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Abstract Most data complexity studies have focused on characterizing the complexity of
the entire data set and do not provide information about individual instances. Knowing
which instances are misclassified and understanding why they are misclassified and how
they contribute to data set complexity can improve the learning process and could guide the
future development of learning algorithms and data analysis methods. The goal of this paper
is to better understand the data used in machine learning problems by identifying and ana-
lyzing the instances that are frequently misclassified by learning algorithms that have shown
utility to date and are commonly used in practice. We identify instances that are hard to clas-
sify correctly (instance hardness) by classifying over 190,000 instances from 64 data sets
with 9 learning algorithms. We then use a set of hardness measures to understand why some
instances are harder to classify correctly than others. We find that class overlap is a princi-
pal contributor to instance hardness. We seek to integrate this information into the training
process to alleviate the effects of class overlap and present ways that instance hardness can
be used to improve learning.

Keywords Instance hardness· Dataset hardness· Data complexity

1 Introduction

It is widely acknowledged in machine learning that the performance of a learning algorithm
is dependent on both its parameters and the training data. Yet, the bulk of algorithmic de-
velopment has focused on adjusting model parameters without fully understanding the data
that the learning algorithm is modeling. As such, algorithmic development for classification
problems has largely been measured by classification accuracy, precision, or a similar metric
on benchmark data sets. These metrics, however, only provide aggregate information about
the learning algorithm and the task upon which it operates. They fail to offer any information
about which instances are misclassified, let alone why they are misclassified. There is some
speculation as to why some instances are misclassified, but,to our knowledge, no thorough
investigation (such as the one presented here) has taken place.
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Previous work on instance misclassification has focused mainly on isolated causes. For
example, it has been observed that outliers are often misclassified and can affect the clas-
sification of other instances (Abe et al, 2006). Border points and instances that belong to a
minority class have also been found to be more difficult to classify correctly (Brighton and
Mellish, 2002; van Hulse et al, 2007). As these studies have had a narrow focus on trying
to identify and handle outliers, border points, or minorityclasses, they have not generally
produced an agreed-upon definition of what characterizes these instances. At the data set
level, previous work has presented measures to characterize the overall complexity of a data
set (Ho and Basu, 2002). Data set measures have been used in meta learning (Brazdil et al,
2009) as well as to understand under what circumstances a particular learning algorithm
will perform well (Mansilla and Ho, 2004). As with the performance metrics, the data com-
plexity measures characterize the overall complexity of a data set but do not look at the
instance level and thus cannot say anything about why certain instances are misclassified. It
is our contention that identifying which instances are misclassified and understanding why
they are misclassified can lead to improvements in machine learning algorithm design and
application.

The misclassification of an instance depends on the learningalgorithm used to model
the task it belongs to and its relationship to other instances in the training set. Hence, any
notion of instance hardness, i.e., the likelihood of an instance being misclassified, must be
a relative one. However, generalization beyond a single learning algorithm can be achieved
by aggregating the results from multiple learning algorithms. We use this fact to propose
an empirical definition of instance hardness based on the classification behavior of a set
of learning algorithms that have been selected because of 1)their diversity, 2) their utility,
and 3) their wide practical applicability. We then present athorough analysis of instance
hardness, and provide insight as to why hard instances are frequently misclassified. To the
best of our knowledge our research is the first at reporting ona systematic and extensive
investigation of the issue.

We analyze instance hardness in over 190,000 instances from64 classification tasks clas-
sified by nine learning algorithms. We find that a considerable amount of instances are hard
to classify correctly–17.5% of the investigated instancesare misclassified by at least half
of the considered learning algorithms and 2.3% are misclassified by all of the considered
learning algorithms. Seeking to improve our understandingof why these instances are mis-
classified becomes a justifiable quest. To discover why theseinstance are hard to classify, we
introduce a set of measurements (hardness measures). The results suggest that class overlap
has the strongest influence on instance hardness and that there may be other features that
affect the hardness of an instance. Although we focus on hardness at the instance level, the
measures can also be used at the data set level by averaging the values of the instances in the
data set. Further, we incorporate instance hardness into the learning process by modifying
the error function of a multilayer perceptron and by filtering instances. These methods place
more emphasis on the non-overlapping instances, alleviating the effects of class overlap. We
demonstrate that incorporating instance hardness into thelearning process can significantly
increase classification accuracy.

The remainder of the paper is organized as follows. In Section 2, we introduce and define
instance hardness as an effective means of identifying instances that are frequently misclas-
sified. The hardness measures are presented in Section 3 as a means of providing insight into
why an instance is hard to classify correctly. Section 4 presents the experimental method-
ology. An analysis of hardness at the instance level is provided in Section 5 followed by
Section 6 which demonstrates that improved accuracy can follow from integrating instance
hardness into the learning process. Section 7 compares instance hardness at the data set level
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with previous data set complexity studies. Section 8 provides related works and Section 9
concludes the paper.

2 Instance Hardness

Our work posits that each instance in a data set has a hardnessproperty that indicates the
likelihood that it will be misclassified. For example, outliers and mislabeled instances are
expected to have high instance hardness since a learning algorithm will have to overfit to
classify them correctly. Instance hardness seeks to answerthe important question of what is
the probability that an instance in a particular data set will be misclassified.

As most machine learning research is focused on the data set level, one is concerned with
maximizingp(h|t), whereh : X → Y is a hypothesis or function mapping input feature
vectorsX to their corresponding label vectorsY , andt = {(xi, yi) : xi ∈ X ∧ yi ∈ Y } is
a training set. With the assumption that the pairs int are drawn i.i.d., the notion of instance
hardness is found through a decomposition ofp(h|t) using Bayes’ theorem:

p(h|t) =
p(t|h) p(h)

p(t)

=

∏|t|
i=1 p(xi, yi|h) p(h)

p(t)

=

∏|t|
i=1 p(yi|xi, h) p(xi|h) p(h)

p(t)
.

For a training instance〈xi, yi〉, the quantityp(yi|xi, h) measures the probability thath
assigns the labelyi to the input feature vectorxi. The largerp(yi|xi, h) is, the more likely
h is to assign the correct label toxi, and the smaller it is, the less likelyh is to produce the
correct label forxi. Hence, we obtain the following definition of instance hardness, with
respect toh:

IHh(〈xi, yi〉) = 1− p(yi|xi, h).

In practice,h is induced by a learning algorithmg trained ont with hyper-parametersα, i.e.,
h = g(t, α). Explicitly, instance hardness equals1−p(yi|xi, t, h) but sinceyi is condition-
ally independent oft givenh we can usep(yi|xi, h). Thus, the hardness of an instance is
dependent on the instances in the training data and the algorithm used to produceh. There
are many approaches that could be taken to calculate instance hardness (or equivalently
p(yi|xi, g(t, α))) such as an analysis of the distribution of instances int according to their
class. To gain a better understanding of what causes instance hardness in general, the depen-
dence of instance hardness on a specific hypothesis can be lessened by summing instance
hardness over the set of hypothesesH and weighting eachh ∈ H by p(h|t):

IH(〈xi, yi〉) =
∑

H

(1− p(yi|xi, h))p(h|t)

=
∑

H

p(h|t)−
∑

H

p(yi|xi, h)p(h|t)

= 1−
∑

H

p(yi|xi, h)p(h|t). (1)
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Fig. 1 Dendrogram of the considered learning algorithms clustered using unsupervised metalearning.

Practically, to sum overH, one would have to sum over the complete set of hypotheses, or,
sinceh = g(t, α), over the complete set of learning algorithms and hyper-parameters asso-
ciated with each algorithm. This, of course, is not feasible. In practice, instance hardness can
be estimated by restricting attention to a carefully chosenset of representative algorithms
(and parameters). Also, it is important to estimatep(h|t) because if all hypotheses were
equally likely, then all instances would have the same instance hardness value under the no
free lunch theorem (Wolpert, 1996). A natural way to approximate the unknown distribution
p(h|t), or equivalentlyp(g(t, α)), is to weigh a set of representative learning algorithms, and
their associated parameters,L, a priori with a non-zero probability while treating all other
learning algorithms as having zero probability. Given sucha setL of learning algorithms,
we can then approximate Equation 1 to the following:

IHL(〈xi, yi〉) = 1−
1

|L|

|L|
∑

j=1

p(yi|xi, gj(t, α)) (2)

wherep(h|t) is approximated as1
|L| and the distributionp(yi|xi, gj(t, α)) is estimated

using the indicator function and classifier scores, as described in Section 4. For simplicity,
we refer toIHL as simplyIH proceeding forward.

In this paper, we estimate instance hardness by biasing the selection of representative
learning algorithms to those that 1) have shown utility, and2) are widely used in practice. We
call such classification learning algorithms theempirically successful learning algorithms
(ESLAs). To get a good representation ofH, and hence a reasonable estimate ofIH, we
select a diverse set of ESLAs using unsupervised metalearning (Lee and Giraud-Carrier,
2011). Unsupervised metalearning uses Classifier Output Difference (COD) (Peterson and
Martinez, 2005) to measure the diversity between learning algorithms. COD measures the
distance between two learning algorithms as the probability that the learning algorithms
make different predictions. Unsupervised metalearning then clusters the learning algorithms
based on their COD scores with hierarchical agglomerative clustering. Here, we considered
20 commonly used learning algorithms with their default parameters as set in Weka (Hall
et al, 2009). The resulting dendrogram is shown in Figure 1, where the height of the line
connecting two clusters corresponds to the distance (COD value) between them. A cut-point
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Table 1 SetL of ESLAs used to calculate instance hardness.

Learning Algorithms
* RIpple DOwn Rule learner (RIDOR) * Naı̈ve Bayes
* Multilayer Perceptron trained with Back Propagation * Random Forrest
* Locally Weighted Learning (LWL) * 5-nearest neighbors (5-NN)
* Nearest Neighbor with generalization (NNge) * Decision Tree (C4.5 (Quinlan, 1993))
* Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

A

B

C

D

Fig. 2 Hypothetical 2-dimensional data set.

of 0.18 was chosen and a representative algorithm from each cluster was used to createL as
shown in Table 1.

We recognize that instance hardness could be calculated with either more specific or
broader sets of learning algorithms, and each set would obtain somewhat different results.
We also recognize that the set of ESLAs is constantly evolving and thus no exact solution is
possible. As the set of ESLAs grows and evolves, instance hardness can follow this evolution
by simply adjustingL. The size and exact make up ofL are not as critical as getting a fairly
representative sample of ESLAs. While more learning algorithms may give a more accurate
estimate of instance hardness, we demonstrate that both efficiency and accuracy can be
achieved with a relatively small and diverse set of learningalgorithms.

With this approach, the instance hardness of an instance is dependent both on the learn-
ing algorithm trying to classify it and on its relationship to the other instances in the data set
as demonstrated in the hypothetical two-dimensional data set shown in Figure 2. Instances
A, C, and D could be considered outliers, though they vary in how hard they are to classify
correctly: instance A would almost always be misclassified while instances C and D would
almost always be correctly classified. The instances insideof the dashed oval representbor-
der points, which would have a greater degree of hardness than the non-outlier instances
that lie outside the dashed oval. Obviously, some instancesare harder for some learning al-
gorithms than for others. For example, some instances (suchas instance B) are harder for a
linear classifier than for a non-linear classifier because a non-linear classifier is capable of
producing more complex decision boundaries.
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3 Hardness Measures

In this section, we present a set of measures that measure various aspects about the instance
hardness level of an individual instance. Instance hardness indicates which instancesare
misclassified while the hardness measures are intended to indicatewhy they are misclassi-
fied. Each hardness measure measures an aspect of why an instance may be misclassified
(class overlap, class skew, etc.) and, thus, gives key insights into: 1) why particular instances
are hard to classify, 2) how we could detect them, and 3) potentially creating improved
mechanisms to deal with them. In addition, a subset of the measures could be used as a less
expensive alternative to estimate instance hardness, although this is not investigated in this
paper.

The set of hardness measures was discovered by examining thelearning mechanisms of
several learning algorithms. In compiling a set of hardnessmeasures, we chose to use those
that are relatively fast to compute and are interpretable soas to provide an indication as to
why an instance is misclassified.

k-Disagreeing Neighbors (kDN). kDN measures the local overlap of an instance in the
original task space in relation to its nearest neighbors. The kDN of an instance is the
percentage of thek nearest neighbors (using Euclidean distance) for an instance that do
not share its target class value.

kDN(x) =
| {y : y ∈ kNN(x) ∧ t(y) 6= t(x)} |

k

wherekNN(x) is the set ofk nearest neighbors ofx andt(x) is the target class forx.

Disjunct Size (DS). DS measures how tightly a learning algorithm has to divide the task
space to correctly classify an instance and the complexity of the decision boundary.
Some learning algorithms, such as decision trees and rule-based learning algorithms,
can express the learned concept as a disjunctive description. Thus, the DS of an instance
is the number of instances in a disjunct divided by the numberof instances covered by
the largest disjunct in a data set.

DS(x) =
| disjunct(x) | −1

maxy∈D | disjunct(y) | −1

where the functiondisjunct(x) returns the disjunct that covers instancex, andD is
the data set that contains instancex. The disjuncts are formed using a slightly modified1

C4.5 (Quinlan, 1993) decision tree, created without pruning and setting the minimum
number of instances per leaf node to 12.

Disjunct Class Percentage (DCP).DCP measures the overlap of an instance on a subset
of the features. Using a pruned C4.5 tree, the DCP of an instance is the number of

1 The C4.5 algorithm stops splitting the data when a sufficientincrease in information gain is not achieved.
The idea of the DS measure is to overfit the data. However, not splitting all the way down led to impure
disjuncts. Therefore, we modified the strictness of when to stop splitting such that all instances were carried
out as far as they could go. The only impure disjuncts that remained are those for instances that have the same
attribute values but differ in the class value.

2 Note that C4.5 will create fractional instances in a disjunct for instances with unknown attribute values,
possibly leading to DS values less than 1. Such cases are treated as though the disjunct covered a single
instance.
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instances in a disjunct belonging to its class divided by thetotal number of instances in
the disjunct.

DCP (x) =
| {z : z ∈ disjunct(x) ∧ t(z) = t(x)} |

| disjunct(x) |

Tree Depth (TD). Decision trees also provide a way to estimate the description length, or
Kolmogorov complexity, of an instance. The depth of the leafnode that classifies an
instance can give an intuition of the description length required for an instance. For ex-
ample, an instance that requires 15 attribute splits beforearriving at a leaf node is more
complex than an instance that only requires 1 attribute split. Therefore,tree depthmea-
sures the depth of the leaf node for an instance in an induced C4.5 decision tree (both
pruned (TDP) and unpruned (TDU)) as an estimate of the minimum description length
for an instance.

Class Likelihood (CL). CL provides a global measure of overlap and the likelihood ofan
instance belonging to a class. The CL of an instance belonging to a certain class is
defined as:

CL(x) =

|x|
∏

i

P (xi|t(x))

where|x| is the number of attributes of instancex andxi is the value of instancex’s ith
attribute3. The prior term is excluded in order to avoid bias against instances that belong
to minority classes. CL assumes independence between the data attributes.

Class Likelihood Difference (CLD). CLD captures the difference in likelihoods and global
overlap. It is the difference between the class likelihood of an instance and the maximum
likelihood for all of the other classes.

CLD(x) = CL(x)− argmax
y∈Y −t(x)

CL(x, y)

whereY represents set of possible labels in the data set.

Minority Value (MV). MV measures the skewness of the class that an instance belongs to.
For each instance, its MV is the ratio of the number of instances sharing its target class
value to the number of instances in the majority class.

MV (x) = 1−
| {z : z ∈ D ∧ t(z) = t(x)} |

maxy∈Y | {z : z ∈ D ∧ t(z) = y} |
.

Class Balance (CB).CB also measures the skewness of the class that an instance belongs
to and offers an alternative to MV. If there is no class skew, then there is an equal number
of instances for all classes. Hence, the CB of an instance is:

CB(x) =
| {z : z ∈ D ∧ t(z) = t(x)} |

| D |
−

1

| Y |
.

If the data set is completely balanced the class balance value will be 0.

3 Continuous variables are assigned a probability using a kernel density estimation (John, 1995).
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Table 2 List of hardness measures and what they measure. The “+” and “-” symbols distinguish which
hardness measures are positively and negatively correlated with instance hardness.

Abbr +/- Measure Insight
kDN + k-Disagreeing Neighbors Overlap of an instance using all of the data set features

on a subset of the instances.
DS - Disjunct Size Complexity of the decision boundary for aninstance.
DCP - Disjunct Class Percentage Overlap of an instance usinga subset of the features and

a subset of the instances.
TD + Tree Depth The description length of an instance in an induced C4.5

decision tree.
CL - Class Likelihood Overlap of an instance using all of the features and all of

the instances.
CLD - Class Likelihood Difference Relative overlap of an instance using all of the features

and all of the instances.
MV + Minority Value Class skew.
CB - Class Balance Class skew.

For convenience, Table 2 summarizes the hardness measures and what they measure.
Although all of the hardness measures are intended to understand why an instance is hard
to classify, some of the measures indicate how easy an instance is to classify (they have a
negative correlation with instance hardness). For example, the class likelihood (CL) mea-
sures how likely an instance belongs to a certain class. Highvalues for CL would represent
easier instances. In Table 2, the “+” and “-” symbols distinguish which hardness measures
are positively and negatively correlated with instance hardness.

Class overlap and class skew are two commonly assumed and observed causes of in-
stance hardness that are measured with the hardness measures. Mathematically, the class
overlap of an instance for a binary task can be expressed as:

classOverlap(〈xi, yi〉) = p(ȳi|xi, t)− p(yi|xi, t). (3)

whereȳi represents an incorrect class for the input feature vectorxi. The class skew of the
class of an instance can be expressed as:

classSkew(〈xi, yi〉) =
p(yi|t)

p(ȳi|t)
. (4)

There is no known method to measure class overlap or to determine when class skew affects
instance hardness. The hardness measures allow a user to estimate class overlap and class
skew as well as other uncharacterized sources of hardness. Equations 3 and 4 could be
extended to multi-class problems with a 1 vs. 1, or a 1 vs. all approach.

4 Experimental Methodology

In this section we provide our experimental methodology. Recall that to compute the in-
stance hardness of an instancex, we must compute the probability thatx is misclassified
when the learner is trained on the other points from the dataset. Since this type of leave-one-
out procedure is computationally prohibitive, the learning algorithms are evaluated using 5
by 10-fold cross-validation4. We use five repetitions to better measure the instance hardness

4 5 by 10-fold cross-validation runs 10-fold cross-validation 5 times, each time with a different random
seed for selecting the 10 partitions of the data.
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Table 3 Datasets used organized by number of instances, number of attributes, and attribute type.

# Instances # Attributes
Attribute Type

Categorical Numerical Mixed
M

<
10

0 k < 10
Balloons Post-Operative

Contact Lenses cm1 req

10 < k < 100
Lung Cancer desharnais Labor

Trains
Pasture

1
0
0
<

M
<

1
0
0
0

k < 10

Breast-w Iris Badges 2
Breast Cancer Ecoli Teaching-

Pima Indians Assistant
Glass
Bupa

Balance Scale

10 < k < 100

Audiology Ionosphere Annealing
Soybean(large) Wine Dermatology
Lymphography Sonar Credit-A
Congressional- Heart-Statlog Credit-G
Voting Records ar1 Horse Colic

Vowel Heart-c
Primary-Tumor Hepatitis

Zoo Autos
Heart-h

eucalyptus
k > 100 AP Breast Uterus Arrhythmia

1
0
0
0
<

M
<

1
0
0
0
0

k < 10
Car Evaluation Yeast Abalone

Chess
Titanic

k < 100

Mushroom Waveform-5000 Thyroid-
Splice Segment (sick &

Spambase hypothyroid)
Ozone level-

Detection
k > 100 Musk (version 2)

M
>

1
0
0
0
0 k < 10

Nursery MAGIC Gamma-
Telescope

k < 100

Chess- Adult-Census-
(King-Rook vs. Income (KDD)

King-Pawn) Eye movements
Letter

of each instance and to protect against the dependency on thedata used in each fold. We
then compare the hardness measures with instance hardness.

We examine instance hardness on a large and varied set of datasets chosen with the
intent of being representative of those commonly encountered in machine learning problems.
We analyze the instances from 57 UCI data sets (Frank and Asuncion, 2010) and 7 non-
UCI data sets (Thomson and McQueen, 1996; Salojärvi et al, 2005; Sayyad Shirabad and
Menzies, 2005; Stiglic and Kokol, 2009). Table 3 shows the data sets used in this study
organized according to the number of instances, number of attributes, and attribute type.
The non-UCI data sets are in bold.

We compare calculating instance hardness using all of the learning algorithms inL with
calculating instance hardness using a single learning algorithm. In addition,p(yi|xi, g(t, α))
is estimated using two methods: 1) the indicator function (IH ind) which establishes the fre-
quency of an instance being misclassified and 2) the classifier scores (IHclass). IHind and
IH class are calculated using 5 by 10-fold cross-validation. Generally, classification learn-
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ing algorithms classify an instance into nominal classes. To produce a real-valued score,
we calculate classifier scores for the nine investigated learning algorithms. Obviously, the
indicator function and the classifier scores do not produce true probabilities. However, the
classifier scores can provide the confidence of an inferred model for the class label of an in-
stance. Below, we present how we calculate the classifier scores for the investigated learning
algorithms.

Multilayer Perceptron: For multiple classes, each class from a data set is represented with
an output node. The classifier score is the largest value of the output nodes normalized
between zero and one (thesoftmax(Bridle, 1989)):

p̂(y|x) =
oi(x)

∑|Y |
i oi(x)

wherey is a class from the set of possible classesY andoi is the value from the output
node corresponding to classyi

Decision Tree: To calculate a classifier score, an instance first follows theinduced set of
rules until it reaches a leaf node. The classifier score is number of training instances that
have the same class as the examined instance divided by all ofthe training instances that
also reach the same leaf node.

5-NN: 5-NN returns the percentage of the nearest-neighbors that agree with the class label
of an instance as the classifier score.

LWL: LWL finds thek-nearest neighbors for an instance from the training data and weights
them by their distance from the test instance. The weightedk-nearest neighbors are
then used to train a base classifier. Weka uses a decision stump as the base classifier. A
decision stump is a decision tree that makes a singe binary split on the most informative
attribute. A test instance is propagated to a leaf node. The sum of weights of the training
instances in the leaf node that have the same class value as the test instance is divided
by the sum of the weights of all of the training instances in the leaf node.

Naı̈ve Bayes:Returns the probability of the most probable class by multiplying the prob-
ability of the class by the probabilities of the attribute values for an instance given the
class:

max
yj∈Y

p(yj)

|x|
∏

i

p(xi|yj)

.
NNge: Since NNge only keeps exemplars of the training data, a classscore of 1 is returned

if an instance agrees with the class of the nearest exemplar,otherwise a 0 is returned.
Random Forest: Random forests return the class counts from the leaf nodes ofeach tree in

the forest. The counts for each class are summed together andthen normalized between
0 and 1.

RIDOR: RIDOR creates a set of rules, but does not keep track of the number of training
instances covered by a rule. A classifier score of 1 is returned if RIDOR predicts the
correct class for an instance, otherwise a 0 is returned (same as the indicator function).

RIPPER: RIPPER returns the percentage of training instances that are covered by a rule
and share the same class as the examined instance.

To our knowledge, instance hardness is the only measurementthat seeks to identify
instances that are hard to classify. However, there are other methods that could be used
to identify hard instances that have not been examined for identifying hard instances. One



An Instance Level Analysis of Data Complexity 11

such method that we compare against is active learning. Active learning is a semi-supervised
technique that uses a mode inferred from the labeled instances to choose which unlabeled in-
stances are the most informative to be labeled by an externaloracle. The informative scores
assigned by active learning techniques can be used as a hardness measure. This assumes that
the most informative instances are those that the model is least certain about, which would
include the border points. We implemented two active learning techniques: uncertainty sam-
pling (US) (Lewis and Gale, 1994) and query-by-committee (QBC) (Seung et al, 1992). For
uncertainty sampling, we use margin sampling (Scheffer et al, 2001):

x
∗ = argmin

x
p(ŷ1|x)− p(ŷ2|x)

whereŷ1 andŷ2 are the first and second most probable class labels for the instancex. We
use naı̈ve Bayes to calculate the probability of the classesfor an instance. For query-by-
committee, we use a committee of five learning algorithms using query by bagging (Abe
and Mamitsuka, 1998). The level of disagreement is determined using vote entropy (Dagan
and Engelson, 1995):

x
∗ = argmax

x
−
∑

i

V (yi)

C
log

V (yi)

C

whereyi ranges over all possible class labels,V (yi) is the number of votes that a class
label received from the committee, andC is the size of the committee. We examine QBC
using naı̈ve Bayes and decision trees. Active learning requires that some labeled instances
are available to the models to produce the scores for the other instances. We divide the data
set in half, using one half of the instances to calculate the scores for the other half.

We emphasize the extensiveness of our analysis. We examine over 190,000 instances
individually. A total of 28,750 models are produced from 9 learning algorithms trained with
64 data sets using 5 by 10-fold cross-validation5. With this volume and diversity, our results
can provide more useful insight about the extent to which hard instances exist and what
contributes to instance hardness.

5 Instance-level Analysis

In this section we examine the hardness measures to identifyhard instances and the hardness
measures to discover what causes an instance to be misclassified. We use instance hardness
with the indicator function (IHind) to establish the frequency of an instance being mis-
classified. Figure 3 shows the cumulative percentage of instances that are misclassified a
specified percentage of times by the learning algorithms inL (Table 1). The first pair of
columns shows that all of the instances were classified correctly by zero or more of the con-
sidered learning algorithms. The second pair of columns shows the percentage of instances
that were misclassified by at least one of the considered learning algorithms. Overall, 2.4%
of the instances from the UCI data sets are misclassified by all of the considered learning
algorithms and 16.8% are misclassified by at least half. For the instances from the non-UCI
data sets, 1.7% are misclassified by all of the considered learning algorithms and 22.7%
are misclassified by at least half. The trend of hardness is similar for the UCI and non-UCI
data sets. For the set of instances from the UCI and non-UCI data sets, only 38.3% of the
instances are classified correctly 100% of the time by the examined learning algorithms.

5 Ridor was not used on the Letter data set as it ran out of memorywith 4 Gb of RAM. The remaining 8
learning algorithms still give a good indication of how difficult each instance is to correctly classify.



12 Smith et al.

0

20

40

60

80

100

≥
0

>
0

≥
1
0

≥
2
0

≥
3
0

≥
4
0

≥
5
0

≥
6
0

≥
7
0

≥
8
0

≥
9
0

=
1
0
0

%
of

In
st

an
ce

s

Misclassified by % of Learning Algorithms

UCI
non-UCI

Fig. 3 Percentage of instances that are misclassified by at least a percentage of the learning algorithms.

Table 4 Spearman correlation matrix for the hardness measures. Themagnitude of only one pair of measures
is stronger than 0.95, showing that the measures measure different aspects of instance hardness.

kDN DS DCP TDP TD U CL CLD MV CB
kDN 1.0 -0.519 -0.420 0.189 0.301 -0.715 -0.703 0.387 0.240
DS 1.0 0.570 -0.405 -0.348 0.571 0.559 -0.303 -0.139
DCP 1.0 -0.340 -0.202 0.452 0.432 -0.235 -0.051
TD P 1.0 0.859 -0.276 -0.312 0.030 0.113
TD U 1.0 -0.414 -0.441 0.162 0.293
CL 1.0 0.989 -0.386 -0.225
CLD 1.0 -0.359 -0.224
MV 1.0 0.783
CB 1.0

These results show that a considerable amount of instances are hard to classify correctly.
Seeking to improve our understanding of why these instancesare misclassified is the goal
of the hardness measures.

We calculate the hardness measures for all of the instances regardless of their instance
hardness. We first examine the relationship between the hardness measures. This will pro-
vide insight into how similar the measures are with each other and detect possible overlap
in what they measure (see Table 2 for the hardness measures and what they measure). Next,
we examine the relationship of the hardness measures with instance hardness. We first nor-
malize the measures by subtracting the mean and dividing by the standard deviation for each
measure before analyzing the results.

We first examine the correlation between the hardness measures. Table 4 shows a pair-
wise comparison of the hardness measures using the Spearmancorrelation. Only (CL) and
class likelihood difference (CLD) are strongly correlatedwith a correlation coefficient of
0.989. This suggests that, besides CL and CLD, the hardness measures measure different
properties of the hardness of an instance.
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Table 5 The Spearman correlation coefficients for the hardness measures relating to the examined methods
for identifying hard instances. The correlation coefficients with the strongest correlation with IHind and
IH class are in bold.

kDN DS DCP TDP TD U CL CLD MV CB Lin

In
di

ca
to

r
F

un
ct

io
n

IH ind 0.830 -0.547 -0.475 0.324 0.475 -0.670 -0.660 0.522 0.4360.885
MLP 0.668 -0.420 -0.397 0.270 0.354 -0.484 -0.476 0.367 0.2870.725
C.5 0.625 -0.459 -0.453 0.262 0.353 -0.469 -0.458 0.361 0.2990.801
5-NN 0.648 -0.307 -0.295 0.254 0.304 -0.319 -0.318 0.293 0.2300.738
LWL 0.549 -0.363 -0.302 0.149 0.288 -0.484 -0.470 0.506 0.4470.671
NB 0.545 -0.339 -0.302 0.162 0.284 -0.506 -0.499 0.405 0.3280.626
NNge 0.716 -0.464 -0.432 0.304 0.394 -0.552 -0.543 0.359 0.2770.753
RandFor 0.669 -0.490 -0.448 0.276 0.349 -0.487 -0.479 0.393 0.3120.760
Ridor 0.711 -0.437 -0.391 0.216 0.355 -0.575 -0.558 0.473 0.3980.761
RIPPER 0.675 -0.420 -0.387 0.172 0.306 -0.555 -0.538 0.496 0.3500.747

C
la

ss
ifi

er
S

co
re

IH class 0.875 -0.615 -0.540 0.341 0.513 -0.782 -0.767 0.542 0.4250.938
MLP 0.764 -0.515 -0.528 0.399 0.516 -0.679 -0.667 0.419 0.3240.809
C4.5 0.680 -0.629 -0.711 0.452 0.483 -0.644 -0.627 0.391 0.2340.874
5-NN 0.771 -0.316 -0.309 0.000 0.187 -0.574 -0.556 0.384 0.2320.818
LWL 0.736 -0.538 -0.432 0.198 0.426 -0.745 -0.718 0.615 0.521 0.874
NB 0.698 -0.471 -0.411 0.205 0.382-0.775 -0.762 0.411 0.273 0.779
NNge 0.716 -0.464 -0.432 0.304 0.394 -0.552 -0.543 0.359 0.2770.753
RandFor 0.852 -0.611 -0.539 0.322 0.463 -0.724 -0.708 0.475 0.3430.901
Ridor 0.711 -0.437 -0.391 0.216 0.355 -0.575 -0.558 0.473 0.3980.761
RIPPER 0.717 -0.542 -0.583 0.417 0.486 -0.673 -0.649 0.398 0.2630.854
US NB -0.656 0.451 0.374 -0.097 -0.3100.889 0.881 -0.373 -0.187 0.859
QBC NB 0.440 -0.229 -0.169 0.083 0.222-0.521 -0.534 0.265 0.201 0.500
QBC C4.5 0.672 -0.486 -0.358 0.362 0.542 -0.605 -0.597 0.357 0.3220.726

The more interesting question to consider is how does instance hardness relate to the
considered hardness measures. Table 5 shows the Spearman correlation coefficients relating
instance hardness to the other considered hardness measures for the UCI and non-UCI data
sets. The hardness measure with the strongest correlation with instance hardness IHind and
IH class is in bold. The first section of the table uses the indicator function to calculate in-
stance hardness, the second section uses the classifier scores to calculate instance hardness,
and the third section shows the results for active learning.IH ind and IHclass use the in-
dicator function and classifier scores respectively from all of the learning algorithms inL
to calculate instance hardness. The following rows use a single learning algorithm to calcu-
late instance hardness. For all of the hardness measures,kDN, DCP, CL, and CLD have the
strongest correlation with all of the hardness measures. Using PCA on the hardness mea-
sures,kDN, CL, and CLD have the largest coefficients for the first principal component (thus
accounting for more variance than the other measures).kDN, CL, and CLD measure class
overlap using all of the features from the data set. The othermeasures (which measure over-
lap on a subset of the features, class skew, and the description length) are not as indicative of
an instance being hard to classify. The results from the Spearman correlation coefficients and
the PCA analysis suggest that, in general, class overlap is aprincipal contributor to instance
hardness for the considered data sets whether considering ESLAs in general (IHind and
IH class) or for a specific learning algorithm. The effect of class overlap on instance hard-
ness can also be seen by examining individual instances and their corresponding hardness
measures. The hardness measures and instance hardness values for a sample of instances
are provided in Table 6. The first instance is a clear example that exhibits class overlap and
should be misclassified as indicated by the values of the hardness measures (i.e. high value
for kDN, CLD is negative, etc.).
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Table 6 The hardness measures and instance hardness values for an example set of instances.

# data id kDN DS DCP TDP TDU CL CLD MV CB IH ind IH cla US NB QBC NB QBC C4.5
1 yeast 14700.98 0 0.25 12 9 0.28 -0.32 0.47 0.061 0.84 0.20 0.09 0.60
2 colon 56 0.46 1 0.98 4 3 1 1 0 0.150.84 0.69 1 0 1
3 ar1 84 0.37 0 0.33 5 2 0.92 0.84 0 0.590.91 0.71 1 0.74 0.55

One of the difficulties of identifying hard instances is thathardness may arise from
several sources. For example, instances 2 and 3 in Table 6 have multiple possible reasons
for why they are misclassified, but no hardness measure strongly indicates that it should be
misclassified (i.e. thekDN values are less than 0.5, meaning that the instances agreewith
the majority of their neighbors). The last column “Lin” in Table 5 shows the correlation
coefficients of a linear model of the hardness measures predicting the hardness measures.
The instance hardness and hardness measures from the UCI andnon-UCI data sets for each
instance were compiled and linear regression was used to predict the hardness measures.
Apart from USNB and QBCNB, a linear combination of the hardness measures results in
a stronger correlation with instance hardness than any of the individual measures suggesting
that there is no one measure that sufficiently captures the hardness of an instance.

Comparing the hardness measures, IHclass has the strongest correlation with the lin-
ear combination of the hardness measures andkDN. IH class also has a strong correlation
with CL and CLD. Only USNB has a stronger correlation with CL and CLD than IHclass.
These strong correlations with IHclass suggest that IHclass may be a good candidate for
determining the hardness of an instance. The QBC methods arenot as strongly correlated
with any of the hardness measures as the other hardness measures. The active learning ap-
proaches select border points as the hardest instances, butdo not indicate that the outlier
instances are hard. We also observe that using classifier scores has a stronger correlation
with the hardness measures than using the indicator function to calculate instance hardness.
For all of the considered learning algorithms, calculatinginstance hardness with the clas-
sifier scores provide a stronger or equal correlation with the hardness measures than the
indicator function, suggesting that the classifier scores may provide a better indication of
which instances are hard to classify. Also, for our examination of when ESLAs misclassify
an instance, using an ensemble of learning algorithms to determine hardness has a stronger
correlation with the hardness measures than a single learning algorithm.

The previous results suggest that, in general, class overlap causes instance hardness.
However, in making this point, we realize that all data sets have different levels and causes
of hardness. Table 7 shows the correlation between IHclass and the hardness measures for
the instances in each data set. The column “DSH” refers to thedata set hardnessand is the
average IHclass value for the instances in the data set. The harder datasets have a higher
DSH value. The values in bold represent the hardness measures that have the strongest
correlation with IHclass for the instances in the data set. The underlined values are the
hardness measures with a correlation magnitude greater than 0.75. The values in Table 7
indicate that the hardness of the majority of the data sets isstrongly correlated with the
hardness measures that measure class overlap. There are a few data sets that have a strong
correlation between IHclass and the measures that measure class skew (MV and CB). The
most notable are the post-opPatient and zoo data sets. For those data sets, in addition to
having a strong correlation with MV and CB, instance hardness is also strongly correlated
with other hardness measures that measure class overlap.

It is not surprising that class overlap is observed as a principal contributor to instance
hardness since outliers and border points, which exhibit class overlap, have been observed
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Table 7 The correlation of the hardness measures with IHclass for the instances in each data set. DSH is
the average IHclass value of the instances in the data set. The underlined values are the hardness measures
with a correlation magnitude greater than 0.75. The bold values represent the hardness measures that have
the strongest correlation with IHclass for each data set.

Dataset DSH kDN DS DCP TDP TD U CL CLD MV CB
abalone 0.815 0.859 -0.485 -0.287 -0.203 -0.085 -0.194 -0.141 0.323 0.323
adult-census 0.208 0.898 -0.722 -0.743 0.515 0.599 -0.737 -0.737 0.569 0.569
anneal.ORIG 0.108 0.658 -0.600 -0.349 0.326 0.416-0.689 -0.687 0.425 0.425
AP BreastUterus 0.056 0.563 -0.615 -0.279 0.094 0.323 -0.168 -0.168 0.535 0.535
ar1 0.126 0.684 -0.814 -0.388 0.726 0.395 0.450 0.450 0.450 0.450
arrhythmia 0.416 0.845 -0.769 -0.334 -0.655 -0.478 -0.404 -0.407 0.687 0.687
audiology 0.339 0.836 -0.783 -0.262 -0.011 -0.010 -0.681 -0.668 0.653 0.653
autos 0.337 0.752 -0.405 -0.082 0.064 0.033 -0.450 -0.447 0.086 0.086
badges2 0.003 0.216 -0.563 NA NA NA -0.377 -0.377 0.563 0.563
balance-scale 0.259 0.935 -0.851 -0.578 0.792 0.749 -0.775 -0.797 0.466 0.466
balloons 0.072 0.746 -0.390 NA 0.035 0.035-0.931 -0.931 -0.283 -0.283
breast-cancer 0.339 0.877 -0.632 -0.764 0.256 0.265 -0.490 -0.490 0.645 0.645
breast-w 0.059 0.627 -0.809 -0.610 0.746 0.804 -0.525 -0.533 0.598 0.598
bupa 0.396 0.715 -0.512 -0.358 0.395 0.404 0.191 0.191 0.389 0.389
carEval 0.140 0.924 -0.883 -0.561 0.886 0.873 -0.937 -0.912 0.705 0.705
chess 0.614 0.606 -0.245 -0.498 0.226 0.073 -0.310 -0.242 0.190 0.190
chess-KRVKP 0.087 0.608 -0.348 -0.317 0.725 0.726-0.860 -0.860 0.126 0.126
cm1 req 0.324 0.628 -0.166 -0.710 0.548 NA 0.236 0.236 0.710 0.710
colic 0.223 0.796 -0.660 -0.644 0.325 0.296 -0.444 -0.443 0.282 0.282
colon 0.286 0.620 -0.528 0.391 -0.316 -0.342 -0.173 -0.173 0.495 0.495
contact-lenses 0.281 0.859 -0.880 -0.744 0.907 0.868 -0.877 -0.871 0.551 0.551
credit-a 0.197 0.755 -0.581 -0.743 0.367 0.574 -0.511 -0.511 0.360 0.360
credit-g 0.321 0.887 -0.595 -0.420 0.288 0.556 -0.620 -0.620 0.675 0.675
dermatology 0.099 0.757 -0.689 -0.444 0.494 0.457 -0.738 -0.744 0.526 0.526
desharnais 0.386 0.877 -0.714 -0.199 -0.024 -0.381 0.053 0.136 0.562 0.562
ecoli 0.229 0.870 -0.741 -0.234 -0.137 0.213 -0.831-0.829 0.712 0.712
eucalyptus 0.467 0.845 -0.632 -0.506 0.380 0.352 -0.390 -0.381 0.298 0.298
eye movements 0.492 0.618 -0.459 -0.115 0.198 0.254 -0.289 -0.265 -0.159 -0.159
glass 0.399 0.816 -0.606 0.045 0.136 0.144 -0.477 -0.474 -0.055 -0.055
heart-c 0.244 0.816 -0.756 -0.314 0.413 0.368 -0.740 -0.743 0.046 0.046
heart-h 0.237 0.803 -0.751 -0.563 0.297 -0.181 -0.675 -0.681 0.394 0.394
heart-statlog 0.248 0.793 -0.672 -0.187 0.496 0.497 -0.719 -0.719 0.095 0.095
hepatitis 0.222 0.825 -0.888 -0.011 0.550 0.635 -0.715 -0.715 0.615 0.615
hypothyroid 0.039 0.655 -0.281 -0.144 0.284 0.272 -0.617 -0.619 0.449 0.449
ionosphere 0.138 0.350 -0.556 0.044 0.182 0.183 -0.265 -0.262 0.119 0.119
iris 0.071 0.598 -0.579 -0.463 0.870 0.846 -0.626 -0.626 NA NA
labor 0.177 0.667 -0.455 -0.514 0.336 -0.248 -0.553 -0.553 0.389 0.389
letter 0.347 0.752 -0.790 -0.244 0.518 0.588 -0.785-0.769 0.040 0.040
lungCancer 0.537 0.736 -0.393 -0.251 0.283 0.203 -0.052 -0.057 -0.200 -0.200
lymphography 0.251 0.776 -0.759 -0.113 0.291 0.299 -0.546 -0.538 0.246 0.246
MagicTelescope 0.223 0.821 -0.624 -0.387 -0.116 0.088 -0.611 -0.612 0.435 0.435
mushroom 0.016 0.085 -0.342 NA -0.565 -0.565 -0.147 -0.140 0.451 0.451
nursery 0.110 0.569 -0.879 -0.384 0.896 0.904 -0.897 -0.892 0.717 0.717
ozone 0.071 0.550 -0.547 -0.217 0.2240.587 -0.499 -0.503 0.290 0.290
pasture 0.295 0.745 -0.672 -0.133 0.569 0.667 -0.671 -0.673 NA NA
pimaDiabetes 0.305 0.895 -0.696 -0.625 0.510 0.659 -0.622 -0.622 0.481 0.481
post-opPatient 0.425 0.785 -0.573 -0.788 0.145 NA -0.079 -0.071 0.775 0.775
primary-tumor 0.678 0.887 -0.486 -0.754 0.260 0.311 -0.539 -0.489 0.476 0.476
segment 0.115 0.616 -0.911 -0.476 0.783 0.719 -0.636 -0.637 NA NA
sick 0.037 0.591 0.002 0.407 0.137 0.331-0.772 -0.772 0.390 0.390
sonar 0.274 0.652 -0.568 -0.330 0.303 0.264-0.715 -0.715 0.027 0.027
soybean 0.181 0.820 -0.718 -0.221 0.275 0.259 -0.586 -0.591 0.138 0.138

Continued on next page
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Table 7 (cont.)The correlation of the hardness measures with IHclass for the instances in each data set.
DSH is the average IHclass value of the instances in the data set. The underlined values are the hardness
measures with a correlation magnitude greater than 0.75. The bold values represent the hardness measures
that have the strongest correlation with IHclass for each data set.

Dataset DSH kDN DS DCP TDP TD U CL CLD MV CB
spambase 0.133 0.583 -0.655 -0.273 0.343 0.261 -0.603 -0.616 0.037 0.037
splice 0.158 0.373 -0.549 -0.402 0.520 0.504-0.674 -0.673 0.283 0.283
teachingAssistant 0.495 0.790 -0.629 -0.388 0.055 -0.161 -0.219 -0.218 0.066 0.066
titanic 0.305 0.356 0.272 -0.888 0.030 0.030 -0.140 -0.140 0.256 0.256
trains 0.411 0.756 -0.362 -0.241 0.071 NA -0.200 -0.200 NA NA
vote 0.070 0.674 -0.825 -0.622 0.811 0.691 -0.645 -0.654 0.549 0.549
vowel 0.287 0.364 -0.521 -0.190 0.343 0.320 -0.443 -0.403 NA NA
waveform-5000 0.268 0.805 -0.595 0.116 0.419 0.417 -0.651 -0.651 -0.184 -0.184
wine 0.079 0.711 -0.519 -0.242 -0.093 -0.368 -0.538 -0.539 -0.102 -0.102
yeast 0.523 0.893 -0.674 -0.342 0.081 0.285 -0.285 -0.222 -0.026 -0.026
zoo 0.134 0.900 -0.836 -0.392 0.690 0.684 -0.828-0.821 0.830 0.830

Table 8 Various statistics for the hardness measures for instancesthat belong to the majority class and those
that do not. For the instances that belong to the minority class, the values for the measures indicate higher
levels of class overlap. The column “easy” gives the expected value for the hardness measure if an instance
has low instance hardness.

Minority Class Majority Class
Min. Mean Max. Std Dev Min. Mean Max. Std Dev easy

DN 0 0.348 1 0.307 0 0.172 1 0.236 0
DS 0 0.179 1 0.286 0 0.363 1 0.410 1
DCP 0 0.786 1 0.300 0.002 0.909 1 0.170 1
TD P 1 9.530 59.88 6.232 1 9.593 136.265 7.355 1
TD U 0 7.315 29 4.809 0 5.555 29 4.526 1
CL 0 0.563 1 0.375 0 0.886 1 0.188 1
CLD -1 0.297 1 0.602 -1 0.803 1 0.306 1
MV 1 0.308 0.910 0.278 0 0 0 0 1
CB -0.471 -0.026 0.189 0.111 0 0.213 0.213 0.155 1
IH class 0 0.410 0.999 0.269 0 0.163 0.994 0.200 0

to be more difficult to classify correctly. However, instances that belong to a minority class
have also been observed to be more difficult to classify correctly. This is confirmed as the
coefficients for the class imbalance measures (MV and CB) in the linear regression models
are statistically significant. Also, removing MV and CB fromthe linear model results in
a weaker correlation. To what extent does class skew affect instance hardness? One of the
core problems seen with class skew is that of data ambiguity,when multiple instances have
the same feature values but different classes. In these cases, the instances that belong to the
minority class will be misclassified. There are only 204 suchinstances, about 0.1% of all of
the instances used in this study. We removed all of the ambiguous instances and then divided
the instances into those that have a MV value of 0 (they belongto the majority class) and
those that have a value greater than 0. This considers any instance that does not belong to
the majority class as belonging to a minority class. There are 97,469 instances that belong to
the majority class and 92,669 instances that do not. We observe that instances that belong to
a minority class are harder to classify correctly than thosethat do not. The average IHclass
value for the instances that belong to a majority class is 0.16 while the average instance
hardness value for the instances not belonging to the majority class is 0.41. Table 8 compares
the hardness measures for the instances that belong to a minority class and those that belong
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Table 9 The hardness measures and instance hardness values for an example set of instances from the chess
data set.

id kDN DS DCP TDP TDU CL CLD MV CB IH ind IH cla US NB QBC NB QBC C4.5
22037 0.64 0.29 1 5 5 0.09 -0.36 0 0.110.24 0.41 0.33 0.00 0.40
26549 0.64 0.29 1 5 5 0.12 -0.36 0.52 0.020.49 0.39 0.39 0.00 0.32

to the majority class. The last column (easy) gives the valuefor the hardness measures
for the easiest instances (the instances that are always correctly classified). Not including
MV and CB (which are biased since all of the instances that belong to the non-majority
classes are separated from the majority class instances), all of the hardness measures except
for pruned tree depth (TDP) indicate that the instances that belong to a minority class are
harder to classify correctly as well. Thus, we observe that class skew exacerbates the effects
of the underlying causes for instance hardness. This coincides with Batista’s conclusion
that class skew alone does not hinder learning algorithm performance, but rather class skew
magnifies the hardness already present in the instances (Batista et al, 2004). For example,
Table 9 gives the hardness measure values for two instances from the chess data set. The
hardness measures are similar for each measure except the first instance (id 22037) belongs
to the majority class while instance 26549 does not. The difference in the IHind value for
the instances is considerable. The difference in IHclass values does not vary considerably
since many of the class scores are similar to the hardness measures. This supports the fact
that class skew exacerbates the effects of class overlap andalso shows that IHind may
be better able to incorporate the effects of class skew than IH class. Given that class skew
exacerbates the effects of class overlap on instance hardness, the expected instance hardness
for an instance is related to the class overlap (Equation 3) and class skew (Equation 4) of the
instance:

E[IH(〈xi, yi〉)] ∼ f(classOverlap(〈xi, yi〉), classSkew(〈xi, yi〉)).

The exact form off is unknown at this stage. Additionally, other factors not discussed here
may affect the hardness of an instance. Discovering the relationship between class overlap,
class skew, and instance hardness, as well as identifying other sources of hardness, is left for
future work.

6 Integrating Instance Hardness into the Learning Process

In this section we examine how to exploit instance hardness during the learning process to
alleviate the effects of class overlap and instance hardness. Incorporating instance hardness
into the learning process provides significant improvements in accuracy. Note that the im-
provement requires computing instance hardness for each instance. In the experiments, we
opt to use IHclass instead of IHind as they are strongly correlated and IHclass produces
slightly better results. We also ran the experiments calculating instance hardness with the
same single learning algorithm that is inferring the model.This provides the opportunity to
compare whether it is more appropriate to use a specific measure of instance hardness rather
than a more general one. In addition, we ran the experiments using the active learning hard-
ness measures. The active learning techniques are not designed to identify hard instances
and using them as a hardness measure often resulted in poor results. In order to avoid a
deluge of data, we do not show their results.
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6.1 Informative Error

Informative error(IE) is based on the premise of knowing if an instanceshouldbe misclas-
sified. We implement IE in multilayer perceptrons (MLPs) trained with backpropagation
using instance hardness computed using 1) all of the learning algorithms inL (IEESLA)
and 2) only using a MLP (IEMLP ). We use instance hardness to estimate if an instance
should be misclassified. A common approach for classification problems with MLPs is to
create one output node for every class value. If the data set has a class with three possible
values, then three output nodes are created. The target output value for each node is either 1
if the instance belongs to that class or 0 if it does not. The error function oftarget−output

for each of thek output nodes can then be formulated as:

error(x) =

{

1− ok if t(x) = kclass

0− ok otherwise

whereok is the output value for nodek, t(x) is the target value for instancex andkclass is
the class represented by nodek.

We modify the error function such that it subtracts the instance hardness value of an
instance from the target value for the output node only.

error(x) =

{

1− IH(x, t(x))− ok if t(x) = kclass

0− ok otherwise

The instance hardness value is only subtracted from the output node that corresponds with
the target class value of an instance. If the instance hardness value were added to the output
value for the output nodes that do not correspond with the target class value of an instance
then this could potentially confuse the network as an instance is incorrect for one class value
yet correct for all of the others. For example, if an instancehas an instance hardness value
of 1, then the errors would essentially tell the network thatthe target value is wrong whereas
all of the other classes are correct. Also, if an instance hadan instance hardness value of 0.5,
all output nodes would have the same target value and no information is gained. IE places
more emphasis on the non-overlapping instances by reducingthe weight of the error from
instances with high instance hardness values.

Table 10 shows the results of using IE to train a MLP on 52 data sets (the data sets
that did not have instance hardness greater than 0.5 were notused) compared against two
filtering techniques (repeated edited nearest neighbor (RENN) (Tomek, 1976) and fast local
kernel noise reduction (FaLKNR) (Segata et al, 2009)) and two boosting methods (Ad-
aBoost (Freund and Schapire, 1996) and MultiBoost (Webb, 2000) using a MLP as the base
algorithm). RENN repeatedly removes the instances that aremisclassified by a 3-nearest
neighbor classifier and has produced good results. FaLKNR removes any instances that dis-
agree with the predicted class from a support vector machinetrained on the neighborhood
of the selected instance. The average accuracy, the number of times that the accuracy us-
ing IEMLP is better, the same, or worse than the other methods, and thep-value calculated
using the Wilcoxon signed-rank test are provided in the bottom three rows as a summary
of the table. There are 14 data sets on which IEMLP increases accuracy by more than 5%,
indicated by an asterisk. On the lung cancer data set, accuracy increases by 21.9% and is
3 percentage points higher than the next best algorithm (FaLKNR). On the labor data set,
IEMLP increases accuracy by 10.5% and is 5 percentage points greater than the next best
algorithm. On average, IEMLP increases more than 3% in accuracy over the original and
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Table 10 Pairwise comparison of informative error with standard backpropagation, RENN, FaLKNR, Ad-
aBoost, and MultiBoost. An asterisk indicates data sets on which IEMLP improves accuracy more than 5%.

Dataset Orig RENN FaLKNR AdaBoost MultiBoost IEESLA IEMLP

abalone 26.24 27.80 28.78 26.24 26.24 27.84 29.12
adult-census 82.91 83.82 83.45 82.91 82.91 85.22 84.46
anneal.ORIG 98.78 98.33 97.55 98.89 98.89 99.33 96.82
arrhythmia 67.70 61.50 67.92 67.70 67.70 71.68 71.06
audiology 83.19 74.78 77.88 83.19 83.19 79.65 81.95
autos 80.00 76.10 68.29 79.51 78.05 78.05 80.39
balance-scale 90.72 89.45 90.72 92.64 92.80 90.40 91.71
breast-cancer* 64.69 74.48 73.08 70.28 69.93 75.87 74.34
breast-w 95.28 96.14 96.28 94.99 95.85 96.57 96.62
bupa 71.59 71.88 71.01 71.88 71.59 72.75 71.59
carEval 99.54 92.53 99.25 99.54 99.54 98.61 99.46
chess-KRvsKP 99.41 99.31 99.47 99.41 99.41 99.41 99.39
chess 62.25 56.94 62.18 65.75 67.60 51.49 61.31
colic* 80.43 83.70 85.33 80.98 82.07 85.33 86.25
contact-lenses* 70.83 91.67 83.33 70.83 70.83 91.67 87.50
credit-a 84.20 87.97 84.78 84.20 84.35 86.52 87.62
credit-g* 71.60 76.00 72.80 71.50 73.00 76.90 78.22
dermatology 96.17 96.45 97.81 96.17 96.17 97.54 98.69
ecoli 86.01 87.20 87.50 84.23 85.12 86.90 87.20
glass 67.76 70.09 68.22 71.50 67.29 70.56 71.96
heart-c* 80.86 82.51 79.54 77.56 79.87 84.16 86.20
heart-h 85.03 84.35 84.01 80.27 81.63 82.99 84.42
heart-statlog* 78.15 82.96 83.33 78.15 80.37 85.93 84.81
hepatitis* 80.00 86.45 82.58 79.35 79.35 87.10 89.68
hypothyroid 94.04 94.35 94.57 94.62 95.10 95.52 94.90
ionosphere 91.17 86.61 86.61 91.17 91.74 91.74 89.23
iris 97.33 96.67 96.67 96.67 96.67 96.67 96.80
labor* 85.96 85.97 91.23 85.96 85.96 96.49 91.93
letter 82.08 82.56 82.60 88.35 87.30 80.48 81.86
lungCancer* 37.50 50.00 56.25 37.50 37.50 59.38 60.00
lymphography 84.46 83.78 83.11 84.46 85.14 85.14 85.95
MagicTelescope 85.87 85.42 85.19 85.90 86.25 85.53 86.36
nursery 99.73 97.45 98.89 99.97 99.97 99.87 99.92
ozone 96.41 96.81 97.12 96.41 99.73 96.96 97.41
pimaDiabetes 75.39 76.69 75.91 75.26 75.13 77.08 78.07
post-opPatient* 55.56 71.11 71.11 52.22 54.44 66.67 72.22
primary-tumor* 38.35 47.20 46.02 43.07 43.07 49.56 51.27
segment 96.06 95.97 96.41 96.06 95.93 96.10 96.84
sick 97.27 97.27 96.85 97.27 97.11 97.51 97.42
sonar* 82.21 84.13 85.10 83.65 83.17 87.98 88.17
soybean 93.41 92.97 95.17 93.41 93.41 95.17 94.73
spambase 91.44 91.05 92.18 91.44 91.05 92.24 92.65
splice 95.96 95.24 95.36 95.96 95.96 96.80 96.78
teachingAssistant* 58.94 61.59 63.58 58.94 58.94 64.90 65.56
titanic 78.46 79.06 79.06 78.60 78.96 78.87 79.06
trains* 70.00 80.00 50.00 70.00 70.00 90.00 90.00
vote 94.71 94.71 96.55 94.48 94.48 95.17 95.95
vowel 92.73 93.84 93.64 96.26 96.67 91.62 91.94
waveform-5000 83.56 84.93 86.30 83.36 83.50 85.66 86.60
wine 97.19 96.63 96.63 97.19 97.19 97.75 98.65
yeast 59.43 59.03 60.31 59.43 59.10 59.97 60.77
zoo 96.04 94.06 94.06 96.04 96.04 96.04 95.84
Average 81.05 82.45 82.14 81.37 81.60 84.03 84.57
better-same-worse 40-1-11 43-0-9 43-1-8 40-0-12 38-1-13 36-1-15
p-Value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.003
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2% over RENN. The increases in accuracy are statistically significant. In this case, IEMLP

is significantly better than IEESLA. Thus, in this case, using a specific bias from a learning
algorithm is preferred. This is examined in more detail in the next section.

Although IE is described in the context of MLPs, it can also beapplied to other learning
algorithms that are incrementally updated based on an errorvalue such as the class of non-
closed form regression models (i.e., logistic regression and isotonic regression). Similar to
informative error, instance hardness could be used to weight the instances prior to training a
model. This weight could then be used in a number of learning algorithms such as nearest-
neighbor or naı̈ve Bayes algorithms.

6.2 Filtering the data set

A simple idea to handle hard instances and reduce overlap is to filter or remove them from
a data set prior to training. The idea of filtering is to removethe instances that are suspected
outliers or noise and thus increase class separation (Smithand Martinez, 2011). We use the
IH class values to determine which instances to filter from the data sets. We compare the
results to those by RENN and the majority and consensus filters proposed by Brodley and
Friedl (1999). The majority and consensus filters remove an instance if it is misclassified
respectively by the majority of, or all, three learning algorithms (C4.5, IB1, and thermal
linear machine (Brodley and Utgoff, 1995)). When using the instance hardness values, we
use the classifier scores from the five folds of the nine learning algorithms as our ensemble
and remove any instances with an IHclass value greater than a set threshold. We set the
threshold at 0.5 (IH0.5), 0.7 (IH0.7) and 0.9 (IH0.9). We also compare using each learning
algorithm to filter the instances and as the learning algorithm (IH LA). For example, IHLA
for MLP uses a MLP to identify which instances to filter prior to training a MLP. Each
filtering technique was used on a set of 52 data sets evaluatedusing five by ten-fold cross-
validation on the nine learning algorithms. Testing is doneon all of the data, including the
instances that were removed.

For the nine learning algorithms, Table 11 shows the averageaccuracy, pairwise com-
parison of the accuracies, andp-values from the Wilcoxon signed-rank statistical signifi-
cance test comparing the filtering method to the original accuracy. Only the averages are
displayed to avoid the overload of tables and much of the aggregate information is present
in the pairwise comparison of the algorithms (number of times that a learning algorithm
increases-stays the same-decreases the accuracy) and thep-value from the Wilcoxon signed
rank significance test. Filtering significantly increases classification accuracy for most of the
filtering techniques and learning algorithms. IH 0.7 achieves the greatest increase in accu-
racy, being slightly better than the majority filter. One of the advantages of using instance
hardness is that various thresholds can be used to filter the instances. However, we note
that there is not one filtering approach that is best for all learning algorithms and data sets
(as indicated by the counts). For filtering, using the same learning algorithm to infer the
model and to determine which instances to filter is only better than using all of the learning
algorithms inL for C4.5 and 5-NN.

To examine the variability of each data set and learning algorithm combination, we
examine an adaptive filtering approach that generates a set of learning algorithms to calculate
instance hardness for a specific data set/learning algorithm combination. We call the set of
learning algorithms used to calculate instance hardness afilter set. The adaptive approach
discovers the filter set through a greedy search ofL. The adaptive approach iteratively adds
a learning algorithm fromL to a filter set by selecting the learning algorithm that produces
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Table 11 The average accuracy values for the nine learning algorithms comparing filtering techniques against
not filtering the data (Orig). “count” gives the number of times that a filtering algorithm improves, maintains,
or reduces classification accuracy. On average, filtering the data sets significantly improves the classification
accuracy. Thep-values in bold represent the cases where filtering significantly increases the classification
accuracy over not filtering. For each learning algorithm, the accuracy for the filtering technique that produces
the highest accuracy is in bold.

Algorithm Orig IH 0.5 IH 0.7 IH 0.9 RENN Majority Consen IHLA
MLP 81.05 83.12 83.58 81.86 82.45 82.52 81.92 82.95
count 35-1-16 37-0-15 30-2-20 28-3-21 25-0-27 24-0-28 36-0-16
p-value 0.001 < 0.001 0.025 0.047 0.151 0.246 0.002
C4.5 80.11 80.23 81.46 80.53 80.51 81.48 81.11 82.06
count 32-0-20 41-2-9 25-2-25 25-4-23 32-3-17 36-3-13 38-2-12
p-value 0.054 < 0.001 0.226 0.122 0.002 0.001 < 0.0015
5-NN 79.03 81.42 82.14 80.21 82.28 81.62 81.05 82.34
count 39-1-12 38-3-11 37-4-11 39-2-11 36-5-11 32-9-11 41-2-9
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

LWL 69.36 71.05 69.65 69.80 69.75 70.80 70.32 67.69
count 32-11-9 26-12-14 23-13-16 24-14-14 33-8-11 22-18-12 21-13-18
p-value 0.002 0.127 0.103 0.091 0.002 0.009 0.634
NB 75.68 77.79 77.22 76.50 76.17 77.52 77.05 75.04
count 37-1-14 36-0-16 32-3-17 27-7-18 35-4-13 31-8-13 21-1-30
p-value < 0.001 < 0.001 0.008 0.083 0.001 < 0.001 0.871
NNge 79.45 81.69 82.16 80.05 81.16 81.40 81.10 81.57
count 34-0-18 41-0-11 29-2-21 30-3-19 31-4-17 29-7-16 36-0-16
p-value < 0.001 < 0.001 0.070 0.040 0.006 0.003 0.001
RandFor 81.59 82.52 83.07 81.83 82.44 82.37 81.97 82.80
count 28-3-21 36-0-16 29-1-22 26-6-20 24-5-23 25-8-19 27-4-21
p-value 0.009 0.001 0.081 0.045 0.051 0.026 0.031
Ridor 78.09 79.29 79.22 78.45 78.16 78.87 78.94 78.65
count 36-3-13 36-2-14 25-1-26 27-2-23 34-3-15 29-7-16 32-3-17
p-value < 0.001 0.001 0.173 0.419 0.003 0.021 0.013
RIPPER 77.83 79.21 79.16 78.44 77.52 79.79 78.89 78.83
count 37-1-14 38-0-14 32-1-19 26-4-22 36-1-15 32-7-13 37-2-13
p-value < 0.001 < 0.0015 0.019 0.464 0.001 0.001 0.003
Average 78.02 79.59 79.74 78.63 78.94 79.60 79.15 79.10
count 42-0-10 45-0-7 38-0-14 33-1-18 38-0-14 39-0-13 38-0-14
p-value < 0.001 < 0.001 < 0.001 0.003 < 0.001 < 0.001 0.001

the highest classification accuracy when added to the filter set, as shown in Algorithm 1.
A constant threshold value is set to filter instances inrunLA(F ) for all iterations. We
examine thresholds of 0.5, 0.7, and 0.9. The baseline accuracy for the greedy approach is
the accuracy of the learning algorithm without filtering. The search stops once adding one
of the remaining learning algorithms to the filter set does not increase accuracy. The running
time for the adaptive approach isO(N2) whereN is the number of learning algorithms to
search over. The significant improvement in accuracy makes the increase in computational
time reasonable in most cases.

Table 12 gives the results for adaptively filtering for a specific data set/learning algorithm
combination. The adaptive approach significantly increases the classification accuracy over
IH 0.7 for all of the learning algorithms and thresholds. The accuracy increases for at least
85% of the data sets regardless of which learning algorithm is being used for classification.
A 0.9 achieves the highest classification accuracy for the adaptive approach. Interestingly,
there is no one particular learning algorithm that is alwaysincluded in a filter set for a
particular learning algorithm. The frequency for how oftena learning algorithm is included
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Algorithm 1 Adaptively constructing a filter set.
1: LetF be the filter set used for filtering andL be the set of candidate learning algorithms forF .
2: Initialize F to the empty set:F ← {}
3: Initialize the current accuracy to the accuracy from an empty filter set:currAcc ← runLA({}).

runLA(F ) returns the accuracy from a learning algorithm trained on a data set filtered withF .
4: while L 6= {} do
5: bestAcc← currAcc;
6: bestLA← null;
7: for all g ∈ L do
8: tempF ← F + g;
9: acc← runLA(tempF );

10: if acc > bestAcc then
11: bestAcc← acc;
12: bestLA← g;
13: end if
14: end for
15: if bestAcc > currAcc then
16: L ← L− bestLA;
17: F ← F + bestLA;
18: currAcc← bestAcc;
19: else
20: break;
21: end if
22: end while

in a filter set for each learning algorithm and an aggregate count (overall) is given in Table
13. MLPs and random forests are included in more than 50% of the constructed filter sets
while RIPPER and NB are included in less than 2% of the filter sets. The remaining learning
algorithms are used in a filter set between 13% and 23% of the time. It is interesting that
some of the learning algorithms include a particular learning algorithm in the filter set for
most of the data sets while other learning algorithms never or rarely include it. For example,
MLP is always included in the filter set for NB, yet never for 5-NN. Also, only the MLP and
5-NN learning algorithms frequently include themselves inthe filter set. Thus, hardness for
a learning algorithm is often better detected using a different learning algorithm.

7 Data Set-level Analysis

Our work has focused on hardness at the instance-level. However, prior work has been done
that examines what causes hardness at the data set level. Thehardness measures and hard-
ness measures can be averaged together to measure hardness at the data set level. The av-
eraged hardness measures can provide insight into a data set’s characteristics and possibly
provide direction into which methods are the most appropriate for the data set. Previous
studies have primarily looked at only binary classificationproblems. We compare instance
hardness at the data set level with other data set complexitymeasures. We use a set of
complexity measures by Ho and Basu (2002) (implemented withDCoL (Orriols-Puig et al,
2009)). In this study we do not limit our examination to two-class problems. Hence, we do
not use the measurements from Ho and Basu that are only for two-class problems. Ho and
Basu’s complexity measures that were used are shown in Table14. Some of the original
measures were adapted to handle multi-class problems (Orriols-Puig et al, 2009).

We first compare our measures to those used by Ho and Basu (2002). The matrix of
Spearman correlation coefficients comparing the hardness measures against those measures
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Table 12 The average accuracy values for nine learning algorithms comparing the adaptive filtering approach
against IH 0.7. “count” gives the number of times that a filtering algorithm improves, maintains, or reduces
classification accuracy. The adaptive filtering approach significantly increases classification accuracy.

Algorithm IH 0.7 A 0.5 A 0.7 A 0.9
MLP 83.583 86.302 86.863 87.997
counts 51-1-0 52-0-0 52-0-0
p-value < 0.001 < 0.001 < 0.001

C4.5 81.459 84.854 86.023 86.875
counts 49-1-2 51-1-0 52-0-0
p-value < 0.001 < 0.001 < 0.001

5-NN 82.135 85.953 87.189 89.162
counts 49-3-0 51-1-0 52-0-0
p-value < 0.001 < 0.001 < 0.001

LWL 69.649 74.382 74.043 74.048
counts 46-4-2 43-7-2 43-7-2
p-value < 0.001 < 0.001 < 0.001

NB 77.220 80.368 80.637 80.345
counts 49-2-1 50-1-1 50-1-1
p-value < 0.001 < 0.001 < 0.001

NNge 82.158 85.876 87.145 88.892
counts 49-2-1 50-1-1 50-1-1
p-value < 0.001 < 0.001 < 0.001

RandForest 83.065 86.306 87.353 89.506
counts 49-2-1 51-0-1 51-0-1
p-value < 0.001 < 0.001 < 0.001

Ridor 77.699 81.802 82.509 83.494
counts 50-1-1 51-0-1 51-0-1
p-value < 0.001 < 0.001 < 0.001

RIPPER 79.163 84.418 85.197 86.197
counts 49-1-2 50-1-1 51-0-1
p-value < 0.001 < 0.001 < 0.001

Average 79.742 83.535 84.280 85.342
counts 51-0-1 51-0-1 51-0-1
p-value < 0.001 < 0.001 < 0.001

Table 13 The frequency of selecting a learning algorithm when adaptively constructing a filter set. Each
row gives the percentage of cases that the learning algorithm was included in the filter set for the learning
algorithm in the column.

Overall MLP C4.5 5-NN LWL NB Nnge RandF Ridor RIP
MLP 51.59 86.67 16.67 0 53.33 100 13.33 26.67 80.00 93.33
C4.5 17.46 13.33 16.67 6.67 26.67 0 13.33 20.00 26.67 33.33
5-NN 23.81 6.67 0 86.67 6.67 0 26.67 26.67 20.00 26.67
LWL 15.87 0 0 40.00 0 66.67 0 6.67 20.00 0
NB 1.59 0 0 0 13.33 0 0 0 0 0
NNge 18.25 26.67 16.67 20.00 13.33 0 46.67 93.33 13.33 0
RandF 55.56 26.67 100 80.00 6.67 0 80.00 0 86.67 53.33
Ridor 13.49 13.33 50.00 0 6.67 53.33 6.67 6.67 6.67 0
RIP 0.79 0 0 0 0 6.67 0 0 0 0

used by Ho and Basu are shown in Table 15. The measures were normalized by subtracting
the mean and dividing by the standard deviation. The values in bold represent correlations
with a magnitude greater than 0.75. Only N1 and N3 are strongly correlated withkDN, CL,
and CLD. N1 is the percentage of instances with at least one nearest neighbor of a different
class. N3 is the leave-one-out error of the one-nearest neighbor classifier. Both N1 and N3
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Table 14 List of complexity measures from Ho and Basu (2002).

F2: Volume of overlap region:The overlap of the per-class bounding boxes calculated foreach
attribute by normalizing the difference of the maximum and minimum values from each class.

F3: Max individual feature efficiency: For all of the features, the maximum ratio of the number of
instances not in the overlapping region to the total number of instances.

F4: Collective feature efficiency: F3 only return the ratio for the attribute that maximizes the ratio.
F4 is a measure for all of the attributes.

N1: Fraction of points on class boundary: The fraction of instances in a data set that are
connected to their nearest neighbors that have a different class in a spanning tree.

N2: Ratio of ave intra/inter class NN dist: The average distance to the nearest intra-class
neighbors divided by the average distance to the nearest inter-class neighbors.

N3: Error rate of 1NN classifier: Leave-one-out error estimate of 1NN.
T1: Fraction of maximum covering spheres: The normalized count of the number of clusters of

instances containing a single class
T2: Ave number of points per dimension: Compares the number of instances to the number of

features.

Table 15 Spearman correlation matrix comparing the hardness measures against the complexity measures
from Ho and Basu. The strong correlation (bolded values) indicate that there is some overlap between our
measures and those by Ho and Basu.

F2 F3 F4 N1 N2 N3 T1 T2
DN 0.433 0.112 0.237 0.908 0.696 0.867 0.298 -0.142
DS -0.550 0.063 0.011 -0.523 -0.427 -0.464 -0.123 -0.445
DCP -0.542 0.086 0.107 -0.661 -0.456 -0.676 -0.147 -0.033
TD P 0.403 0.014 0.079 0.283 0.235 0.233 -0.040 0.340
TD U 0.306 0.121 0.233 0.336 0.221 0.240 -0.071 0.338
CL -0.490 0.008 -0.186 -0.797 -0.644 -0.763 -0.246 -0.078
CLD -0.463 -0.035 -0.162 -0.805 -0.649 -0.775 -0.272 -0.063
MV 0.424 0.336 0.162 0.307 0.304 0.318 0.163 -0.148
CB 0.148 0.201 0.008 -0.034 0.062 0.015 0.065 -0.027

Table 16 The Spearman correlation coefficients for each hardness measure and Ho and Basu’s complexity
measures relating to data set hardness. The measures that measure class overlap have a strong correlation
with data set hardness.

kDN DS DCP TDP TD U CL CLD MV CB Lin
0.901 -0.561 -0.758 0.427 0.354 -0.864 -0.868 0.313 0.088 0.882

F2 F3 F4 N1 N2 N3 T1 T2 Lin
0.455 0.078 0.190 0.860 0.675 0.828 0.222 -0.127 0.844

are similar and can be categorized as measuring class separability. N1, N3, kDN, CL, and
CLD measure class overlap using all of the features in the data set.

We examined each hardness measure and complexity measure individually to determine
how well it predicts data set hardness (the average instancehardness of the instances in the
data set). The Spearman correlation coefficient for the hardness measures and the measures
from Ho and Basu with data set hardness are shown in Table 16.kDN, CL, CLD, N1, and
N3 all have a correlation coefficient greater than 0.8. Recall thatkDN, CL, CLD are strongly
correlated with N1 and N3. Despite diversity in the measures, only these few are strongly
correlated with data set hardness and they measure class overlap.
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We also apply linear regression to evaluate data set hardness as a combination of the
hardness measures and the measures from Ho and Basu. The correlation coefficients are
shown in the column “Lin” in Table 16. For the linear model of the hardness measures, only
kDN is statistically significant for the hardness measures. For Ho and Basu’s complexity
measures, only N1 is statistically significant. The correlation of data set hardness with the
linear models of the hardness measures and the measures fromHo and Basu are weaker
than the correlation of data set hardness with an individualmeasure. When using both sets
of measures, the resulting correlation coefficient is 0.896with none of the measures being
statistically significant. The linear model also has a weaker correlation coefficient than only
usingkDN.

Based on correlation from a linear regression model, our aggregate hardness measures
are competitive with those from Ho and Basu. When the hardness measures are used in
combination with those from Ho and Basu, a slightly strongercorrelation is achieved. This
is somewhat expected as there are many underlying and misunderstood factors that affect
complexity. By measuring the complexity from many different angles, more perspective can
be found.

The averaged hardness measures at the data set level providean indication of the source
of hardness and could further indicate which learning algorithms and/or methods for in-
tegrating instance hardness into the learning process are the most appropriate to use for a
particular data set. A cursory examination of the correlation of the hardness measures with
instance hardness at the data set level (Table 16) does not reveal an obvious connection.
Further in depth analysis is left for future work.

8 Related Work

There are a number of methods and approaches that can be used to identify instances that are
hard to classify correctly. In this section we review some previous work for identifying hard
instances. Fundamentally, instances that are hard to classify correctly are those for which
a learning algorithm has a low probability of predicting thecorrect class label after having
been trained on a training set. To compare the related works with instance hardness we refer-
ence the hypothetical data set in Figure 2. For convenience,we reproduce Figure 2 in Figure
4. We also compare instance hardness (IHind and IHclass) with related works in Table 17
on a subset of the examined instances. The columns under “IHh–Classifier Scores” are in-
stance hardness values calculated using the classifier score for a specific learning algorithm.
Table 17 is divided into three sections: the first section contains instances with high instance
hardness (IHind ∼ 1), the second section contains instances with low instancehardness
(IH ind∼ 0), and the third section contains instances with instance hardness around 0.5. We
will refer to Table 17 throughout this section.

Machine learning research has observed that data sets are often noisy and contain out-
liers, and that noise and outliers are harder to classify correctly. Although we do not ex-
plicitly search for outliers, outliers and noisy instanceswill constitute a subset of the hard
instances. Much work has been put forth to identify outliersand noise. Discovering outliers
is important in anomaly detection where an outlier may represent an important instance.
For example, an outlier in a database of credit card transactions may represent a fraudu-
lent transaction. Anomaly detection is generally unsupervised and looks at the data set as a
whole. One of the difficulties with outlier detection is thatthere is no agreed-upon definition
of what constitutes an outlier or noise. Thus, a variety of different outlier detection methods
exist, such as statistical methods (Barnett and Lewis, 1978), distance-based methods (Knorr
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Fig. 4 Hypothetical 2-dimensional data set.

Table 17 Comparison summary of the methods that identify hard instances. The first section of the table
shows examples of instances that have high instance hardness values (IH = 1), the second section shows
examples that are easy but the LoOP value is high (IH∼ 0 && LOP∼ 1), the third section has instances with
medium instance hardness (IH∼0.5). The active learning values are the uncertainty scores–higher values
represent more uncertainty; the outlier detection values are “yes” if the instance is an outlier and “no” if it is
not–for LOP, higher values indicate a higher likelihood of being an outlier. The values in bold represent values
that are unexpected given the instance hardness value. For example, an instance with an instance hardness
value of 1 is expected to be considered an outlier. On the other hand, it is unexpected when an instance with
a low instance hardness value (∼ 0) is categorized as an outlier instance.

data IH IHh–Classifier Scores Active Learn Outlier Detection
set id ind classMLP C4.5 IB5 LWL NB NNg Rand Rid RIPUSN QN QC LOP Maj Con REN
ecoli 263 1 0.85 1 0.78 1 0.91 1 1 0.92 1 0.960.99 0 0.720.26 yes no yes
ta 128 1 0.82 0.76 0.90 0.99 0.78 0.95 1 0.98 1 0.850.63 0.140.52 0 yes no yes
abal 4014 1 0.86 0.94 1 1 0.91 1 1 1 1 0.870.04 0.46 0.470.04 yes yes no
yeast 327 1 0.86 0.99 0.99 1 0.87 0.95 1 0.88 1 0.880.63 0.170.420.22 yes yes no
abal 720 1 0.89 1 1 1 1 1 1 1 1 1 0.99 0.080.32 1 yes yes no
spam 39130.07 0.090.59 0 0 0.20 0 0 0.02 0 0.051 0 0.15 1 no no no
splice 1807 0 0.03 0 0 0 0.11 0 0 0.39 0 0.010.99 0 0 0.96 no no yes
adult 306760.04 0.050.05 0.02 0 0.06 0.000.40 0.11 0 0.13 1 0 0 1 no no no
adult 30833 0 0.00 0.11 0.08 0 0.07 0.03 0 0 0 0.130.94 0 0 1 no no no
wave 35240.58 0.530.66 0.98 1 0.81 0.19 0 0.58 0.60 0.640.60 0 0.540.34 yes yes yes
chess 86910.53 0.530.82 0.72 0.580.87 0.81 0 0.46 0.40 0.480.04 0.57 0.38 0 yes no no
annea 715 0.53 0.560.02 0.64 1 0.56 0.670.80 0.76 0.400.16 0.18 0.68 0.730.01 yes yes yes
arrhy 69 0.51 0.570.92 0.45 1 0.43 0 1 0.76 0 0.22 1 0.950.420.18 yes yes yes

and Ng, 1999), and density-based methods (Breunig et al, 2000). Anomaly detection meth-
ods identify anomalous instances as those that lie outside the group(s) of the majority of the
other instances in the data set. In the hypothetical two-dimensional data set shown in Figure
4, instances C and D would be identified as anomalous but not instances A and B.

Most anomaly detection methods do not have a continuous output and are not super-
vised. One anomaly detection method that outputs continuous values is local outlier factor.
Local outlier factor (LOF) (Breunig et al, 2000) suggests that each instance has a degree of
“outlierness” rather than a binary labeling. LOF seeks to overcome the problem facing most
anomaly detection methods–that the sub-spaces within manydata sets have different densi-
ties. LOF considers relative density rather than the globaldensity of the data set. Instances
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with a LOF value of 1 or less are not outliers. The values produced by LOF are somewhat
hard to interpret as there is no upper bound or any value that indicates when a LOF value
represents an outlier. For one data set, an LOF value of 1.1 may represent an outlier while a
value of 2 could represent an outlier in another data set.

There are a number of approaches that aim at overcoming the uninterpretability of LOF
(Kriegel et al, 2011). One approach is local outlier probability (LoOP) (Kriegel et al, 2009).
LoOP builds on LOF with statistical methods to produce a probability that an instance is
a local density outlier. This allows the values to be compared across data sets. There are
two major assumptions that LoOP makes: 1) that thek-nearest neighbors of an instance
p are centered aroundp and 2) that the distances behave like the positive leg of a normal
distribution. Despite being more interpretable, LoOP often does not identify hard instances
as outliers and identifies easy instances as outliers as shown in Table 17 (LOP). Low values
indicate that an instance is not likely to be an outlier according to LoOP.

Filtering, or removing instances prior to training, is another approach that seeks to iden-
tify mislabeled and/or noisy instances with the intent of improving an inferred model of the
data. Unlike anomaly detection, filtering is often supervised, removing instances that are
misclassified by a learning algorithm. In Figure 4, filteringwould likely identify instances
A, B, and some of the border points as hard to classify. A popular approach to outlier detec-
tion is repeated-edited nearest-neighbor (RENN) (Tomek, 1976) which repeatedly removes
the instances that are misclassified by a 3-nearest neighborclassifier and has produced good
results. Brodley and Friedl (1999) expanded this idea by removing the instances that were
misclassified by all or the majority of the learning algorithms in an ensemble of three learn-
ing algorithms. These methods do not output a continuous value but they do take into ac-
count the class label. As shown in Table 17, these methods (maj, con, and REN) do not often
identify easy instances as outliers, but they may not identify hard instances as outliers.

Some learning algorithms produce probabilistic output, such as naı̈ve Bayes, Bayes nets,
and Gaussian processes. The output from probabilistic algorithms could naturally answer the
question of which instances are hard to classify correctly.However, there are often assump-
tions that are made that are not true of the data distribution(i.e. the attributes are independent
or the data is normally distributed). Many other machine learning algorithms do not produce
a probabilistic output. In those cases, the probabilities can be approximated by normalizing
the output values or using some heuristic to produce pseudo probabilistic values. The pos-
terior classifier probabilities from the learning algorithms inL for a subset of the instances
are provided in Table 17. The posterior classifier probabilities provide a good approximation
for instance hardness, but, as discovered in Section 5, theyhave a lower correlation with the
hardness measures. This is apparent when examining instances that have an instance hard-
ness measure around 0.5 (the last four instances in Table 17).

Probabilistic outputs from a classifier are important when the outputs are combined
with other sources of information for making decisions, such as the outputs from other clas-
sifiers. Probabilistic outputs are often not well calibrated, such as the output from naı̈ve
Bayes (Domingos and Pazzani, 1996). As such, a number of methods have been proposed
to calibrate classifier scores (Bennett, 2000; Platt, 2000;Zadrozny and Elkan, 2001, 2002).
For binary classification problems, the calibration is usually done by training the learning
algorithm to get the classifier scoress(x) and then mapping these scores into a probability
estimateP̂ (y|x) by learning a mapping function. Platt (2000) suggests finding the parame-
tersA andB for a sigmoid function of the form̂P (y|x) = 1

1+eAs(x)+B to map the classifier
scoress(x) to the probability estimates minimizing the log-likelihood of the data. Multi-
class classification problems are broken down into binary classification problems such as 1
vs 1 or 1 vs all. 1 vs 1 creates a classifier for each pair of classes. 1 vs all creates a classifier
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that discriminates between the instances of a particular class and all the instances that have a
different class. The calibrated probabilities from the binary classification problems are then
recombined back together. Classifier scores are supervisedand produce continuous outputs
for identifying hard instances. In Figure 4, instances A, B,and the border points would be
identified as being hard to classify.

Active learning (Settles, 2010) seeks to find the most informative instances in a data
set. Active learning assumes that there is a set of labeled instances and an abundance of
unlabeled training data and that labeling the data is expensive, thus, the most informative
instances should be labeled first. In active learning, a learning algorithm chooses which
instances to use for training. Active learning assigns unlabeled instances a degree of how
informative they may be to a learning algorithm by optimizing a given criterion. This in-
formative measure could be used as a means of identifying hard instances. For example,
uncertainty sampling (Lewis and Gale, 1994) selects an unlabeled instancex∗ whose label-
ing the learning algorithm is least certain about:

x
∗ = argmax

x
1− p(ŷ|x)

whereŷ is the class label with the highest posterior probability for the learning algorithm.
Other methods, such as query-by-committee (Seung et al, 1992; Freund et al, 1992) and a
Support Vector Machine method by Tong and Koller (2001), seek to reduce the size of the
version space6 (Mitchell, 1982). Query-by-committee uses a committee of models trained
on the labeled instances and selects the instances that the committee disagrees about most.
Thus, active learning identifies the border points as being hard to classify. Table 17 shows
that active learning scores vary widely for the same instances. For instances with an instance
hardness value near 1, it would be expected that the uncertainty value would be close to
either 1 or 0. Since the class is not included for active learning, a hard instance would appear
to be the wrong class (i.e. the instance is mislabeled) or it would have high uncertainty. For
the easy instances, a low uncertainty value would be expected. Active learning scores do not
have a high correlation with instance hardness.

Clearly, none of the previous work was designed to better understand why instances are
misclassified as is the case with instance hardness. For example, filtering aims at removing
mislabeled instances from a data set, and the classifier scores are for applications where a
confidence on a prediction is required. Incorporating the ideas of previous work, instance
hardness provides a framework for identifying which instances are hard to classify and un-
derstanding why they are hard to classify.

9 Conclusions and Future Work

In this paper we examined why instances are misclassified andhow to characterize them.
We presented instance hardness to empirically discover which instances are hard to classify
correctly. We also presented a set of hardness measures to characterize why some instances
are difficult to classify correctly. We used a broad set of data sets and learning algorithms
and examined hardness at the instance level. We found that class overlap is a principal con-
tributor to instance hardness and data set hardness. The hardness measureskDN, CL, and
CLD capture class overlap and are strongly correlated with instance hardness. Class skew
has been observed to increase instance hardness. We found that class skew alone does not

6 Version space is the subset of parameters that correctly classifies the labeled examples.
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cause instances to be misclassified. Rather, class skew exacerbates the other characteristics,
such as class overlap, that cause an instance to be misclassified as demonstrated when the
instances and their hardness values were segregated according to their MV value (Table
8). Continued study of instance hardness should lead to additional insights regarding data
complexity.

Being able to measure instance hardness and complexity has important ramifications
for future machine learning and meta-learning research. Webriefly examined integrating
instance hardness into the learning process by filtering thedata sets prior to training and
using informative error. In each case, integrating into thelearning process the knowledge
of which instances are hard to classify correctly resulted in a significant increase in classi-
fication accuracy. As a specific example, informative error significantly increased the clas-
sification accuracy over various filtering and boosting approaches. These techniques show
that integrating into the learning process the knowledge about which instances are hard can
increase generalization accuracy. Future work includes understanding the circumstances and
situations which are most appropriate for each technique. There is no one technique for iden-
tifying hard instances that is best for all data sets as demonstrated with the adaptive filter
sets.

Calculating instance hardness and the hardness measures can be a computationally ex-
pensive procedure. Despite requiring the computation ofN learning algorithms, the instance
hardness values only need to be computed once and they can be used in a wide variety of
applications as was shown in Section 6. The hardness measures need to be calculated only
once as well. For many data sets, this additional computational complexity is acceptable.
For massive data sets, though, the additional computational complexity can be a significant
concern. In this case, the set of learning algorithms used tocalculate instance hardness and
the hardness measures can be altered to those that better handle massive data sets. Also, we
showed that there is no specific set of learning algorithms that is best for all data sets and
learning algorithms. Using the same learning algorithm to calculate instance hardness and
to infer the model of the data does not always result in the most accurate model.

Being able to better analyze data would allow a practitionerto select an algorithm more
suited to their purposes. Also, the evaluation of a learningalgorithm could be enhanced by
knowing which instances are hard and, with a high likelihood, will be misclassified. This
could lead to a better stopping criterion. We expect that theexploration of instance hardness
and data complexity may lead to more in depth investigation and applications in new areas
of machine learning and data mining. Instance hardness and the hardness measures could
be used in combination with techniques from active learningto determine a subset of the
most important instances from a data set. Future work also includes work in meta-learning.
For example, the hardness measures could be used to estimatethe performance of a learning
algorithm on a data set.
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Kriegel HP, Kröger P, Schubert E, Zimek A (2011) Interpreting and unifying outlier scores.
In: SDM, pp 13–24

Lee J, Giraud-Carrier C (2011) A metric for unsupervised metalearning. Intelligent Data
Analysis 15(6):827–841

Lewis DD, Gale WA (1994) A sequential algorithm for trainingtext classifiers. In: Proceed-
ings of the 17th annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, pp 3–12



An Instance Level Analysis of Data Complexity 31

Mansilla EB, Ho TK (2004) On classifier domains of competence. In: ICPR (1), pp 136–139
Mitchell TM (1982) Generalization as search. Artifical Intelligence 18(2):203–226
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