
Using Learning Algorithm Behavior to Chart

Task Space: The DICES Distance

Adam H. Peterson,

adam@axon.cs.byu.edu,

Computer Science Department,

Brigham Young University,

Provo, Utah 84604

Tony R. Martinez,

martinez@cs.byu.edu,

Computer Science Department,

Brigham Young University,

Provo, Utah 84604

19 Jun 2008

Abstract

In theory, learning is not possible over all tasks in general. In prac-

tice, the tasks for which learning is desired exhibit significant regularity,

which makes learning practical. For the most effective learning, it is valu-

able to understand the nature of this regularity and how it manifests in

the tasks where learning is applied. This research presents the DICES

distance metric for finding similarity between learning tasks. With this

1

distance metric, a collection of learning tasks can be given a distance ma-

trix. This distance matrix can be used for visualizing the relationships

between learning tasks and searching through task space for tasks which

are similar in nature. Examples of task visualization are given, and other

possible applications of this tool are touched upon.

Keywords: Machine Learning; Meta Learning; Task Similarity; Task Space

1 Introduction

Wolpert’s no free lunch theorem indicates that in a general sense learning is

not possible [11]. Learning algorithms which generalize in a way that improves

performance for one class of functions will, at the same time, impair perfor-

mance for another class. Nevertheless, machine learning has found consistent

and significant use in research and industry. The premise of the no free lunch

theorem which treats functions as equally likely does not hold in practical ap-

plication. The class of tasks to which machine learning is routinely applied is

much narrower than the set of all functions. Learnable functions correspond at

least indirectly to the operations of mechanisms in the real world, and exhibit

a large degree of regularity and structure. It is therefore valuable for machine

learning approaches to be designed with an understanding of the nature of this

collection of learnable functions.

This research presents a method to measure differences in learning tasks as

a tool for understanding the relationships between tasks. This tool is used to

find a distance matrix between learning tasks drawn from the Irvine Machine

Learning Repository. Visualization of the spatial relationships between these

tasks is also shown, and the tasks are grouped in clusters. Observations about

these tasks are then made using these tools for examining their relationships

with each other.

2

Although the primary purpose of this research is to examine and understand

the nature of learnable tasks and their relationships, this distance metric can be

used for other practical purposes. When machine learning research is presented,

especially on a new learning algorithm or a variation of an existing one, it is

common to validate the research with tables of empirical results. Often the

research makes either an overt or implied claim that the proposed algorithm

performs well over a diverse collection of learning tasks, and validates it by

giving empirical results showing the algorithm performing favorably on the bulk

of learning tasks. If care is not taken when selecting learning tasks to ensure that

one type of learning task is not over-represented, the results will not actually

substantiate this implied claim. Even if the researcher puts forth an effort

to use a diverse collection of learning tasks, it is not always easy to determine

whether two learning tasks are similar in nature and thus potentially redundant.

With a better understanding of how learning tasks are distributed and related,

researchers can select tasks with the objective of thoroughly covering the field

of learnable tasks.

At other times, a researcher’s goal may be the opposite. Having constructed

a new algorithm or method, she carefully determines or hypothesizes what types

of learning tasks will benefit from it, and wishes to gather a collection of learning

tasks of this nature. In this case, the same difficulty occurs in reverse—it is not

always evident whether two learning tasks are similar. It is desirable to be able

to find learning tasks which are related, and the research presented here can

provide tools for doing this.

2 Related Work

Prior work in the area of relating learning tasks includes work by Pfahringer et al

on Landmarking [7]. Landmarking positions tasks in a task space by executing

3

simple learning models on them and measuring the performance of the models.

The research presented herein is inspired by Landmarking, although tasks are

related by the behavior of learning models, rather than the performance of

models as in Landmarking. In the Landmarking system, rules are induced (e.g.

if algorithm A does better than algorithm B, then algorithm C will do better

than algorithm D) and the objective is to determine which learning algorithms

to employ based on the performance of these markers. The focus of the research

presented here is on finding relationships and understanding the structure of

“task-space” and how tasks relate to each other.

The task of matching learning algorithms to problems is approached by

Brodley [3]. Brodley’s work uses ambitious heuristics to try to match a learning

model to a task. As with Landmarking, Brodley’s work is focused on producing

rules and heuristics to match a learning task to an appropriate algorithm to

maximize accuracy. Brodley measures characteristics of the learning task rather

than using simple algorithms as markers.

One of the ultimate goals of this research is to provide a more robust and

sound way of supporting research through empirical results. Aha [1] scrutinizes

empirical case studies with a similar goal. Aha’s emphasis is to encourage the

use of a more rigorous framework for case studies to improve the quality of the

results being presented.

The concept of task similarity is valuable in the context of transfer learning

and lifelong learning, such as is given by Thrun [10, 9]. Thrun demonstrates

that learning incrementally across multiple task domains is effective. Thrun

also presents a hierarchical clustering approach for learning tasks called TC, or

Task Clustering [8]. Thrun’s TC approach is focused on transfer learning and

clusters learning tasks based on the potential for a model trained on one task

to be able to effectively represent another.

4

Baxter [2] discusses lifelong learning with an emphasis on using related learn-

ing tasks. Baxter posits that lifelong learning is most effective when the same

internal representation can be used for several related tasks. The distance met-

ric presented in this research can be used as a tool to discover and quantify the

relatedness of tasks based on their learnable regularity.

3 Measuring Learning Task Similarity

The tasks toward which machine learning is applied all have some degree of

regularity and structure to them. It is this structure which makes learning

possible. Learning algorithms exploit the structure to perform predictions and

classifications. Many learning algorithms have been developed in machine learn-

ing over several decades. Some algorithms recognize one type of structure, while

others recognize another. It is an open question whether all types of regular-

ity occurring in learnable tasks have been exploited by some algorithm, and it

will probably remain an open question for the foreseeable future. Regardless,

a sizable collection of diverse learning algorithms with different strengths and

weaknesses is available today.

Different professionals approach machine learning with different goals. Some

have a specific set of learning tasks that are important to them and are always

looking for ways to improve performance on these particular tasks. Others are

researchers, working to create and improve learning algorithms to cover a wide

variety of learning tasks and achieve improved performance over them generally.

Yet other researchers are interested in creating and reasoning about cognitive

models that exhibit general problem solving and adaptability inspired by human

intelligence. As different people have different goals, it can be difficult for one

practitioner to know when the published work of another is relevant to her own

objectives. A method to determine how related two learning tasks are can be a

5

valuable tool for a professional to evaluate the usefulness of published results.

More generally, it is valuable to understand the relationship between learning

tasks in order to better understand what makes them learnable. With better

understanding of how learnable tasks relate to each other and how they differ

from the general class of functions Wolpert discusses as unlearnable, the task of

learning in general can be approached more effectively.

This research provides such a tool for determining the relationships between

learning tasks.

3.1 The COD Metric For Algorithm Behavior Variation

The distance metric for learning tasks presented in this research uses the COD

(Classifier Output Difference) distance measure for learning algorithms by Pe-

terson [6] as a tool. The problem of learning task similarity is approached here

by examining the effect learning tasks have on the behavior of the models pro-

duced by learning algorithms. Given a learning task and two learners, the COD

metric is a measure of the extent to which the learners produce differing pre-

dictions. More specifically, it is an estimate of the probability that, given a new

instance, the learners will classify the instance differently. Algorithm 1 describes

how the COD distance is estimated. In essence, the two algorithms are used

to produce hypotheses from a classification training set, and the frequency of

disagreement of those algorithms on the test set is measured.

3.2 From Algorithm Diversity to Learning Task Diversity

The core contribution of the research given here is a way to characterize and

measure the similarity and difference between learning tasks from a learnability

standpoint. Tasks are considered similar if they elicit similar relative behavior

characteristics from learning algorithms. The COD distance is used to quan-

6

Algorithm 1 Estimating the COD metric

function Estimate COD(T , a1, a2) ⊲ Estimate the COD metric between
⊲ two algorithms using a data set

F = partition(T) ⊲ Partition the data into folds
for a ∈ {a1, a2} do ⊲ For each of the two algorithms

for all f ∈ F do ⊲ For each fold of the data set
Ha,f = train(a, T − f) ⊲ Train a hypothesis using all the data

⊲ except the current fold
La,f = {p → Ha,f (p)} ⊲ Use this hypothesis to label the patterns

⊲ in this fold
La = {La,f} ⊲ Combine the labels into a single set for this algorithm

return
|{p∈T |La1,p 6=La2,p}|

|T | ⊲ Return the fraction of patterns a1 and a2

⊲ disagree on

tify the behavior characteristics of a task with respect to a learning algorithm.

When two tasks have similar observed effects on the models produced by various

algorithms, this provides evidence that the tasks have similar types of learnabil-

ity.

For example, if task t1 results in a small COD distance between algorithms

a1 and a2, but a large distance between algorithms a2 and a3, while task t2

similarly gives a small COD distance between a1 and a2 and a large distance

between a2 and a3, this indicates that the tasks bear similarity to each other in

terms of their “learnable potential.” (Recall that when using the COD metric,

algorithm distances are measures of behavior difference.) If, on the other hand,

t3 gives a large distance between a1 and a2, but a small distance between a2

and a3, this indicates that there is something about learning task t3 that is

different in character from t1 and t2. In this research, relative COD distances

are compared rather than absolute distances because the COD distance will have

a tendency to be smaller for tasks that are simpler (have less process noise, fewer

outliers, etc.) simply because there are fewer missed patterns for algorithms to

disagree on, and using relative distances can reduce this effect.

One may observe that the term “learnable potential” used here does not

7

Algorithm 2 Estimating the DICES distance between tasks

function Estimate DICES(T1, T2, A = {ai}) ⊲ Estimate the DICES
⊲ distance between two data sets (representing learning tasks) with

⊲ respect to a set of learning algorithms
for T ∈ {T1, T2} do ⊲ For each of the two tasks

for all {ai, aj} ∈ A × A do ⊲ And over each pair of algorithms
Cij(T) = Estimate COD(T, ai, aj) ⊲ Find the COD distance

ĉT =
[

C12(T), C13(T), · · · , C1n(T), · · · , C23(T), · · · , C(n−1)n(T)
]

⊲ Arrange the COD distances into a vector for task T

cT = ĉT

|ĉT | ⊲ Normalize the COD distance vector to unit length

return |cT1
− cT2

|

have a strict definition. Conceptually, this term relates to the aspects of a task

that make it learnable, the qualities of regularity contained within it. This

term can not be defined formally; otherwise, the definition could be used to

characterize the circumstances under which learning is possible, which does

not unify well with Wolpert’s No Free Lunch theorem. However, although the

learnable character of a learning task may be difficult to formulate, it is still

valuable to make an effort to understand some of its properties and aspects.

By observing which tasks produce similar effects on COD algorithm distances

and which produce differing effects, one can begin to quantify the similarity

of learning tasks. This quantification can lead to observing learning tasks in

quasi-spatial relationships.

We now present the Difference In COD Estimate Similarities (DICES) dis-

tance measurement between learning tasks. The procedure for computing the

DICES metric between two tasks is given in Algorithm 2, and outlined here:

1. A set of COD distances between algorithms on each task is computed.

The COD distance between algorithms a1 and a2, members of a set of

algorithms A, over a task t is denoted as Ca1,a2
(t).

2. These pairwise COD distances are then placed a vector of distances for

8

each task:

ĉA(t) = [Ca1,a2
(t), Ca1,a3

(t), · · · , Ca1,an
(t),

Ca2,a3
(t), · · · , Ca2,an

(t),

· · · , Can−1(t),an
]

where n = |A|.

3. The vector of distances is then normalized:

cA(t) =
ĉA(t)

|ĉA(t)|

4. Finally, the distance between the two tasks t1 and t2 is calculated by

measuring the length of the difference between their normalized COD

vectors:

DA(t1, t2) = |cA(t1) − cA(t2)| (1)

The intuitive basis for measuring learning task similarity in this manner

is related to the idea that learnable problems exhibit regularity and structure

that is exploited by learning algorithms to improve predictive accuracy. It is

this structure in a learning task which makes a task learnable. Without some

amount of regularity and structure in a task, the premise of the No Free Lunch

Theorem applies. No assumptions can be made about the task, and the task can

not be effectively learned. Learnable tasks, on the other hand, have significant

structure that can be detected by learning algorithms and used to perform

generalization.

Different kinds of structure are found in different learning tasks, and differ-

ent learning algorithms exploit this regularity in different ways. For example,

if one is given the learning task of predicting how crowded a swimming pool

9

will be from the outside temperature that day, a linear learning model such

as a perceptron will attempt to determine a correlation between temperature

and patronage, and output a model that predicts large crowds on one side of a

threshold and small crowds on the other. An instance based model, on the other

hand, will use the premise that past examples will likely be similar to future

instances with similar temperatures, and will make a prediction based on pre-

vious days with similar temperatures. Although both learning algorithm types

are able to produce a model for predicting the target, these models function in

different ways, exploiting the regularity of the target problem differently.

In some cases, the different ways two algorithms exploit task regularity will

lead to models with very different behaviors. In other cases, the difference in

model representation will be less relevant and still result in learning models

that have similar behaviors. Because different models represent different kinds

of regularity and in different ways, these behavioral differences between models

can serve as an indirect indicator of what types of regularity a learning task

contains. Intuitively, if two learning tasks have regularity of a similar nature

to one another, different learning algorithms will capture this regularity in each

task in a similar way. We can infer similarity between two tasks from similar

patterns in the COD measurements they induce in learning algorithms.

The DICES distance between a task and itself will always be zero, since

each learning algorithm (as executed on deterministic hardware) will induce the

same hypothesis when given the same data set. Some learning algorithms, such

as multilayer perceptrons, Boltzmann machines, and random forests, employ

pseudo-random sources to set initial conditions or govern other aspects of the

training process. Algorithms with high variance can exhibit a high sensitivity

to resampling or presentation order. By varying random sources, sampling,

and presentation order, algorithms may induce hypotheses with nonzero COD

10

distances to each other. The characteristics of these distances and the resulting

DICES distances are potentially interesting, but beyond the scope of this work.

In this research, a learning task is characterized by a data set drawn from

the task. There are domains of machine learning in which the data set is not

constant, such as Active Learning [4] where the learning algorithm has the

option of querying an expert on unseen patterns. Such domains are interesting,

but beyond the scope of this research. Applying the DICES distance in such

domains may be a future research direction, if the COD distance (or an analog)

can be formulated between Active Learning tasks or other tasks not directly

characterizable by a data sampling.

4 Results And Analysis

With the DICES measure, a distance matrix can be constructed for a collection

of tasks, and visualization and clustering of the task space can be performed.

Table 1 lists 30 tasks from the Irvine Machine Learning Repository [5] over

which DICES distances were measured. The 18 learning algorithms used for

these DICES measures are listed in Table 2.

The computed DICES distances between the tasks are given in Table 3. The

average distance between two tasks is 0.058 and the table has bolded entries for

any distance less than 0.030, one standard deviation less than the average. One

quirk of this collection of data sets, which is an example of why examining

redundancy in a collection of data sets can be useful, is that four pairs of data

sets are each essentially the same task, with either a change in the way the inputs

or outputs are encoded, or the sampling order. The stgern and stgers tasks are

the same except that in the second some of the inputs have been re-encoded

as continuous rather than nominal. The cmuvow and vowel tasks are the same

task except that the output has been encoded as a 1-to-10 discrete value in one

11

and a 1-of-10 nominal value in the other, and in one data set about 40% of the

patterns have been removed. The tasks stsegm and segm are the same task,

except that in one data set, the output has been coded as a nominal value with

seven classes, and in the other the patterns are marked with a discrete value

between 1 to 7. The tasks cmuson and sonar are both the rocks-and-mines

problem, with the only difference being that in one the rock is class 1 and in

the other the mine is class 1.

These observations are all reflected in the DICES distance matrix. Four

of the five shortest distances are the four task pairs mentioned. The shortest

distance is 0.002, between stsegm and segm. The distance between cmuson and

sonar is 0.005, the second shortest distance in the table. The distance between

cmuvow and vowel is 0.013, which is the third shortest distance of the table.

The fifth shortest distance in the matrix is 0.017 between stgern and stgers.

All four of these distances are well below the 0.030 value of the mean minus a

standard deviation.

Another observation that can be drawn is that the data sets tend to form

cliques. For example, the glass data set is near the bupa, cmuson, cmuvow,

sonar, and shvehi data sets (with distances less than 0.25). Moving over to the

bupa column, it can be seen that this data set is also close to cmuson, glass,

sonar, staust, and stvehi. Three of the four tasks closest to glass (not counting

bupa) are also three of the four closest tasks to bupa (not counting glass).

Another clique can be observed by looking at the near neighbors of pima,

which are: cmuson, sonar, stgern, stgers, and wave21. The neighbors of wave21

are: cmuson, pima, sonar, stgern, and stgers. In this case, all four of the nearest

neighbors are common between these two tasks, pima, and wave21.

12

4.1 Visualizing Task Relatonships

It is insightful to observe a visual representation of relationships between en-

tities. Although the DICES metric is a Euclidean distance measure, this Eu-

clidean space is of very high dimension. Because there are 18 algorithms, there

are 17·18
2 = 154 components to the vector, which means that the distance is

actually in a 154 dimensional space. However, as there are only 30 tasks to vi-

sualize, a 29-dimensional subspace will actually suffice to represent all distances

with full fidelity. Unfortunately, 29 dimensions is still much higher than we have

convenient visualization tools. Still, an approximate visualization can be shown

in three dimensional space, by placing points representing tasks into 3-space

and then updating their positions with gradient-descent to match the distance

matrix.

Such a visualization is shown in Fig. 1. In this figure, the nodes have been

given colorations to help distinguish the structure of the representation. The

coloration is chosen based on average distance to the rest of the tasks, with

darker nodes having shorter average distances to all other tasks and lighter

nodes having longer average distances.

The visualization shows, as one would expect, the four “pair” (stgern and

stgers, cmuson and sonar, stsegm and segm, and cmuvow and vowel) tasks

close together. In fact, stsegm and segm are virtually on top of each other, as

are cmuson and sonar. On the other hand, there are several tasks which are

strongly distinctive, which tend to hover on the outskirts of the space. The

overall layout of this space appears to be a dense cluster of tasks in the middle

of the space and a number of other tasks loosely grouped around it.

By viewing this learning task structure in three dimensions instead of 29,

we do lose some information. It is useful to consider how much information is

being lost. For some insight into this issue, one can look at the eigensystem of

13

the covariance matrix of the higher dimensional space. The sorted eigenvalues

are shown in Fig. 2. Here, one can see that there are two strong eigenvalues,

representing two dimensions of high information content, followed by a number

of rather small eigenvalues. From this it can be inferred that a two dimensional

representation is enough to capture a large amount of the structure. Thus, the

three dimensional representation can give a reasonable picture.

4.2 Task Relationships Through Clustering

With a distance matrix over learning tasks, it is possible to do various forms

of analysis on the task relationships, such as cluster analysis. Fig. 3 shows a

dendrogram of learning tasks from doing average link agglomerative clustering.

The nodes of this figure are colored to match the colors used in Fig. 1. In

this figure, we can observe that the cliques that were noted in the beginning of

section 4 have formed clusters. The first clique that was mentioned consisted

of glass, bupa, cmuson, sonar, and stvehi. In Fig. 3, we observe that with

the addition of stsati these tasks all form a cluster. The second clique observed

consisted of pima, cmuson, sonar, stgern, stgers, and wave21. Although cmuson

and sonar are part of the first cluster, the other four members of this clique

form a cluster in the dendrogram.

We may also observe in this dendrogram that the darker central nodes ag-

glomerate to form a single large cluster, with the lighter exterior nodes forming

their own clusters. It appears that in the collection of Irvine MLDB tasks se-

lected, there exists a relatively dense clustering of tasks about a well-defined

center. If this result generalizes to learning tasks in general, it suggests that

learning algorithms which focus on this part of the task space will tend to im-

prove performance on a large number of learning tasks. Conversely, algorithms

focused on performance on the outlying tasks will tend to cover fewer learning

14

tasks unless they have a broad coverage of the task space in these outlying areas.

To verify the robustness of this approach, other clustering techniques were

also applied to these tasks. These clustering methods included minimum link

agglomerative clutering and recursive partitioning using maximum graph cut.

The observations found in these clusterings were similar to those made above

with average link agglomerative clustering.

5 Conclusion and Future Work

This research provides a method for computing the distances between learning

tasks. This is done by building on the concept of an algorithm distance and

reversing it to allow for distances between tasks. This research gives examples of

visualizations for use in understanding the relationships between learning tasks.

Future work in this area includes research into uniqueness functions that can

be used to weight data sets for empirical results. With the ability to generate a

distance matrix, this work may also be applied to transfer learning.

Some work has been done on using distance relationships between tasks to

guide task selection for presenting empirical results across a broad range of tasks

while minimizing redundancy in tasks (that is, tasks which are closely related).

Work is also being done in producing weightings for empirical results which can

be applied to already published research in order to determine the broadness of

the algorithm(s) presented by them.

Other future directions for this research include examining task space from

the perspective of algorithm coverage and determining where individual learning

algorithms perform well or poorly in relation to tasks and to each other. It is

hoped that in being able to visualize and understand learning task space better,

research might be made more effective at targeting unexplored techniques for

machine learning.

15

References

[1] D. W. Aha. Generalizing from case studies: A case study. In Proceedings

of the Ninth International Conference on Machine Learning, ICML’2000,

pages 1–10, Aberdeen, Scotland, 1992. Morgan Kaufmann.

[2] J. Baxter. Learning model bias. In D. S. Touretzky, M. C. Mozer, and M. E.

Hasselmo, editors, Advances in Neural Information Processing Systems,

volume 8, pages 169–175. The MIT Press, 1996.

[3] C. E. Brodley. Dynamic automatic model selection. Technical Report UM-

CS-1992-030, University of Massachusetts, February 1992.

[4] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active

learning. Machine Learning, 15(2):201–221, 1992.

[5] C. J. Merz and P. M. Murphy. UCI repository of machine

learning databases. Available at http://www.ics.uci.edu/∼mlearn/

MLRepository.html, 1996.

[6] A. H. Peterson and T. R. Martinez. Estimating the potential for combining

learning models. In Proceedings of the ICML Workshop on Meta-Learning,

pages 68–75, 2005.

[7] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-learning by land-

marking various learning algorithms. In Proceedings of the Seventeenth In-

ternational Conference on Machine Learning, ICML’2000, pages 743–750.

Morgan Kaufmann, San Francisco, California, 2000.

[8] S. Thrun and J. O’Sullivan. Discovering structure in multiple learning

tasks: The TC algorithm. In International Conference on Machine Learn-

ing, pages 489–497, 1996.

16

[9] S. B. Thrun. Is learning the n-th thing any easier than learning the first?

In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances

in Neural Information Processing Systems, volume 8, pages 640–646. The

MIT Press, 1996.

[10] S. B. Thrun and T. M. Mitchell. Learning one more thing. In IJCAI, pages

1217–1225, 1995.

[11] D. H. Wolpert and W. G. Macready. No free lunch theorems for search.

Technical Report SFI-TR-95-02-010, Santa Fe Institute, Santa Fe, New

Mexico, 1995.

17

Table 1: Learning tasks used in this research and some of their characteristics.

Data Set Instances Classes Features Bool. Enum. Disc. Cont.

ann 7200 3 21 15 6

breastw 699 2 9 9

bupa 345 2 6 6

cmuson 208 2 60 60

cmuvow 990 6 10 10

dermat 366 6 34 1 32 1

ecoli 336 8 7 7

glass 214 7 9 9

iono 351 2 34 34

iris 150 3 4 4

led7 200 10 7 7

lymph 148 4 18 9 9

musk1 476 2 166 166

newthy 215 3 5 5

pima 768 2 8 8

promot 106 2 57 57

segm 2310 7 19 19

sonar 208 2 60 60

splice 3190 3 60 60

staust 690 2 14 4 4 6

stgern 1000 2 24 24

stgers 1000 2 20 13 7

sthear 270 2 13 3 1 4 5

stsati 6435 6 36 36

stsegm 2310 7 19 19

stvehi 846 4 18 18

vowel 990 6 10 10

wave21 300 3 21 21

wine 178 3 13 13

zoo 101 7 16 15 1

Columns in order are: Data set name, instance count, output class count, input
feature count, boolean inputs, enumerated inputs, discrete inputs, and continu-
ous inputs.

18

Table 2: List of algorithms used for the DICES measurements.

Algorithm Family
C4.5 Decision tree
ID3 expect Decision tree
ID3 gain Decision tree
ID3 ratio Decision tree
1-NN Instance based
5-NN Instance based
KStar Instance based
Logistic Regression
JRip Rule based
NB Gaussian Näıve Bayes
NB class seg Näıve Bayes
NB input seg Näıve Bayes
NB Weka Näıve Bayes
MLP Neural network
RBF Neural network
SLP Neural network
SVM Support vector
SVM radial Support vector

19

Table 3: The distance between each learning task, using the DICES metric. The
table is symmetric, so only the lower half is shown. It is split horizontally to fit
on the page. The mean distance between two tasks is 0.580, and the standard
deviation is 0.215.

ann (AN)
breastw (BR) 0.605

bupa (BU) 0.466 0.495

cmuson (CS) 0.497 0.442 0.215
cmuvow (CV) 0.549 0.585 0.392 0.366

dermat (DE) 0.597 0.327 0.419 0.386 0.537

ecoli (EC) 0.707 0.791 0.578 0.552 0.499 0.679

glass (GL) 0.467 0.567 0.248 0.272 0.283 0.515 0.504

iono (IO) 0.831 0.875 0.666 0.657 0.725 0.745 0.558 0.739

iris (IR) 0.688 0.760 0.581 0.545 0.460 0.642 0.399 0.548

led7 (L7) 0.692 0.868 0.738 0.729 0.547 0.841 0.627 0.581

lymph (LY) 0.539 0.288 0.392 0.333 0.498 0.363 0.715 0.451

musk1 (M1) 0.551 0.564 0.465 0.453 0.596 0.548 0.701 0.511

newthy (NE) 0.658 0.813 0.655 0.648 0.470 0.779 0.541 0.502

pima (PI) 0.457 0.485 0.342 0.264 0.403 0.429 0.508 0.339
promot (PR) 0.524 0.359 0.452 0.412 0.582 0.386 0.755 0.521

segm (SE) 0.965 1.005 0.789 0.785 0.835 0.869 0.607 0.847

sonar (SO) 0.498 0.439 0.218 0.066 0.368 0.390 0.549 0.277
splice (SP) 0.528 0.567 0.596 0.599 0.762 0.643 0.875 0.663

staust (SA) 0.528 0.539 0.282 0.309 0.515 0.477 0.676 0.358
stgern (SN) 0.467 0.424 0.325 0.256 0.457 0.391 0.596 0.369

stgers (SS) 0.482 0.405 0.362 0.302 0.471 0.386 0.662 0.408

sthear (SH) 0.547 0.368 0.436 0.382 0.581 0.364 0.738 0.511

stsati (ST) 0.578 0.535 0.294 0.249 0.411 0.408 0.507 0.390

stsegm (SG) 0.965 1.006 0.790 0.787 0.836 0.871 0.608 0.848

stvehi (SV) 0.516 0.532 0.282 0.262 0.320 0.456 0.497 0.239
vowel (VO) 0.574 0.667 0.467 0.446 0.140 0.616 0.484 0.313
wave21 (WV) 0.462 0.351 0.326 0.267 0.450 0.319 0.601 0.402

wine (WI) 0.836 1.006 0.860 0.840 0.646 0.954 0.595 0.708

zoo (ZO) 0.694 0.759 0.663 0.638 0.448 0.697 0.532 0.522

(AN) (BR) (BU) (CS) (CV) (DE) (EC) (GL)

(IR) 0.506

(L7) 0.955 0.666

(LY) 0.823 0.686 0.794

(M1) 0.774 0.722 0.847 0.518

(NE) 0.879 0.588 0.260 0.746 0.782

(PI) 0.707 0.504 0.632 0.376 0.452 0.571

(PR) 0.844 0.717 0.838 0.329 0.519 0.810 0.395

(SE) 0.240 0.611 1.041 0.953 0.900 0.972 0.838 0.970

(SO) 0.661 0.557 0.741 0.329 0.453 0.661 0.273 0.413 0.784

(SP) 0.935 0.881 0.893 0.540 0.535 0.899 0.558 0.426 1.063 0.599

(SA) 0.777 0.693 0.810 0.386 0.427 0.749 0.393 0.461 0.883 0.307 0.585

(SN) 0.761 0.600 0.741 0.325 0.443 0.686 0.194 0.308 0.891 0.256 0.500

(SS) 0.797 0.635 0.721 0.282 0.423 0.676 0.234 0.317 0.932 0.312 0.507

(SH) 0.844 0.699 0.835 0.311 0.445 0.774 0.334 0.330 0.974 0.388 0.543

(ST) 0.499 0.464 0.791 0.429 0.503 0.718 0.352 0.483 0.620 0.245 0.678

(SG) 0.240 0.611 1.043 0.954 0.901 0.973 0.839 0.971 0.014 0.785 1.064

(SV) 0.685 0.537 0.661 0.427 0.493 0.609 0.353 0.490 0.787 0.258 0.652

(VO) 0.764 0.476 0.444 0.581 0.650 0.367 0.450 0.658 0.864 0.453 0.812

(WV) 0.701 0.565 0.744 0.297 0.385 0.680 0.245 0.323 0.845 0.272 0.504

(WI) 0.929 0.642 0.297 0.944 0.942 0.319 0.749 0.984 0.989 0.852 1.047

(ZO) 0.869 0.571 0.323 0.704 0.786 0.320 0.588 0.765 0.960 0.649 0.891

(IO) (IR) (L7) (LY) (M1) (NE) (PI) (PR) (SE) (SO) (SP)

(SN) 0.347
(SS) 0.334 0.199
(SH) 0.382 0.279 0.215
(ST) 0.397 0.372 0.410 0.474

(SG) 0.884 0.891 0.933 0.975 0.621

(SV) 0.380 0.374 0.412 0.488 0.315 0.789

(VO) 0.582 0.530 0.537 0.654 0.501 0.865 0.384

(WV) 0.392 0.241 0.245 0.264 0.335 0.846 0.351 0.526

(WI) 0.938 0.872 0.870 0.966 0.873 0.990 0.774 0.535 0.867

(ZO) 0.750 0.679 0.665 0.764 0.694 0.962 0.569 0.369 0.666 0.383

(SA) (SN) (SS) (SH) (ST) (SG) (SV) (VO) (WV) (WI) (ZO)

20

List of Figures

1 A visualization of task space in three dimensions for thirty tasks
from the Irvine Machine Learning Repository. Two views of the
model are shown, roughly 90 degrees apart. 22

2 The eigenvalues of the task space’s covariance matrix. 23
3 Clustering of learning tasks using Average Link Agglomerative

Clustering. 24

21

Figure 1: A visualization of task space in three dimensions for thirty tasks from
the Irvine Machine Learning Repository. Two views of the model are shown,
roughly 90 degrees apart.

22

E
ig

e
n

v
a

lu
e

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Figure 2: The eigenvalues of the task space’s covariance matrix.

23

newthy led7

wine

zoo vowel cmuvow

iris ecoli

lymph brea s tw

d e r m a t

s t g e r n p i m a

w a v e 2 1 s t h e a r s t g e r s

p romot

s tvehi g lass

s o n a r c m u s o n

b u p a

s tsa t i

s t a u s t

m u s k 1

a n n

splice s t s e g m s e g m

iono

Figure 3: Clustering of learning tasks using Average Link Agglomerative Clus-
tering.

24

