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. INTRODUCTION of modeling first order relationships. For example, suppose
_ ) ) ~ we were modeling the first gene (G1) in a two gene network.
With the advancement in DNA microarray technologieg,et ys assume a Boolean model for the example. Suppose G1
inferring genetic regulatory networks (GRNS) is critic@l tis high when in the previous time step G1 is low and G2
understanding cellular processes and complex gene inter@chigh or when G1 is high and G2 is low. Otherwise G1
tions. The microarray analysis provides time series dait@®o g |gw (logical XOR). A NN with without a hidden layer is
measuring gene expression levels which are then used to mgggapable of modeling this problem because the outputsare n
how genes interact with each other. Modeling and simulatirpigea”y separable. The hidden layer is necessary to wamsf
GRNs can potentially be used in areas such as drug testing gl problem space so that the problem is linearly separable
cancer treatment. Modeling GRNs poses a difficult problegter the transformation.
since only a limited amount of noisy, high dimensional data i This research examines modeling GRNs with neural net-
provided and GRNs involve non-linear relationships betwegyqgrks (NNs) and recurrent NNs that have a hidden layer for
genes with feedback loops. There are also potentially magy¥ne expression level prediction rather than inferringGRN.
genes or other implicit factors that affect the gene exjwess pregicting the gene expression levels can be an indicafion o
level which may not be measured in the microarray analysigew well the NN has modeled the GRN. One purpose for a
A large body of research has been performed in an attempédictive model is the generation of additional data point
to characterize GRNs using various models. However, taesimpler model can then use these synthetic data points
models have been constrained to be interpretable so thah addition to the actual data points to infer the GRN from
GRN can be inferred from the model. Boolean networks hayge additional data. The predicted data points also allow a
been used because of their simplicity and their ability talderesearcher to examine the way a GRN reacts to perturbations
with noisy data [1] but lose information by having a binaryn silico without having to perform the actual experiments
representation of the genes. Ordinary differential equati \which are often time consuming and expensive. Modeling the
attempt to incorporate biological knowledge and deriveek® GRN with a NN with a hidden layer will be more descriptive
equations for gene interactions [2]. However, it is assumegan one without a hidden layer, but the model will not be as
that all components of the system and the interactions hgterpretable and thus the GRN will not be able to be inferred
tween them are known and all necessary constants canpysimply examining the weights. The advantage of using NNs
measured or estimated which is not always the case. Bayesiathat they are well suited to modeling complex relatiopshi
networks have also been used to model GRNs [3] to deal wWigAd handling noisy data such as that in microarray data. We
the stochastic aspects of gene expression and to deal Wit that the NNs with hidden layers result in lower error in
noisy data, but they minimize the dynamical aspects of gegene expression prediction.
regulation. NNs with hidden layers have been used with microarray data
We examine modeling GRNs with NNs. Earlier work hagor classification, but not for gene expression level preofic
used NNs to model GRNs [4] by having each node in tHg]. To our knowledge using NNs with hidden layers to predict
NN represent a gene while the weight between the nodsfsgene expression levels of a GRN has not been studied.
represents the strength of the interaction. Thus, a GRNdcoul Another problem with traditional GRN algorithms is their
be inferred from the weights of the network. Using NNs taeed for large volumes of time series data. In this research,
models GRNs was extended to recurrent NNs (RNNs), a clags combine data points with variable elapsed time to create
of NNs that have feedback loops [5]. The RNNs model thedditional data points for training that incorporate temapo
feedback that occurs naturally in gene interactions. Hewevinformation. Traditionally, the data at tintes used to predict
the recurrence also make the RNNs difficult to train. Ahe expression levels at time1. To make more use of the
common approach used for training RNNs is backpropagatigiailable data, we combine each pair of data points from
through time (BPTT) which unfolds the network a certaihe time series data and include a new attribute of the time
number of time steps to train the feedback weights. that has elapsed. A data point is a set of gene expression
Hidden layers in NNs have been omitted to keep the modelels at a specific time as given in the microarray data. The
interpretable. Without a hidden layer, the NN is only capabNNs will have one additional input node representing the siz
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of the time step. For example, for microarray data with 5

time steps, traditional training algorithms will have afidift Eggggggﬂ imell 9013|0923
time training. By combining the data points, we can train the NN 0.0118 0.928
network much more effectively by including the original 8m NN time 0.0106 0.935
) BPTT 0.0148 | 0.9141
steps (1,2), (2,3), (3,4), (4,5) plus the time steps betwgg), Elman 00103 0.937
(1,4), (1,5, (2,2),...,(3,5). We find that this approacHsai
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NNs with a hidden layer, but does results in higher error for COMPARISON OF THERMSE ON THE DREAM DATA SET.

NNs without a hidden layer. The resultant expression levels
are smoothed as well, suggesting that some noise filteriag ha
been done. In terms of error values, the NN with a hidden laygfodel [ uvrD lexAl umuQ recA uvrAl uvrY[ ruvAl polBJave]

is comparable to an Elman net [7] architecture for a rectirrefierceptron | 0.57 0.58 0.59| 0.6¢ 0.69 0.87 0.79 0.34/0.63
NN Percep time| 0.3 0.63 0.63| 0.47 0.69 0.43 0.89 0.28(0.54

NN 0.09| 007 006| 003 004/ 023 020 0.04//0.09
NN time 0.37 0.1 0.27| 005 0.10 0.35 1.1 0.2300.34
Il. EXPERIMENTAL METHODOLOGY BPTT 1.25 2.2 1.07| 1.5 2.61 0.28 1.29 0.54[1.3

. . . . . 3 3
To examine the impact of using NNs with hidden layer&man 039 023 016] 0.2 051 039 0.6 0.19[0.53
FRN 0.17 0.0 009] 0.10 0.09 0.16] 020 0.080.12

and combining data points we use a NN without a hiddeEK 020 01d 021] 014 014 045 024 031024
layer (perceptron), a NN with a hidden layer, and a RNN. Th
perceptron and NNs models are trained using backpropagatio
and the RNN is trained using backpropagation through time
(BPTT) [8] and Elman nets [7] on two data sets. The first data
set was a synthetic data set from the DREAM 3 competition
[9]. This data set was used because there truth value is knoperceptron model is abrupt and falsely predicts fluctuatian
and consists of 4 perturbations to a 10 gene network measutieel gene expression levels. The NN model follows the actual
every 10 seconds for a duration of 200 seconds. We evaluategression level very closely and is slightly smoother than
the models using the first perturbation as the test set ath@ target signal, possibly filtering noise. The NN with time
the remaining three perturbations as the training data. Teooths the expression levels even more, providing theafiver
second data set was the SOS DNA repair network in bacterigrand of the time-series data. The BPTT and Elman net models
Escherichia coli data set [10] which is a real world data set andre abrupt, exaggerating slight fluctuations in the targeieg
was used to compare our work against other models. The S@%ression levels. The ElIman net model is able to converge to
system consists of about 30 genes with four experimentgbethe steady state, but BPTT is never able to.

conducted with different light intensities. Each expeniine The SOS data set is also used to compare our models
measures eight major genes sampled every 6 minutes forvi¢h two other models; Expression Kinetics (EK) [11] and
time steps. The models are evaluated on the test set udieural Fuzzy Recurrent Networks (NFRN) [10]. The models
root mean squared error (RMSE), correlation coefficienameare evaluated using mean error. Both training and testieg us
error, and graphically to visually determine goodness. the first two-thirds of the first experiment 1 as was done by
Maraziotis et. al. [11]. This will demonstrate how well each
model is able to learn the GRN.The mean error values for each

The RMSE and correlation coefficient on the test set fonodel are shown in Table II. With the exception of BPTT, all
each model on the DREAM data set is given in Table | wherdf the models with a hidden layer have lower mean error than
“time” means that the model was trained using data that wdse perceptron models. Overall, the NN model achieves the
augmented using our method for combining data points. Th®vest mean error for every gene (including the NFRN and
values in bold indicate the best values for the RMSE and tB#K models) except for uvrY. Using the mean error metric, the
correlation coefficient. Based on the RMSE and the cormatiaugmented data set (Percep w/ time and NN w/ time) does not
coefficient, the neural network with hidden layers traineshg help in predicting the gene expression level, but rathesitese
the modified data set and the Elman net perform the bestore error. It is interesting that the NN with the augmented
From this, adding a hidden layer (NN) does improve the modeg#ta set performs similarly to EIman nets in terms of errbe T
compared to the perceptron model as the RMSE decreasssurrence in the Elman net model is better able to captere th
and correlation coefficient increases. Also, the combamatif behavior of the data where as the NN with time model smooths
the data points to create a temporal aspect also improves tifie data. BPTT does not perform well having the highest error
performance of the NN model and degrades the performarareevery gene except for one.
of the perceptron model.

Fig. 1 shows the gene expressions levels for the first exper-
iment from the SOS data set as well as the gene expressiongsing NNs with a hidden layer to model GRNs is very
levels predicted by the perceptron, NN, NN with time, BPTTpromising. We found that NNs with a hidden layer are better
and Elman net models. The x-axis represents time and theafple to predict the gene expression level for a GRN than
axis represents the gene expression level for each gene. WNs without a hidden layer. This suggests that higher-order
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IIl. RESULTS

IV. DISCUSSION
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Fig. 1. Predictions from each model for the SOS data setvithal genes have the same color and line style in each g@ptofnparison. The graph that
is most similar to the "Original Data” is the most accuratbeTx-axis represents time and the y-axis represents the eggmmession level for each gene.

correlations do exist in GRNs and it is important that the REFERENCES
models .Used to model GRNS have the.capablllty of captgrlnﬁ] T. Akutsu, S. Miyano, and S. Kuhara, “Identification ofngic networks
these higher-order correlations. The disadvantage ofguain from a small number of gene expression patterns under théedmo

hidden layer is that the model is less interpretable, m@nir}z] ’r\‘/letg"fl’_fk dg‘&%‘f}'h 'gp‘l”‘r‘; 3(’)”‘?(020‘%'2)‘2’;&“‘;\]1?)%%82\%a%;—32§&ﬁyan0

that current teChniques for inferring the GRN f_rom the W‘Elﬁgh “Inferring gene regulatory networks from time-ordered ge@xpression
of the NN cannot be used. However, a predictive model can data of bacillus subtilis using differential equationsy’ Pac Symp on
generate additional training points that can then be segt Biocomputt, 2003, pp. 17-28.

. . . " 3] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Usingyesian
a simpler model that is able to infer a GRN. The addition 01[ networks to analyze expression data ’RECOMB, 2000, pp. 127—135.

more data points should produce a better model of the datg4] P. D’haeseleer, X. Wen, S. Fuhrman, and R. Somogyi, “aimaodeling
. . . of mrna expression levels during cns development and ifijuryPac

We also proposed to combine the data points from time symp on Biocomput, 1999, pp. 41-52.
series data to create more data points with different tirap st [5] X. Hu, A. Maglia, and D. Wunsch, *A general recurrent ralunetwork

L . approach to model genetic regulatory network@dhf Proc |IEEE Eng
values. Training the perceptron model with augmented datas |15 gig o, vol, 5, 2005.

resulted in worse predictions. However, using the augnaentgs] H.-Q. Wang, H.-S. Wong, H. Zhu, and T. T. C. Yip, “A neurabtwork-
training set to train a NN with a hidden layer, the predicion based biomarker association information extraction amgirdor cancer

were smoothed and followed the overall trend in behavior g?jfggg“ggbgoumaj of Biomedical Informatics, vol. 42, no. 4, pp.

for the genes. Due to the noise in the measurement data, the J. L. Elman, “Finding structure in time,Cognitive Science, vol. 14,
temporal component could be seen as filtering the noise from no. 2, pp. 179-211, 1990.

. [8L P. J. Werbos, “Backpropagation through time: what itslaed how to
the expression levels whereas the NN model could be seen 4 do it Proceedings of the IEEE, vol. 78. no. 10, pp. 1550-1560, 2002.

overfitting the data. [9] D. Marbach, T. Schaffter, C. Mattiussi, and D. Floreaf@generating

. . Realistic In Silico Gene Networks for Performance Assesgmé Re-
The recurrent NNs used in this study _d(_) not out perform verse Engineering MethodsJburnal of Computational Biology, vol. 16,
the non-recurrent NN models. In fact training NNs with the  pp. 229-239, 2009. ‘ _
augmented data set had similar error and correlation sesiklf! M- Ronen, R. Rosenberg, B. I. Shraiman, and U. Alon, fgsiig num-
. bers to the arrows: parameterizing a gene regulation nktiyprusing
with those of the Elma:n ne_t model. The EIman .net model WaS  accurate expression kineticsProceedings of the National Academy of
able to detect fluctuations in the gene expression levelewhi  Sciences, vol. 99, no. 16, pp. 10555-10 560, 2002.
the NN with time produced a smoothed gene expression leV&il ! A- Maraziotis, A. Dragomir, and A. Bezerianos, “Gemetworks
. reconstruction and time-series prediction from microardata using
predicting the overall _tren_d of the gene. BOth_BPTT and Elman  recurrent neural fuzzy networkslET Syt Biol, vol. 1, no. 1, pp. 41—
nets appeared to be filtering noise by producing smootheel gen 50, January 2007.
expression levels. This is beneficial as the models couldlgim

be used as a noise filtering technique.



