are always unitary—for example, by
reformulating the training step as a matrix multiplication and ensuring that
Ut is always multiplied by another unitary matrix. However, such methods
have not worked well in practice. They tend to converge very slowly and
yield less fit operators than the penalty method presented here. Preservation
methods work in a severely restricted subspace of Cn×n, which may
cause many or most legal movements on the error surface to be opposite
or orthogonal to the path of steepest descent. Determining this behavior
precisely is outside the scope of this paper and is a subject of future work.

U0 ← I, t← 0

Training

do

Ut+1 = Ut − η(UtX − Y)X† − ν1(UtUt† − I)Ut

t← t + 1

while |ε(Ut)− ε(Ut−1)| > ε1

Post-Unitarization

do

Ut+1 = Ut − ν2(UtUt† − I)Ut

t← t + 1

while υ(Ut) > ε2

Fig. 2. The gradient descent algorithm for learning quantum operators.

Because the error functions are sums of errors of matrix
elements, both ε1 and ε2 should be directly proportional to
the number of matrix elements. In practice, ε1 = 10−16nm
and ε2 = 10−8n2 have worked well.

III. RESULTS

This section presents the results of running the learning
algorithm on two quantum state training sets.

A. An Underconstrained Training Set

Suppose a quantum algorithm requires an operator that
tests a single qubit q and outputs 2q and 2q + 1 with equal
probability. In other words, the function is

|00〉 → 1√
2
(|00〉+ |01〉)

|01〉 → 1√
2
(|10〉+ |11〉)

The first question is whether a unitary operator exists that
performs such a function. Second, if it exists, what is it?
Figure 3 shows this problem expressed as quantum state
pairs. With η = ν1 = 0.01, the algorithm arrived at the
operator in Figure 3(c) in 4005 epochs. Post unitarization was
not required because the result of training was at a global
minimum of error (zero).

This example demonstrates a consistent feature of the
learning algorithm’s bias. First, of the infinite number possi-
bilities for values on the right side of the matrix, it chose
values that differ only by a phase shift. Second, of the
possible phase shifts, it chose the set that preserved the phase
of the right half of the main diagonal. This and other tests
show that the learning algorithm tends to preserve features
of U0—in this case, the identity matrix. More complete
characterization of this behavior may be a subject of future
work.

2609

266664
1 0

0 1

0 0

0 0

377775

(a) Input state matrix

1

2

266664
√

2 0√
2 0

0
√

2

0
√

2

377775
(b) Target state matrix

1

2

266664
√

2 0 1 1√
2 0 −1 −1

0
√

2 1 −1

0
√

2 −1 1

377775
(c) Learned quantum operator

Fig. 3. Learning a unitary operator from an underconstrained training set.

B. Learning Grover’s Iterate

The two examples so far have produced unitary matrices
with zero error. What if the training set implies a non-unitary
operator? One of the few known superclassical quantum
algorithms, Grover’s quantum search [7], suggests such a
training set. An operator integral to the algorithm, called
Grover’s iterate, transforms a π phase shift in an otherwise
uniform quantum state into amplitude. Figure 4 shows a
training set that expresses this goal. Note that the closed-
form solution U = Y X−1 is not unitary.

With η = ν1 = ν2 = 0.01, the learning algorithm, after
1212 training epochs and 395 unitarization epochs, produced
the operator shown in Figure 4(c), which is indeed Grover’s
iterate. This and subsequent experiments indicate that the
learning algorithm is able to discover Grover’s iterate for
any size quantum state.

IV. CONCLUSIONS AND FUTURE WORK

Though inventing quantum algorithms is difficult, classical
learning algorithms may be a partial solution to the problem.
This learning algorithm uses gradient descent to find an
operator that minimizes sum-squared error over the training
set and uses a penalty method of constraint satisfaction
to ensure it is unitary. It performs well on the problems
presented here and on many others not presented.

It does not express the operator as a quantum circuit, but
it may do well as a front end to a quantum compiler, such
as that developed in [8] or [9]. This suggests an extension
of the algorithm: biasing its results toward operators that are
easy to factorize. Because criteria such as these are likely to
be expressed in penalty constraints that are not differentiable,
optimization methods that do not need derivative information
may be required.

Future work may also include exploring this algorithm’s
usefulness as a general machine learning algorithm. How
accurately can it generalize from limited training data? What

√
2

4

266666666666664

−1 1 1 1 1 1 1 1

1 −1 1 1 1 1 1 1

1 1 −1 1 1 1 1 1

1 1 1 −1 1 1 1 1

1 1 1 1 −1 1 1 1

1 1 1 1 1 −1 1 1

1 1 1 1 1 1 −1 1

1 1 1 1 1 1 1 −1

377777777777775

(a) Input state matrix

266666666666664

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

377777777777775

(b) Target state matrix

1

4

266666666666664

−3 1 1 1 1 1 1 1

1 −3 1 1 1 1 1 1

1 1 −3 1 1 1 1 1

1 1 1 −3 1 1 1 1

1 1 1 1 −3 1 1 1

1 1 1 1 1 −3 1 1

1 1 1 1 1 1 −3 1

1 1 1 1 1 1 1 −3

377777777777775

(c) Learned quantum operator

Fig. 4. Learning Grover’s iterate.

kind of constraints does the unitary requirement put on
hypothesis space, and how can they be characterized?

When measurement is expected, phase differences are not
error. Is there a simple training rule that disregards phase
differences? Extending the algorithm to use ancillary bits
would increase its usefulness. This requires that “don’t care”
outputs be expressed in the training set and an error measure
that takes these into account. Solving these problems is also
a subject of future work.

APPENDIX

This section contains the derivations of the matrix gra-
dients Oε(U) and Oυ(U). It is important to note that non-
analytic functions may have gradients. The gradient of f(U)
is Of(U) = ∂

∂U<
f(U) + i ∂

∂U=
f(U), where U< and U=

denote the real and imaginary parts of U , respectively [10].
Partial derivatives of functions of matrices are denoted

∂
∂X f(X), which is defined by [∂

∂X f(X)]ij = ∂
∂Xij

f(X).
In other words, ∂

∂X f(X) is a matrix that contains every
partial derivative of f(X). (For real-valued functions of
real-valued matrices, this is the gradient matrix.) We will
use many of the first- and second-order derivatives given
in [10], relying heavily on the cyclic property of traces
(Tr(ABC) = Tr(CAB) = Tr(BCA)) and their invariance
under transposition (Tr(AT) = Tr(A)).

Each derivation of a gradient of the form O‖f(U)‖2F
follows these steps:

1) Rewrite O‖f(U)‖2F as Tr(f(U)f(U)†),

2610

2) Distribute the conjugate transpose, multiply to obtain
Tr(g(U)) where g(U) is an nth-order polynomial
function of matrices,

3) Distribute the trace through g(U), apply the gradient
operator to each term,

4) Derive the gradient for each term and reassemble.

To derive the gradients of these smaller terms,

1) Write each U as (U< + iU=) and each U† as (UT
< −

iUT
=),

2) Multiply and reduce terms,
3) Derive ∂

∂U<
f(U) and ∂

∂U=
f(U) by applying well-

known identities,
4) Combine these partials into the gradient.

A. Derivation of Oε(U)

From equation 2,

ε(U) =
1
2
‖UX − Y ‖2F

2ε(U) = Tr((UX − Y)(UX − Y)†)

= Tr(UXX†U† − UXY † − Y X†U† + Y Y †)

= Tr(U†UXX†)− Tr(UXY †)

− Tr(U†Y X†) + Tr(Y Y †)

Because the gradient operator distributes over addition:

2Oε(U) = O Tr(U†UXX†)− O Tr(UXY †)

− O Tr(U†Y X†)

Tr(Y Y †) is ignored because it is constant. This leaves three
gradients of traces, which will be considered in turn.

The simplest is O Tr(UXY †). Because Of(U) =
∂

∂U<
f(U) + i ∂

∂U=
f(U), U must be expressed in its real and

imaginary parts explicitly:

Tr(UXY †) = Tr((U< + iU=)(XY †))

= Tr(U<XY †) + iTr(U=XY †)

Using ∂
∂X Tr(XB) = BT and ∂

∂X Tr(B) = 0,

∂

∂U<
Tr(UXY †) = (Y †)T XT

∂

∂U=
Tr(UXY †) = i(Y †)T XT

O Tr(UXY †) =
∂

∂U<
Tr(UXY †) + i

∂

∂U=
Tr(UXY †)

= (Y †)T XT − (Y †)T XT

= 0

O Tr(U†Y X†) proceeds similarly:

Tr(U†Y X†) = Tr((UT
< − iUT

=)(Y X†))

= Tr(UT
<Y X†)− iTr(UT

=Y X†)

Using the additional identity ∂
∂X Tr(XT B) = B,

∂

∂U<
Tr(U†Y X†) = Y X†

∂

∂U=
Tr(U†Y X†) = −iY X†

O Tr(U†Y X†) = Y X† + Y X†

= 2Y X†

Finally, O Tr(U†UXX†):

Tr(U†UXX†) = Tr(UT
<U<XX†) + iTr(UT

<U=XX†)

− iTr(UT
=U<XX†) + Tr(UT

=U=XX†)

Using previous first-order identities and ∂
∂X Tr(XT XB) =

X(B + BT),

∂

∂U<
Tr(U†UXX†) = U<(XX†) + U<(XX†)T

+ iU=(XX†)− iU=(XX†)T

∂

∂U=
Tr(U†UXX†) = iU<(XX†)T − iU<(XX†)

+ U=(XX†) + U=(XX†)T

O Tr(U†UXX†) = U<(XX†) + U<(XX†)T

+ iU=(XX†)− iU=(XX†)T

− U<(XX†)T + U<(XX†)

+ iU=(XX†) + iU=(XX†)T

= 2U<XX† + 2iU=XX†

= 2(U< + iU=)XX†

= 2UXX†

The gradient of ε(U), then, is

2Oε(U) = O Tr(U†UXX†)− O Tr(UXY †)

− O Tr(U†Y X†)

= 2UXX† − 0− 2Y X†

Oε(U) = UXX† − Y X†

= (UX − Y)X†

B. Derivation of Oυ(U)

From equation 5,

υ(U) =
1
4
‖UU† − I‖2F

4υ(U) = Tr((UU† − I)(UU† − I))

= Tr(UU†UU†)− 2 Tr(UU†) + Tr(I)

4Oυ(U) = O Tr(UU†UU†)− 2O Tr(UU†)

2611

First, to derive O Tr(UU†),

Tr(UU†) = Tr(U<UT
< − iU<UT

= + iU=UT
< + U=UT

=)

= Tr(U<UT
<) + Tr(U=UT

=)

The middle terms cancel because Tr(U<UT
=) = Tr(U=UT

<).
Using the identity ∂

∂X Tr(XT X) = ∂
∂X Tr(XXT) = 2X ,

∂

∂U<
Tr(UU†) = 2U<

∂

∂U=
Tr(UU†) = 2U=

O Tr(UU†) = 2U

For the fourth-order term O Tr(UU†UU†):

Tr(UU†UU†) = Tr((U<UT
< − iU<UT

= + iU=UT
< + U=UT

=)2)

Multiplying this out gives a 16-term polynomial; however,
reductions based on trace cycles and transposes yield:

Tr(UU†UU†) = Tr(U<UT
<U<UT

<) + 2 Tr(U<UT
<U=UT

=)

− 2 Tr(U<UT
=U<UT

=) + 2 Tr(U<UT
=U=UT

<)

+ Tr(U=UT
=U=UT

=)

Using the additional identities ∂
∂X Tr(XXT XXT) =

4XXT X , ∂
∂X Tr(XXT B) = BX + BT X and

∂
∂X Tr(XBXC) = CT XT BT + BT XT CT ,

∂

∂U<
Tr(UU†UU†) = 4U<UT

<U< + 4U=UT
=U<

− 4U=UT
<U= + 4U<UT

=U=
∂

∂U=
Tr(UU†UU†) = 4U<UT

<U= − 4U<UT
=U<

+ 4U=UT
<U< + 4U=UT

=U=

O Tr(UU†UU†) = 4(U< + iU=)(UT
< − iUT

=)(U< + iU=)

= 4UU†U

Substituting back to solve Oυ(U),

4Oυ(U) = 4UU†U − 2(2U)

Oυ(U) = UU†U − U

= (UU† − I)U

ACKNOWLEDGMENTS

Thanks to Dr. Wayne W. Barrett for his suggestion for
the unitarization component of the learning algorithm, and
Adam Peterson for his help in establishing bounds on ν.

REFERENCES

[1] L. Spector, H. J. Bernstein, H. Barnum, and N. Swamy, “Finding a
better-than-classical quantum AND/OR algorithm using genetic pro-
gramming,” in IEEE Proceedings of 1999 Congress on Evolutionary
Computation, 1999, pp. 2239–2246.

[2] L. Spector, Automatic Quantum Computer Programming: A Genetic
Programming Approach, ser. Genetic Programming. Kluwer Aca-
demic Publishers, 2004, vol. 7.

[3] P. Massey, J. A. Clark, and S. Stepney, “Evolving quantum circuits and
programs through genetic programming,” in Genetic and Evolutionary
Computation Conference: GECCO 2004, Seattle, USA, June 2004, ser.
LNCS, vol. 3103. Springer, 2004, pp. 569–580.

[4] D. Ventura, “Learning quantum operators,” in Proceedings of the Joint
Conference on Information Sciences, March 2000, pp. 750–752.

[5] G. Giraldi, R. Thess, and J. Faber, “Learning linear
operators by genetic algorithms.” LNCC—National Laboratory
for Scientific Computing, Tech. Rep., May 2003. [Online]. Available:
ftp://ftp.lncc.br/pub/report/rep03/rep0503.ps.Z

[6] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1985, p. 431.

[7] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the 28th Annual ACM Symposium on Theory
of Computation, 1996, pp. 212–219.

[8] C. P. Williams and A. G. Gray, “Automated design of quantum
circuits,” in Quantum Computing and Quantum Communications: First
NASA International Conference, QCQC’98, ser. Lecture Notes in
Computer Science, C. P. Williams, Ed., vol. 1509. Palm Springs,
California, USA: Springer-Verlag GmbH, Feb. 1998, pp. 113–125.

[9] R. R. Tucci, “A rudimentary quantum compiler(2cnd
ed.),” 1999. [Online]. Available: http://www.citebase.org/cgi-
bin/citations?id=oai:arXiv.org:quant-ph/9902062

[10] K. B. Petersen and M. S. Pedersen, “The matrix
cookbook,” 2005, version 20050105. [Online]. Available:
http://www2.imm.dtu.dk/pubdb/p.php?3274

2612

