
Rubabel: Wrapping OpenBabel with Ruby

Rob Smith,1∗Ryan Williamson,1 Dan Ventura1 and John T Prince2∗

1Department of Computer Science, Brigham Young University, Provo, UT, USA
2Department of Chemistry, Brigham Young University, Provo, UT, USA

Email: Rob Smith∗- 2robsmith@gmail.com, John Prince∗- jtprince@chem.byu.edu;

∗Corresponding author

Abstract

Background The number and diversity of wrappers for chemoinformatic toolkits suggests the diverse needs

of the chemoinformatic community. While existing chemoinformatics libraries provide a broad range of utilities,

many chemoinformatists—particularly the programming-averse—find compiled language libraries intimidating,

time-consuming, archane, and verbose. Although high-level language wrappers have been proposed, more can be

done to leverage the intuitiveness of object-orientation, the concise paradigms of high-level languages, and the

extensibility of languages like Ruby. We introduce Rubabel, an intuitive, object-oriented suite of functionality that

substantially increases the accessibily of the tools in the OpenBabel chemoinformatics library.

Results Rubabel requires fewer lines of code than any other actively developed wrapper, providing better

object organization and navigation, and more intuitive object behavior than extant solutions. Moreover, Rubabel

provides a convenient interface to the many extensions currently available in Ruby, greatly streamlining otherwise

onerous tasks such as creating web applications that serve up Rubabel functionality.

Conclusions Rubabel is powerful, intuitive, concise, freely available, cross-platform, and easy to install. We

expect it to be a platform of choice for new users, Ruby users, and some users of current solutions.

Keywords: Chemoinformatics; OpenBabel; Ruby.

1

Background

Despite the fact that chemoinformatics tools have been proposed since the late 1990s [1], the field has yet to

rally in support of a single library. The intricacies of the libraries combined with the low-level programming

prowess required for these languages present a considerable barrier to adoption by less programming-oriented

practitioners. What’s more, the competing libraries don’t share complete coverage of implemented tasks,

meaning that the practitioner, who may be struggling with the language barrier, has to shoulder the addi-

tional burden of being well versed in the differences between the libraries, including different APIs, different

IO interfaces and different data type standards.

The Cinfony project [2] is an attempt to offer high level access to three major existing chemoinformatics

libraries from Python [3], a high-level scripting language [4]. Cinfony’s use of Python greatly reduces the

number of lines of code required for a broad range of chemoinformatics tasks. Though it allows the user to

access the functionality of the component libraries from one Python script, Cinfony does not automatically

manage underlying data types nor the choice of which library to use for which function. This allows users

more control over how Cinfony works but, as the authors acknowledge, it requires users to have an intimate

knowledge of the component libraries in order to manage what data types, conventions, and operations can

be performed by each of the three libraries it wraps. Despite the success of Cinfony, there is still a need for

simplified high level access to common chemoinformatics tasks.

Since most common tasks are available in any single chemoinformatics library, wrappers for single tool

kits are widely used. Because these wrappers interface into a single library, they have the potential for

simpler interfaces and easier extension.

Pybel [5, 6], a Python toolkit based on the Daylight project [7, 8], wraps the chemoinformatics library

OpenBabel [9]. Pybel is an actively developed high-level solution to the accessibility problem of the available

chemoinformatics libraries with an active user base. Still, Pybel’s implementation in Python may not be

the most intuitive interface for new users, who may not be strong programmers, or for Rubyists, who will

miss multi-lined lambdas, simple extension (i.e, open-classes), and Rubygems, Ruby’s streamlined add-on

installation tool [10].

In addition to Pybel, other attempts have been made to make open source chemoinformatics libraries

more accessible. Indigo Python, a Python wrapper bundled with the Indigo open source chemoinformatics

library [11], is a substantial improvement over the C++ library it wraps in terms of reduction of lines of

code (LOC) needed to implement common tasks. RDKit [12] is a C++ library that has a Python wrapper

and provides substantial reduction of LOC over direct access to the underlying C++ library. Most other

2

available toolkits are either proprietary (such as OpenEye [13] and CACTVS [14]) or have not yet been

documented and developed to maturity.

Ruby has penetrated the applied sciences where the need for a concise but powerful language meets

appreciation for an easy learning curve [15, 16]. The attractiveness of a minimal learning curve, concise

coding, and powerful language paradigm have made Ruby an attractive option for bioinformatics tools such

as BioRuby [17]. In this paper we present Rubabel, the Ruby wrapper for the OpenBabel chemoinformatics

toolkit.

For those who are not comfortable enough with programming to use the current tools, for those who

prefer the Ruby way, and for those who want to do more with less lines of code, we present Rubabel. Rubabel

offers a convenient, intuitive molecule-centric interface and facile intra-molecular navigation with minimal

lines of code per task. It is an easily installed, actively developed project with a substantial amount of

implemented functionality and an arbitrarily accessible extension mechanism for customization.

Implementation

Rubabel’s architecture interfaces with OpenBabel through its Ruby SWIG bindings (see Figure 1). OpenBa-

bel is an established chemoinformatics library written in C++ that provides a wide array of chemoinformatics

functionality for programmatic or command line usage. OpenBabel supports 111 chemical file formats, in-

cluding SMILES, SMARTS [18], and InChI. It has fingerprint support, bond perception, atom typing, image

representation capabilities, stereochemistry recognition, and forcefields management, among other features.

It’s wide use is evidenced by the over 65 software applications, libraries, web applications, and databases

that use it [11].

OpenBabel’s acceptance rests at least partly on its SWIG bindings [19] which allow it to be accessed

from languages other than C++. The bindings provide handles for accessing the internals of OpenBabel.

Ruby SWIG Bindings

For those who are less confident in C++ programming or aren’t familiar enough with the code base to know

the command line composition for their desired task, OpenBabel’s Ruby SWIG bindings provide an alterna-

tive solution. Although the bindings technically allow access to OpenBabel from Ruby, it quickly becomes

evident that the user is not convincingly spared from C++. An intimate understanding of OpenBabel’s

implementation architecture is required for many if not most tasks, and in some cases an almost line-for-line

translation from C++ to Ruby is necessary. For example, Listing 1 shows how to instantiate a molecule

3

from a SMILES string with the Ruby bindings.

Listing 1: Creating a molecule from a SMILES string with OpenBabel Ruby bindings

1 obmol = OpenBabel :: OBMol.new

2 obconv = OpenBabel :: OBConversion.new

3 obconv.set_in_format("smi")

4 obconv.read_string(obmol , "CN2C(=O)N(C)C(=O)C1=C2N=CN1C")

Rubyists will notice that this code seems strikingly more like C++ than Ruby. Moreover, note that the

despite the uncharacteristic simplicity of this example, the user still needs to understand explicit details

of the OpenBabel architecture including the OBMol and OBConversion objects and modification methods

for OBConversion. For more complex but typical examples, such as highlighting a substructure within a

molecule in an image, the LOC required are comparable to C++. Adding Ruby-style objects and idioms to

the SWIG bindings is the obvious next step toward improving upon the Ruby SWIG.

Rubabel is much more than a wrapper that ports OpenBabel functionality to Ruby. Rubabel organizes

the OpenBabel objects into a more intuitive structure and extends the available behavior in a manner

consistent with Ruby idioms, which is beneficial to experienced Rubyists and non-programmers alike, who

will both find the interface intuitive and straightforward.

Rubabel: Augmentations to OpenBabel

Rubabel augments OpenBabel functionality with additional useful methods, as listed in Figure 2. Note that,

because each Rubabel object fully encapsulates the corresponding underlying OpenBabel object, all native

OpenBabel functions are accessible through the corresponding Rubabel object’s OB member. Listed within

each Rubabel object are a list of some of the novel methods implemented in Rubabel that are not available

in OpenBabel. Most of these methods are not available in any other chemoinformatics toolkit.

Rubabel’s objects are designed to be intuitive. Table 1 lists the Rubabel objects which wrap OpenBabel

functionality. Although the names for these objects correspond to similarly named objects in OpenBabel,

Rubabel augments OpenBabel functionality substantially. Figure 2 lists some of the novel methods offered

by Rubabel. Additionally, every Rubabel object has full access to the behavior provided by the underlying

OpenBabel object.

Rubabel: Ruby Idioms for Concise and Convenient Code

Ruby is a language designed to be easy to use, intuitive, brief, and fun. We designed Rubabel to embody

as many of these admittedly subjective qualities as possible by designing Rubabel object behavior in ways

4

consistent with established Ruby idioms for object behavior.

OBJECT ORIENTATION Rubabel’s object-oriented paradigm defines behaviors for the objects they

interact with. For example, OpenBabel’s Tanimoto coefficient logic will always apply to molecules, so in

Rubabel that functionality is built into a method on the Molecule object. Similarly, in OpenBabel, write

methods for drawing molecules in image files are located in the code base as stand-alone functions. However,

object-oriented methodology dictates that the objects themselves—not external modules—should define how

they are printed. In Rubabel, write methods are defined for Molecule. Another example of linking behavior

to the objects modified can be found in Rubabel iterators. In OpenBabel, each object has it’s own iterator

type as a separate object. In Ruby, iterators are implicit and connected to the object that is iterated over.

There is no need to look up behavior, because Rubabel’s iterators work exactly like iterators over native

Ruby objects.

By following the object-oriented paradigm users can instantly know what behavior is defined on any

object by simply typing <object name>.methods in an interactive Ruby console. Non-object-oriented code

requires digging through documentation or, if there isn’t any, sourcecode. Both options are unappealing for

the time commitment, while the latter option is inaccessible to non-programmers.

Listing 2 is illustrative of how object-orientation makes for more intuitive code. Through Rubabel’s

explicit Bond object, one can access a bond (line 3), upgrade it’s order (line 3), and downgrade it’s order

(line 5). One would expect that the syntax to increase or decrease a bond’s order would be by using + and

-. With Rubabel, it is.

Listing 2: Ad-hoc bond modification

1 require "rubabel"

2 mol = Rubabel["CC"]

3 mol [0]. get_bond(mol [1]) + 1 # now it is a double bond

4 bond = mol [0]. bonds.first

5 bond - 1

6 bond.bond_order # => 1

Object-orientation reduces lines of code. When considering an SD file, it seems reasonable to think about

each entry in the file as a Molecule object. With Rubabel, you can do exactly that by iterating through

each Molecule object in a file. Listing 3 shows how to open an SD file and print out each molecule whose

weight is in the range (300,400) in just one line of code.

5

Listing 3: Report how many SD file records are within a certain molecular weight range

1 require ’rubabel ’

2 puts Rubabel.foreach("benzodiazepine.sdf.gz").count {|mol| (300..400) ===

mol.mol_wt }

STRING IDIOM To assist in convenience and minimize syntax lookup time, the Ruby idiom for strings

is engineered for frequent exposure in Rubabel. For example, the Molecule object can be implicitly treated

as a string, allowing splitting and matching operations that are concise and intuitive. For example, the user

can automatically convert a text string into a molecule, then identify loose or exact matches, then optionally

execute a block of code for each match, in this case adding a hydrogen atom (see Listing 4).

Listing 4: The concise power of the Ruby string idiom in Rubabel

1 require "rubabel"

2 Rubabel["C1CC12C3(C24CC4)CC3"]. matches("*1**1"){|mol| mol.add_h !}

Additionally, Rubabel implements both split and append methods for the Bond object that mirror the

same behavior defined in Ruby strings. Listing 5 shows an example of splitting bonds. Lines 2-4 create a

molecule, find each single bond that links a carbon atom to an oxygen atom, then splits those bonds. Line

5 appends a carbon then an oxygen atom to mol using atomic numbers with the append function. Line 6

does the same using the element name.

Listing 5: Splitting and appending Molecule objects

1 require "rubabel"

2 mol = Rubabel["OCC"]

3 bonds = mol.matches("CO").map {|c, o| c.get_bond(o) }

4 mol.split(*bonds)

5 mol << 6 << 8

6 mol << :c << :o

Because molecules are treated as lists of atoms, you can quickly and easily access and modify specific

atoms in a molecule. Listing 6 demonstrates adding an ethyl group to the first carbon atom by indexing

into the Molecule (line 3).

Listing 6: Constructing a molecule atom-by-atom with the Ruby string idiom in Ruba-
bel

1 require "rubabel"

2 mol = Rubabel["OCC"]

3 mol [1] << :c << :c

No other toolkits have equivalent functions to the string idiom in Rubabel.

6

ACCESS METHODS. Rubabel is designed to simplify common IO tasks to provide the shortest

path to chemoinformatics functionality. Rubabel allows creation of Molecule objects from every format

OpenBabel accepts, including SMILES strings (see Listing 7). Note that Rubabel requires only one line

where the SWIG code requires 4 (compare with Listing 1).

Listing 7: Creating a molecule from a SMILES string with Rubabel

1 mol = Rubabel["CN2C(=O)N(C)C(=O)C1=C2N=CN1C"]

Efficiency in accessing objects is very important to reducing LOC and increasing intuition. Listing 8

gives some examples of object traversal in Rubabel, highlighting the amount of processing that can be done

with very few lines of code in Rubabel. With very few lines of code and intuitive method names (select,

find, reject), the user is able to conduct significant operations on newly created molecules. Lines 2-3 create

a molecule then find the atom(s) that contain a double bond. Line 4 finds all the single- and double-bonded

oxygen atoms in the molecule. Line 5 first finds all oxygen atoms, then removes from that list those that

are bound to a carbon atom, yielding the peroxy oxygen.

Listing 8: Traversal of Objects in Rubabel

1 require "rubabel"

2 mol = Rubabel["NCC(O)CC(=O)CC"]

3 mol.find {|atom| atom.el == :o && atom.bonds.first.bond_order == 2 }

4 (two_bond_oxys , single_bond_oxys) = mol.select (&: oxygen ?).partition (&:

double_bond ?)

5 mol.select {|atom| atom.el == :o }. reject {|atom| atom.any? {|at| at.el

== :c}}

BUILDING. Rubabel offers multiple novel methods that assist in building and modifying molecules

and bonds. Several, including the bond order increment/decrement operator, split, and match functions

were already highlighted. Additionally, the Molecule object defines adding and removing atoms, as well

as a mass method that calculates the mass of the molecule taking into account the charge state—a novel

function not available in other toolkits.

BLOCKS. Blocks are dynamic sections of code with open scope, sometimes several lines long, that allow

injection of specific behavior into otherwise generic methods. This allows greater code reuse, concise code,

and places custom logic next to the object it modifies instead of in an external library. Consider Listing 9.

By using find parameters in a block, Rubabel obtains a specific molecule in an SDF file in a more concise

manner than RDKit, a Python chemoinformatics toolkit, which requires more control structure and logic.

7

Listing 9: Find a certain molecule in an SDF file

1 #Rubabel:

2 require "rubabel"

3 mol = Rubabel.foreach("benzodiazepine.sdf.gz").find {|mol| mol.title == "

3016" }

4

5 #RDKit/Python

6 from rdkit import Chem

7 suppl = Chem.SDMolSupplier(’benzodiazepine.sdf’)

8 tgt=None

9 for mol in suppl:

10 if not mol: continue

11 if mol.GetProp(’_Name ’)==’3016’:

12 tgt=mol

13 break

Additionally, blocks make for easier synonymous code—code that is different syntactically but equiva-

lent functionally. This increases the likelihood that a non-expert user can ascertain the syntax of desired

operations with minimal reference to documentation while allowing more experienced users the freedom to

use coding styles they are familiar and comfortable with.

Listing 10: Rubabel provides synonymous syntax

1 # find all alpha carbons

2 mol = Rubabel["NCCC(=O)CC(O)C=C"]

3 alpha_carbons = mol.select do |alpha_c|

4 alpha_c.el == :c &&

5 alpha_c.any? do |carbonyl_c|

6 carbonyl_c.any? {|at| at.type == ’O2’ }

7 end

8 end

9

10 # another way to find all alpha carbons

11 alpha_carbons = mol.select do |alpha_c|

12 alpha_c.el == :c &&

13 alpha_c.any? do |carbonyl_c|

14 carbonyl_c.any? do |at|

15 at.el == :o &&

16 at.bonds.all? {|bond| bond.bond_order == 2 }

17 end

18 end

19 end

20

21 # another way to find all alpha carbons

22 alpha_carbons = mol.select do |alpha_c|

23 alpha_c.any? &: carbonyl_carbon?

24 end

In addition to the two examples given here, Listings 3 and 8 use blocks as well (lines 2 and 3-5, respec-

tively). They are powerful tools not available in languages like C++ and Python.

CUSTOM BEHAVIOR. We have provided explicit Molecule methods for common tasks such as

Tanimoto coefficient calculation, substructure highlighting, and graph diameter measurement. In the likely

8

event that users need custom extended behavior in Rubabel, they can take advantage of what are known

as Ruby open classes. Objects in Ruby are more accessible to behavior modification than in some other

languages. Writing custom behavior into Rubabel is analogous to using a plugin. Although OpenBabel has

a plugin mechanism which allows external code to be integrated into the toolkit, it is not trivial to execute.

In contrast, Rubabel can be modified and accessed with ease using Ruby’s open classes. A class is open when

it allows any external code to add or modify functionality in the local scope. For example, the Prince lab at

BYU is currently developing a plugin for Rubabel that defines fragmentation behavior for lipid molecules.

They require the molecule behavior defined by Rubabel and also need to add descriptions of how lipids

fragment in order to accomplish their task. With Rubabel, this is as simple as adding a few lines in a new

Ruby file, as in Listing 11.

Listing 11: Defining Custom Behavior for Rubabel. It is arbitrarily simple to add
custom behavior to Rubabel by leveraging Ruby’s open classes.

1 require "rubabel"

2 class Molecule

3 def new_behavior

4 #add custom behavior here

5 end

6 end

7 mol = Rubabel :: Molecule.new

8 mol.new_behavior #use custom behavior here

By using Rubabel, custom behavior can be defined and shared amongst lab groups and colleagues rapidly

and easily.

Rubabel: Extensions from Ruby

Rubabel has access to the Ruby community’s many actively developed extensions (see Figure 1 and Table 2

for examples). These extensions and the many more like them provide diverse and useful benefits such as

quicker programming, easy debugging, and easy installation. Some Ruby add-ons, like Sinatra [20], a concise

web application framework, and Rspec [21], a test-driven development suite, have no equivalent that we are

aware of in other languages such as Python.

Building a Rubabel Web App in Sinatra

As an example of the capabilities of these extensions, consider Sinatra. Using Sinatra, it is possible to give

practitioners online access to Rubabel in very few lines of code. Applications could easily be developed

to serve up the native functionality of Rubabel as well as custom functionality developed as needed. To

9

demonstrate the brevity of code required, consider the task of adding a hydrogen atom to a molecule and

printing the SVG image of the new molecule. Assuming that the user has a standard install of Ruby, which

includes Rubygems and the prerequisites for OpenBabel, the entire environment for Sinatra and Rubabel

can be installed in two lines (see Listing 12).

Listing 12: Installing Rubabel and Sinatra.

1 gem install sinatra

2 gem install rubabel

The functionality for the web app requires only five lines of code (see Listing 13). We place these in the

file mol h.rb.

Listing 13: A web application that adds a hydrogen atom to a molecule.

1 require "sinatra"

2 require "rubabel"

3 get "/add_h /:mol" do |mol|

4 Rubabel[mol].add_h !.write("test.svg")

5 end

Now, to invoke our web server locally, we simply open a terminal and write: ruby mol h.rb

The web service is now available. Now we can convert a smiles string to a molecule, then add a hydrogen

and print the resulting molecule simply by typing http://0.0.0.0:4567/add h/C into a browser window.

This results in a web page that displays the svg of the resulting molecule (see Figure 3). The address

http://0.0.0.0:4567/ accesses the local web server. The argument add h tells Rubabel that we want to

add a hydrogen onto the last argument of the url, the SMILES string C.

The simplicity of this example readily extends to all facets of Rubabel.

IRB

Though space will not permit an exhaustive consideration of all Ruby extensions that can be used in con-

junction with Rubabel, the interactive Ruby shell (IRB) is of special import. As with languages like Python,

Ruby’s interactive shell allows users a ready sandbox to run quick experiments, test syntax, or debug their

scripts. IRB can be installed (provided the user has Rubygems) by typing gem install irb. Simply enter

the IRB environment (irb at the terminal) and type require ’rubabel’ and all of Rubabel’s functionality

is accessible in an interactive terminal. This is particularly useful given the number of tasks that Rubabel can

accomplish in just one line. Rubabel in IRB provides an interactive sandbox to experiment in realtime with

instant feedback—a refreshing alternative to stringing together guess-and-check command line arguments.

10

As mentioned before, this is also a fantastic and fast way to look up (via <object name>.methods or check

syntax.

Results and Discussion

To provide a quantitative analysis of Rubabel compared to existing tools, we use a lines of code (LOC)

comparison from the Chemistry Toolkit Rosetta Wiki [22]. The CTRwiki provides code snippets for 18

common chemoinformatics tasks for more than 17 toolkits in various programming languages. Since there

are several toolkits with only one or two solutions we consider only open source solutions with at least 5 of

the CTR tasks implemented.

Rubabel dominates Indigo C++ in number of lines of code per task, and is more concise than other

scripting language toolkits (see Figure 4). Rubabel has less lines of code per task on average than Pybel.

Rubabel also implements almost double the CTR tasks of Pybel (see Figure 5), and when broken out by

task, we can see that Rubabel is more concise than Pybel on each task for which they are both implemented

save one (task 9) (see Figure 6). Moreover, Rubabel is more concise than all other methods for each task

save rdkit/Python on task 10.

Rubabel has some features which users may find useful that are not available in Pybel. These include

an explicit Bond object and the associated functionality, simpler atom interrogation, enumerable atoms and

bonds, wrapped output and input options (obviating the need to dig through OpenBabel documentation to

parse them out programmatically), more Molecule object modifications (e.g. adding hydrogens at a specific

pH), and simpler output (Rubabel infers the output format from the filename). Additionally, there are

several extensions written in Ruby that do not yet have equivalents in Python (see Table 2).

Rubabel is open source software released under the liberal MIT license. The license and source code, as

well as instructions on how to install, are found at https://github.com/princelab/rubabel. The project is

available as a Ruby gem [10], which makes it exceedingly easy to install. For those who already have Ruby,

Rubygems, and OpenBabel’s prerequisites installed, Rubabel and all requirements (including OpenBabel)

can be installed with one line: gem install rubabel. Rubabel can also be downloaded and built from

source. The instructions for this are available on the github site mentioned above.

Conclusions

Chemists are not necessarily computer scientists. The more concise, clear, and accessible a toolkit is, the

less time they spend learning syntax and the more time they spend solving chemistry problems. Ruby

11

is designed to be intuitive, concise, and powerful. Rubabel wraps OpenBabel in a way that is true to

these qualities. Rubabel provides more intuitive object organization than OpenBabel and provides extra

functionality designed to streamline code writing by limiting the time necessary to look up function syntax

and the number of lines of code required. Rubabel also provides access to the many open source extensions

available for Ruby. Rubabel’s concise and intuitive design makes common chemoinformatics tasks readily

accessible from scripts, interactive shells, or custom applications in few lines of code and with less time

spent learning APIs. Intentionally intuitive design, concise code idioms, and simplified common tasks make

Rubabel appealing to Rubyists, non-programmers, and a segment of the users of other platforms.

Availability and Requirements

Project name: Rubabel

Project home page: https://github.com/princelab/rubabel

Operating System(s): Platform independent

Programming language: Ruby

Other requirements: OpenBabel’s Install Requirements, Rubygems

License: MIT

Any restrictions to use by non-academics: None

Competing Interests

None.

Author’s contributions

JP is the founding developer of Rubabel. RS and RW extended Rubabel. DV provided valuable guidance

and editing. All authors read and approved the final manuscript.

Acknowledgements

RS acknowledges the NSF (DGE-0750759) for financial support.

12

References
1. Hann M, Green R: Chemoinformatics — a new name for an old problem? Current Opinion in Chemical

Biology 1999, 3(4):379–383, [http://www.sciencedirect.com/science/article/pii/S136759319980057X].

2. O’Boyle NM, Hutchison GR: Cinfony – combining Open Source cheminformatics toolkits behind a
common interface. Chemistry Central journal 2008, 2:24, [http://dx.doi.org/10.1186/1752-153X-2-24].

3. Python. http://www.python.org .

4. Ousterhout J: Scripting: Higher Level Programming for the 21st Century. http://www.home.pacbell.
net/ ouster/ scripting.html .

5. O’Boyle N, Morley C, Hutchison G: Pybel: a Python wrapper for the OpenBabel cheminformat-
ics toolkit. Chemistry Central Journal 2008, 2:1–5, [http://dx.doi.org/10.1186/1752-153X-2-5]. [10.1186/1752-
153X-2-5].

6. OpenBabel Python. http:// openbabel.sourceforge.net/wiki/Python.

7. Daylight Toolkit: Daylight Chemical Information Systems, Inc.: Aliso Viejo, CA.

8. PyDaylight: Dalke Scientific Software, LLD: Santa Fe, NM.

9. O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G: Open Babel: An open chemical
toolbox. Journal of Cheminformatics 2011, 3:1–14, [http://dx.doi.org/10.1186/1758-2946-3-33]. [10.1186/1758-
2946-3-33].

10. Rubygems. http://www.rubygems.org .

11. Pavlov D, Rybalkin M, Karulin B, Kozhevnikov M, Savelyev A, Churinov A: Indigo: universal chem-
informatics API. Journal of Cheminformatics 2011, 3:1–1, [http://dx.doi.org/10.1186/1758-2946-3-S1-P4].
[10.1186/1758-2946-3-S1-P4].

12. RDKit. http://www.rdkit.org .

13. OEChem: OpenEye Scientific Software: Sante Fe, NM. http://www.eyesopen.com.

14. Ihlenfeldt WD, Takahashi Y, Abe H, Sasaki S: Computation and management of chemical properties in
CACTVS: An extensible networked approach toward modularity and compatibility. Journal of Chem-
ical Information and Computer Sciences 1994, 34:109–116, [http://pubs.acs.org/doi/abs/10.1021/ci00017a013].

15. Ruby. http://www.ruby-lang.org/ .

16. SciRuby. http://www.sciruby.com.

17. Goto N, Prins P, Nakao M, Bonnal R, Aerts J, Katayama T: BioRuby: bioinformatics software for the
Ruby programming language. Bioinformatics 2010, 26(20):2617–2619, [http://bioinformatics.oxfordjournals.
org/content/26/20/2617.abstract].

18. SMARTS - A Language for Describing Molecular Patterns. http://www.daylight.com/dayhtml/ doc/
theory/ theory.smarts.html .

19. SWIG. http://www.swig.org .

20. Sinatra Ruby Web Framework. http://www.sinatrarb.com.

21. RSpec. http:// rspec.info/ .

22. Chemistry Toolkit Rosetta Wiki. http:// ctr.wikia.com/wiki/ .

23. Rubyvis, a Ruby Graphical Plotting Library. http:// rubyvis.rubyforge.org/ .

24. Ruby-debug. http:// bashdb.sourceforge.net/ ruby-debug.html/ .

Figures
Figure 1- Rubabel Architecture

Rubabel reorganizes OpenBabel functionality in an object-oriented architecture via the Ruby SWIG bindings

and adds significant novel functionality. Additionally, Rubabel opens the possibility of integrating Ruby’s

13

substantial library of extensions, providing debugging tools (Ruby Debugger), code testing (Rspec), graphic

visualizations (Rubyvis), rapid dissemination of tools (Rubygems), web interfaces (Sinatra), and scientific

libraries (Sciruby).

Figure 2- Novel Functionality in Rubabel

Besides providing access to native OpenBabel functions, Rubabel provides a host of novel functionality.

Figure 3 - Custom Web Apps with Rubabel

The Sinatra toolkit for Ruby allows easy web access for Rubabel and add-ons.

Figure 4 - Average Lines of Code per CTR Task

On average, Rubabel requires fewer lines of code than any other toolkit.

Figure 5 - Number of CTR Tasks Implemented

Rubabel has more tasks implemented than any other toolkit.

Figure 6 - Lines of Code Per CTR Task

Rubabel has more CTR tasks implemented than any other toolkit, and also has less lines of code than

any other toolkit on every task except task 9, where Pybel has one less line of code, and task 10, where

rdkit/Python is slightly more concise.

Tables
Table 1 - Rubabel Objects

Rubabel’s object organization is an intuitive restructuring of OpenBabel’s architecture. For example,

molecule printing logic found in an external object in OpenBabel are moved inside the Molecule object.

Rubabel’s objects have extended novel capabilities (detailed below).

14

Molecule Wraps OpenBabel’s OBmol object. Adds the abil-
ity to intelligently manipulate molecules as strings,
transfer to and from lists of atoms and bonds, add
and modify atoms, explicit and general molecu-
lar matching, iterate over bonds or atoms, copy
molecules, png representation of the molecule, and
fingerprinting.

Atom Wraps OpenBabel’s OBatom object. Adds accessi-
bility conveniences such as the ability to seamlessly
create or access an atom as an atomic number, the
ability to intrinsically iterate through bonds and pass
blocks to iterating loops, and the ability to iterate
through and optionally execute a block of code for
each atom bonded to the current one.

Bond Wraps OpenBabel’s OBBond object. Adds an acces-
sor for a list of attached atoms, a seamless enumera-
tor for attached atoms, the ability to execute a block
of code for each attached atom, and the ability to
easily check if a given atom is connected with this
bond.

Smarts Wraps OpenBabel’s smarts pattern object.

Table 2 - Ruby Extensions Accessible to Rubabel

Ruby has an active community of contributors who are constantly developing open source tools and frame-

works.

15

Extension Possible Application with
Rubabel

Sinatra [20], a web
application frame-
work

Quick and easy webapp GUI for
OpenBabel, allowing multi-
platform point and click
chemoinformatics

Sciruby [16], a sci-
entific library

Plotting, statistical tools, access
to R programming language for
Rubabel results

Rubyvis graphical
library [23]

Open ended graphical software
to make clean representations of
numerical data

IRB, the interactive
Ruby shell

Quick access to Rubabel and
OpenBabel from a terminal

Rspec, an auto-
mated code testing
library [21]

Automated unit tests for soft-
ware built with Rubabel (No
Python equivalent due to Ruby’s
block ability)

Ruby debugger [24] Step into executed code with a
live IRB session to ferret out
bugs

Rubygems, a distri-
bution tool [10]

Easily distribute and integrate
applications written with Ruba-
bel with a one-line install

16

