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I. I NTRODUCTION

With the advancement in DNA microarray technologies,
inferring genetic regulatory networks (GRNs) is critical to
understanding cellular processes and complex gene interac-
tions. The microarray analysis provides time series data points
measuring gene expression levels which are then used to model
how genes interact with each other. Modeling and simulating
GRNs can potentially be used in areas such as drug testing and
cancer treatment. Modeling GRNs poses a difficult problem
since only a limited amount of noisy, high dimensional data is
provided and GRNs involve non-linear relationships between
genes with feedback loops. There are also potentially many
genes or other implicit factors that affect the gene expression
level which may not be measured in the microarray analysis.

A large body of research has been performed in an attempt
to characterize GRNs using various models. However, the
models have been constrained to be interpretable so that a
GRN can be inferred from the model. Boolean networks have
been used because of their simplicity and their ability to deal
with noisy data [1] but lose information by having a binary
representation of the genes. Ordinary differential equations
attempt to incorporate biological knowledge and derive kinetic
equations for gene interactions [2]. However, it is assumed
that all components of the system and the interactions be-
tween them are known and all necessary constants can be
measured or estimated which is not always the case. Bayesian
networks have also been used to model GRNs [3] to deal with
the stochastic aspects of gene expression and to deal with
noisy data, but they minimize the dynamical aspects of gene
regulation.

We examine modeling GRNs with NNs. Earlier work has
used NNs to model GRNs [4] by having each node in the
NN represent a gene while the weight between the nodes
represents the strength of the interaction. Thus, a GRN could
be inferred from the weights of the network. Using NNs to
models GRNs was extended to recurrent NNs (RNNs), a class
of NNs that have feedback loops [5]. The RNNs model the
feedback that occurs naturally in gene interactions. However,
the recurrence also make the RNNs difficult to train. A
common approach used for training RNNs is backpropagation
through time (BPTT) which unfolds the network a certain
number of time steps to train the feedback weights.

Hidden layers in NNs have been omitted to keep the model
interpretable. Without a hidden layer, the NN is only capable

of modeling first order relationships. For example, suppose
we were modeling the first gene (G1) in a two gene network.
Let us assume a Boolean model for the example. Suppose G1
is high when in the previous time step G1 is low and G2
is high or when G1 is high and G2 is low. Otherwise G1
is low (logical XOR). A NN with without a hidden layer is
incapable of modeling this problem because the outputs are not
linearly separable. The hidden layer is necessary to transform
the problem space so that the problem is linearly separable
after the transformation.

This research examines modeling GRNs with neural net-
works (NNs) and recurrent NNs that have a hidden layer for
gene expression level prediction rather than inferring theGRN.
Predicting the gene expression levels can be an indication of
how well the NN has modeled the GRN. One purpose for a
predictive model is the generation of additional data points.
A simpler model can then use these synthetic data points
in addition to the actual data points to infer the GRN from
the additional data. The predicted data points also allow a
researcher to examine the way a GRN reacts to perturbations
in silico without having to perform the actual experiments
which are often time consuming and expensive. Modeling the
GRN with a NN with a hidden layer will be more descriptive
than one without a hidden layer, but the model will not be as
interpretable and thus the GRN will not be able to be inferred
by simply examining the weights. The advantage of using NNs
is that they are well suited to modeling complex relationships
and handling noisy data such as that in microarray data. We
find that the NNs with hidden layers result in lower error in
gene expression prediction.

NNs with hidden layers have been used with microarray data
for classification, but not for gene expression level prediction
[6]. To our knowledge using NNs with hidden layers to predict
of gene expression levels of a GRN has not been studied.

Another problem with traditional GRN algorithms is their
need for large volumes of time series data. In this research,
we combine data points with variable elapsed time to create
additional data points for training that incorporate temporal
information. Traditionally, the data at timet is used to predict
the expression levels at timet+1. To make more use of the
available data, we combine each pair of data points from
the time series data and include a new attribute of the time
that has elapsed. A data point is a set of gene expression
levels at a specific time as given in the microarray data. The
NNs will have one additional input node representing the size



of the time step. For example, for microarray data with 5
time steps, traditional training algorithms will have a difficult
time training. By combining the data points, we can train the
network much more effectively by including the original time
steps (1,2), (2,3), (3,4), (4,5) plus the time steps between(1,3),
(1,4), (1,5), (2,1),. . . ,(3,5). We find that this approach aids
NNs with a hidden layer, but does results in higher error for
NNs without a hidden layer. The resultant expression levels
are smoothed as well, suggesting that some noise filtering has
been done. In terms of error values, the NN with a hidden layer
is comparable to an Elman net [7] architecture for a recurrent
NN.

II. EXPERIMENTAL METHODOLOGY

To examine the impact of using NNs with hidden layers
and combining data points we use a NN without a hidden
layer (perceptron), a NN with a hidden layer, and a RNN. The
perceptron and NNs models are trained using backpropagation
and the RNN is trained using backpropagation through time
(BPTT) [8] and Elman nets [7] on two data sets. The first data
set was a synthetic data set from the DREAM 3 competition
[9]. This data set was used because there truth value is known
and consists of 4 perturbations to a 10 gene network measured
every 10 seconds for a duration of 200 seconds. We evaluated
the models using the first perturbation as the test set and
the remaining three perturbations as the training data. The
second data set was the SOS DNA repair network in bacterium
Escherichia coli data set [10] which is a real world data set and
was used to compare our work against other models. The SOS
system consists of about 30 genes with four experiments being
conducted with different light intensities. Each experiment
measures eight major genes sampled every 6 minutes for 50
time steps. The models are evaluated on the test set using
root mean squared error (RMSE), correlation coefficient, mean
error, and graphically to visually determine goodness.

III. R ESULTS

The RMSE and correlation coefficient on the test set for
each model on the DREAM data set is given in Table I where
“time” means that the model was trained using data that was
augmented using our method for combining data points. The
values in bold indicate the best values for the RMSE and the
correlation coefficient. Based on the RMSE and the correlation
coefficient, the neural network with hidden layers trained using
the modified data set and the Elman net perform the best.
From this, adding a hidden layer (NN) does improve the model
compared to the perceptron model as the RMSE decreases
and correlation coefficient increases. Also, the combination of
the data points to create a temporal aspect also improves the
performance of the NN model and degrades the performance
of the perceptron model.

Fig. 1 shows the gene expressions levels for the first exper-
iment from the SOS data set as well as the gene expressions
levels predicted by the perceptron, NN, NN with time, BPTT,
and Elman net models. The x-axis represents time and the y-
axis represents the gene expression level for each gene. The

Model RMSE Correlation

Perceptron 0.0153 0.923
Perceptron time 0.0197 0.882
NN 0.0118 0.928
NN time 0.0106 0.935
BPTT 0.0148 0.9141
Elman 0.0103 0.937

TABLE I
COMPARISON OF THERMSEON THE DREAM DATA SET.

Model uvrD lexA umuD recA uvrA uvrY ruvA polB ave

Perceptron 0.57 0.58 0.59 0.60 0.69 0.87 0.79 0.34 0.63
Percep time 0.38 0.63 0.63 0.47 0.69 0.43 0.89 0.28 0.55
NN 0.09 0.07 0.06 0.03 0.04 0.23 0.20 0.04 0.09
NN time 0.37 0.18 0.27 0.05 0.10 0.35 1.18 0.23 0.34
BPTT 1.25 2.26 1.07 1.50 2.61 0.28 1.29 0.52 1.35
Elman 0.39 0.23 0.16 0.21 0.51 0.35 0.60 0.19 0.33

NFRN 0.17 0.08 0.09 0.10 0.09 0.16 0.20 0.08 0.12
EK 0.20 0.10 0.21 0.12 0.14 0.45 0.22 0.31 0.22

TABLE II
COMPARISON OF MEAN ERROR ON THESOSDATA SET

perceptron model is abrupt and falsely predicts fluctuations in
the gene expression levels. The NN model follows the actual
expression level very closely and is slightly smoother than
the target signal, possibly filtering noise. The NN with time
smooths the expression levels even more, providing the overall
trend of the time-series data. The BPTT and Elman net models
are abrupt, exaggerating slight fluctuations in the target gene
expression levels. The Elman net model is able to converge to
the steady state, but BPTT is never able to.

The SOS data set is also used to compare our models
with two other models; Expression Kinetics (EK) [11] and
Neural Fuzzy Recurrent Networks (NFRN) [10]. The models
are evaluated using mean error. Both training and testing use
the first two-thirds of the first experiment 1 as was done by
Maraziotis et. al. [11]. This will demonstrate how well each
model is able to learn the GRN.The mean error values for each
model are shown in Table II. With the exception of BPTT, all
of the models with a hidden layer have lower mean error than
the perceptron models. Overall, the NN model achieves the
lowest mean error for every gene (including the NFRN and
EK models) except for uvrY. Using the mean error metric, the
augmented data set (Percep w/ time and NN w/ time) does not
help in predicting the gene expression level, but rather creates
more error. It is interesting that the NN with the augmented
data set performs similarly to Elman nets in terms of error. The
recurrence in the Elman net model is better able to capture the
behavior of the data where as the NN with time model smooths
the data. BPTT does not perform well having the highest error
on every gene except for one.

IV. D ISCUSSION

Using NNs with a hidden layer to model GRNs is very
promising. We found that NNs with a hidden layer are better
able to predict the gene expression level for a GRN than
NNs without a hidden layer. This suggests that higher-order
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Fig. 1. Predictions from each model for the SOS data set. Individual genes have the same color and line style in each graph for comparison. The graph that
is most similar to the ”Original Data” is the most accurate. The x-axis represents time and the y-axis represents the geneexpression level for each gene.

correlations do exist in GRNs and it is important that the
models used to model GRNs have the capability of capturing
these higher-order correlations. The disadvantage of using a
hidden layer is that the model is less interpretable, meaning
that current techniques for inferring the GRN from the weights
of the NN cannot be used. However, a predictive model can
generate additional training points that can then be supplied to
a simpler model that is able to infer a GRN. The addition of
more data points should produce a better model of the data.

We also proposed to combine the data points from time
series data to create more data points with different time step
values. Training the perceptron model with augmented data set
resulted in worse predictions. However, using the augmented
training set to train a NN with a hidden layer, the predictions
were smoothed and followed the overall trend in behavior
for the genes. Due to the noise in the measurement data, the
temporal component could be seen as filtering the noise from
the expression levels whereas the NN model could be seen as
overfitting the data.

The recurrent NNs used in this study do not out perform
the non-recurrent NN models. In fact training NNs with the
augmented data set had similar error and correlation results
with those of the Elman net model. The Elman net model was
able to detect fluctuations in the gene expression levels while
the NN with time produced a smoothed gene expression level
predicting the overall trend of the gene. Both BPTT and Elman
nets appeared to be filtering noise by producing smoothed gene
expression levels. This is beneficial as the models could simply
be used as a noise filtering technique.
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