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Abstract Most data complexity studies have focused on characteyritia complexity of
the entire data set and do not provide information aboutviddal instances. Knowing
which instances are misclassified and understanding why aree misclassified and how
they contribute to data set complexity can improve the iegrprocess and could guide the
future development of learning algorithms and data ansitysithods. The goal of this paper
is to better understand the data used in machine learnirggons by identifying and ana-
lyzing the instances that are frequently misclassified bayrlieg algorithms that have shown
utility to date and are commonly used in practice. We idgniti§tances that are hard to clas-
sify correctly {nstance hardneg<y classifying over 190,000 instances from 64 data sets
with 9 learning algorithms. We then use a set of hardnessumesito understand why some
instances are harder to classify correctly than others. Wdetfiat class overlap is a princi-
pal contributor to instance hardness. We seek to integnaertformation into the training
process to alleviate the effects of class overlap and pregegys that instance hardness can
be used to improve learning.

Keywords Instance hardnes®ataset hardnesdData complexity

1 Introduction

It is widely acknowledged in machine learning that the pernfance of a learning algorithm
is dependent on both its parameters and the training datathéebulk of algorithmic de-
velopment has focused on adjusting model parameters withthy understanding the data
that the learning algorithm is modeling. As such, algorithdevelopment for classification
problems has largely been measured by classification angymecision, or a similar metric
on benchmark data sets. These metrics, however, only gragdregate information about
the learning algorithm and the task upon which it operathsyTail to offer any information
about which instances are misclassified, let alone why theeynésclassified. There is some
speculation as to why some instances are misclassifiedobotiy knowledge, no thorough
investigation (such as the one presented here) has taken pla
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Previous work on instance misclassification has focusedlgnan isolated causes. For
example, it has been observed that outliers are often msifiled and can affect the clas-
sification of other instances (Abe et al, 2006). Border oantd instances that belong to a
minority class have also been found to be more difficult tesify correctly (Brighton and
Mellish, 2002; van Hulse et al, 2007). As these studies hageehnarrow focus on trying
to identify and handle outliers, border points, or minogtgsses, they have not generally
produced an agreed-upon definition of what characterizesetinstances. At the data set
level, previous work has presented measures to charaetigaverall complexity of a data
set (Ho and Basu, 2002). Data set measures have been usethitearaing (Brazdil et al,
2009) as well as to understand under what circumstancestiaybar learning algorithm
will perform well (Mansilla and Ho, 2004). As with the perfoance metrics, the data com-
plexity measures characterize the overall complexity ohtadet but do not look at the
instance level and thus cannot say anything about why odrtsiances are misclassified. It
is our contention that identifying which instances are faissified and understanding why
they are misclassified can lead to improvements in macharaileg algorithm design and
application.

The misclassification of an instance depends on the leaalgayithm used to model
the task it belongs to and its relationship to other instargehe training set. Hence, any
notion ofinstance hardness.e., the likelihood of an instance being misclassifiedstie
a relative one. However, generalization beyond a singleieg algorithm can be achieved
by aggregating the results from multiple learning alganish We use this fact to propose
an empirical definition of instance hardness based on tlssifilzation behavior of a set
of learning algorithms that have been selected becausethéit)diversity, 2) their utility,
and 3) their wide practical applicability. We then preserth@rough analysis of instance
hardness, and provide insight as to why hard instances egiadntly misclassified. To the
best of our knowledge our research is the first at reporting sgstematic and extensive
investigation of the issue.

We analyze instance hardness in over 190,000 instance$ftatassification tasks clas-
sified by nine learning algorithms. We find that a considexraohount of instances are hard
to classify correctly—17.5% of the investigated instaraes misclassified by at least half
of the considered learning algorithms and 2.3% are misiledsy all of the considered
learning algorithms. Seeking to improve our understandinghy these instances are mis-
classified becomes a justifiable quest. To discover why tinstznce are hard to classify, we
introduce a set of measuremertisidness measurgsrhe results suggest that class overlap
has the strongest influence on instance hardness and thatntlag be other features that
affect the hardness of an instance. Although we focus omleasdat the instance level, the
measures can also be used at the data set level by averagiveguks of the instances in the
data set. Further, we incorporate instance hardness iatte#ining process by modifying
the error function of a multilayer perceptron and by filtgrinstances. These methods place
more emphasis on the non-overlapping instances, allegitie effects of class overlap. We
demonstrate that incorporating instance hardness intleéneing process can significantly
increase classification accuracy.

The remainder of the paper is organized as follows. In Se@&jeve introduce and define
instance hardness as an effective means of identifyingriess that are frequently misclas-
sified. The hardness measures are presented in Section 3a@ma af providing insight into
why an instance is hard to classify correctly. Section 4 gmesthe experimental method-
ology. An analysis of hardness at the instance level is geavin Section 5 followed by
Section 6 which demonstrates that improved accuracy ciowfdtom integrating instance
hardness into the learning process. Section 7 comparesigeshardness at the data set level
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with previous data set complexity studies. Section 8 prewicklated works and Section 9
concludes the paper.

2 Instance Hardness

Our work posits that each instance in a data set has a hardrgssrty that indicates the
likelihood that it will be misclassified. For example, oath and mislabeled instances are
expected to have high instance hardness since a learningtlafg will have to overfit to
classify them correctly. Instance hardness seeks to anke@nportant question of what is
the probability that an instance in a particular data sdtheiimisclassified.

As most machine learning research is focused on the daevegtdne is concerned with
maximizingp(h|t), whereh : X — Y is a hypothesis or function mapping input feature
vectorsX to their corresponding label vectaYs andt = {(zi,y:) : v € X Ay; € Y}is
a training set. With the assumption that the pairs @me drawn i.i.d., the notion of instance
hardness is found through a decompositiop(@f|t) using Bayes’ theorem:

_ p(th) p(h)
p(t)
_ I o, i) p(R)
p(t)
_ 1 el b) pailh) p(h)
p(t) '

p(hlt)

For a training instancéz;, y;), the quantityp(y;|x:, h) measures the probability that
assigns the label; to the input feature vectar;. The largemp(y;|x;, h) is, the more likely
h is to assign the correct label #q, and the smaller it is, the less likelyis to produce the
correct label forz;. Hence, we obtain the following definition of instance hash) with
respect tch:

IH, ((xs,9:)) = 1 — p(yi|zi, h).

In practicer is induced by a learning algorithptrained or¢ with hyper-parameters, i.e.,

h = g(t, «). Explicitly, instance hardness equals p(y;|z;, t, k) but sincey; is condition-
ally independent of given h we can use(y;|x;, h). Thus, the hardness of an instance is
dependent on the instances in the training data and theithlgonsed to producé. There
are many approaches that could be taken to calculate irstaarciness (or equivalently
p(yi|zi, g(t, «@))) such as an analysis of the distribution of instancefsancording to their
class. To gain a better understanding of what causes irestemdness in general, the depen-
dence of instance hardness on a specific hypothesis candsmézsby summing instance
hardness over the set of hypothegéand weighting each € H by p(h|t):

IH((i,y:)) = > _ (1 = p(yslas, h))p(h|t)
H
= p(hlt) = > plyilzi, h)p(h|t)
H H
= 1= p(yili, h)p(h|t). @
H
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Fig. 1 Dendrogram of the considered learning algorithms cludtesing unsupervised metalearning.

Practically, to sum ovet{, one would have to sum over the complete set of hypotheses, or
sinceh = ¢(t, «v), over the complete set of learning algorithms and hypeapaters asso-
ciated with each algorithm. This, of course, is not feasili@ractice, instance hardness can
be estimated by restricting attention to a carefully chasetnof representative algorithms
(and parameters). Also, it is important to estimaté|t) because if all hypotheses were
equally likely, then all instances would have the same imsahardness value under the no
free lunch theorem (Wolpert, 1996). A natural way to appradie the unknown distribution
p(h|t), or equivalentlyp(g(t, «)), is to weigh a set of representative learning algorithmd, an
their associated parameters, a priori with a non-zero probability while treating all eth
learning algorithms as having zero probability. Given sadfetL of learning algorithms,
we can then approximate Equation 1 to the following:

|£]
He (e w)) =1 = 77 3wl (t.0) @

wherep(h|t) is approximated a%—l and the distributiorp(y;|z;, g;(t, «)) is estimated
using the indicator function and classifier scores, as destin Section 4. For simplicity,
we refer tolH ~ as simplylH proceeding forward.

In this paper, we estimate instance hardness by biasingetbeti®n of representative
learning algorithms to those that 1) have shown utility, 2ndre widely used in practice. We
call such classification learning algorithms thpirically successful learning algorithms
(ESLAS). To get a good representation#f and hence a reasonable estimatdHofwe
select a diverse set of ESLAs using unsupervised metatep(hiee and Giraud-Carrier,
2011). Unsupervised metalearning uses Classifier OuttgrBnce (COD) (Peterson and
Martinez, 2005) to measure the diversity between learniggrithms. COD measures the
distance between two learning algorithms as the probglitiiat the learning algorithms
make different predictions. Unsupervised metalearnieg tusters the learning algorithms
based on their COD scores with hierarchical agglomerativeering. Here, we considered
20 commonly used learning algorithms with their defaultapagters as set in Weka (Hall
et al, 2009). The resulting dendrogram is shown in Figure Here the height of the line
connecting two clusters corresponds to the distance (CQU2yvbetween them. A cut-point
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Table 1 SetL of ESLASs used to calculate instance hardness.

Learning Algorithms

* RIpple DOwn Rule learner (RIDOR) * Naive Bayes

* Multilayer Perceptron trained with Back Propagation  * Ram Forrest

* Locally Weighted Learning (LWL) * b-nearest neighbors KBN)

* Nearest Neighbor with generalization (NNge) * Decisiore@(C4.5 (Quinlan, 1993))

* Repeated Incremental Pruning to Produce Error ReducRRRER)
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Fig. 2 Hypothetical 2-dimensional data set.

of 0.18 was chosen and a representative algorithm from dastecwas used to creatkas
shown in Table 1.

We recognize that instance hardness could be calculatédeitiier more specific or
broader sets of learning algorithms, and each set wouldrobtanewhat different results.
We also recognize that the set of ESLAs is constantly evglaimd thus no exact solution is
possible. As the set of ESLAs grows and evolves, instanainieas can follow this evolution
by simply adjustingC. The size and exact make up©fare not as critical as getting a fairly
representative sample of ESLAs. While more learning allgots may give a more accurate
estimate of instance hardness, we demonstrate that botieeffy and accuracy can be
achieved with a relatively small and diverse set of learmilygprithms.

With this approach, the instance hardness of an instan@pendlent both on the learn-
ing algorithm trying to classify it and on its relationshipthe other instances in the data set
as demonstrated in the hypothetical two-dimensional dettaleown in Figure 2. Instances
A, C, and D could be considered outliers, though they varyoiw hard they are to classify
correctly: instance A would almost always be misclassifiéilevinstances C and D would
almost always be correctly classified. The instances irsidee dashed oval represdyar-
der points which would have a greater degree of hardness than the uttiardanstances
that lie outside the dashed oval. Obviously, some instaaebarder for some learning al-
gorithms than for others. For example, some instances @siafistance B) are harder for a
linear classifier than for a non-linear classifier becauseralimear classifier is capable of
producing more complex decision boundaries.
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3 Hardness Measures

In this section, we present a set of measures that measimaevaspects about the instance
hardness level of an individual instance. Instance haslimeicates which instancese
misclassified while the hardness measures are intendeditaiawhy they are misclassi-
fied. Each hardness measure measures an aspect of why arcénsiay be misclassified
(class overlap, class skew, etc.) and, thus, gives keytitssigto: 1) why particular instances
are hard to classify, 2) how we could detect them, and 3) pialgncreating improved
mechanisms to deal with them. In addition, a subset of thesorea could be used as a less
expensive alternative to estimate instance hardnessualththis is not investigated in this
paper.

The set of hardness measures was discovered by examiniteatheng mechanisms of
several learning algorithms. In compiling a set of hardmaeasures, we chose to use those
that are relatively fast to compute and are interpretablassio provide an indication as to
why an instance is misclassified.

k-Disagreeing Neighbors KDN). kDN measures the local overlap of an instance in the
original task space in relation to its nearest neighborg KN of an instance is the
percentage of the nearest neighbors (using Euclidean distance) for an iostdrat do
not share its target class value.

kDN (z) = | {y S kNN(I]iAt(y) #* t(x)} |

wherekNN(z) is the set ofc nearest neighbors af andt(z) is the target class far.

Disjunct Size (DS). DS measures how tightly a learning algorithm has to dividetdsk
space to correctly classify an instance and the complefith® decision boundary.
Some learning algorithms, such as decision trees and asgleeblearning algorithms,
can express the learned concept as a disjunctive desariptiois, the DS of an instance
is the number of instances in a disjunct divided by the nunalb@istances covered by
the largest disjunct in a data set.

| disjunct(z) | —1

DS(z) =
(@) maxyep | disjunct(y) | —1

where the functiondisjunct(x) returns the disjunct that covers instangeand D is

the data set that contains instancd he disjuncts are formed using a slightly modified

C4.5 (Quinlan, 1993) decision tree, created without prgrdnd setting the minimum

number of instances per leaf node fo 1

Disjunct Class Percentage (DCP)DCP measures the overlap of an instance on a subset
of the features. Using a pruned C4.5 tree, the DCP of an iost@nthe number of

1 The C4.5 algorithm stops splitting the data when a suffidimerease in information gain is not achieved.
The idea of the DS measure is to overfit the data. However, piiitisg all the way down led to impure
disjuncts. Therefore, we modified the strictness of wheridp splitting such that all instances were carried
out as far as they could go. The only impure disjuncts thatieed are those for instances that have the same
attribute values but differ in the class value.

2 Note that C4.5 will create fractional instances in a disfunc instances with unknown attribute values,
possibly leading to DS values less than 1. Such cases atedrea though the disjunct covered a single
instance.
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instances in a disjunct belonging to its class divided bytti& number of instances in
the disjunct.

| {z:z edisjunct(xz) Nt(z) = t(x)} |

n | disjunct(x) |

DCP(x)

Tree Depth (TD). Decision trees also provide a way to estimate the desanifiogth, or
Kolmogorov complexity, of an instance. The depth of the leadle that classifies an
instance can give an intuition of the description lengthunexgl for an instance. For ex-
ample, an instance that requires 15 attribute splits befoieing at a leaf node is more
complex than an instance that only requires 1 attributé. Sglerefore free depthmea-
sures the depth of the leaf node for an instance in an indudesl d&cision tree (both
pruned (TDP) and unpruned (TI)) as an estimate of the minimum description length
for an instance.

Class Likelihood (CL). CL provides a global measure of overlap and the likelihoodrof
instance belonging to a class. The CL of an instance belgngira certain class is
defined as:

||
CL(z) = Hp(mt(x))

where|z| is the number of attributes of instaneeandz; is the value of instance’s ith
attribut€. The prior term is excluded in order to avoid bias againgaimses that belong
to minority classes. CL assumes independence between thalttidbutes.

Class Likelihood Difference (CLD). CLD captures the difference in likelihoods and global
overlap. Itis the difference between the class likelihobaminstance and the maximum
likelihood for all of the other classes.

CLD(z) = CL(x) — argmax CL(z,y)
yeY —t(x)

whereY represents set of possible labels in the data set.

Minority Value (MV). MV measures the skewness of the class that an instance beltmng
For each instance, its MV is the ratio of the number of instagrgharing its target class
value to the number of instances in the majority class.
|[{z:z€ DAt(z) =t(z)} |

maxycy | {z:2€ DAt(z) =y} |

MV(z)=1-

Class Balance (CB).CB also measures the skewness of the class that an instdnogde
to and offers an alternative to MV. If there is no class skbaentthere is an equal number
of instances for all classes. Hence, the CB of an instance is:

_|{z:z€e DAt(z) =t(x)} | 1
CBl@) = D] YT

If the data set is completely balanced the class balance véllbe O.

3 Continuous variables are assigned a probability using mekelensity estimation (John, 1995).
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Table 2 List of hardness measures and what they measure. The “+” dnglythbols distinguish which
hardness measures are positively and negatively comleldth instance hardness.

Abbr  +/- Measure Insight

kDN + k-Disagreeing Neighbors Overlap of an instance using ahefdata set features
on a subset of the instances.

DS - Disjunct Size Complexity of the decision boundary foiirgstance.

DCP - Disjunct Class Percentage Overlap of an instance assudpset of the features and
a subset of the instances.

D +  Tree Depth The description length of an instance in anded C4.5
decision tree.

CL - Class Likelihood Overlap of an instance using all of teattires and all of
the instances.

CLD - Class Likelihood Difference  Relative overlap of antargce using all of the features
and all of the instances.

MV + Minority Value Class skew.

CB - Class Balance Class skew.

For convenience, Table 2 summarizes the hardness measwteghat they measure.
Although all of the hardness measures are intended to uadersvhy an instance is hard
to classify, some of the measures indicate how easy an oestarto classify (they have a
negative correlation with instance hardness). For exantipgeclass likelihood (CL) mea-
sures how likely an instance belongs to a certain class. tgres for CL would represent
easier instances. In Table 2, the “+” and “-” symbols distiis§ which hardness measures
are positively and negatively correlated with instancelhess.

Class overlap and class skew are two commonly assumed ardvetiscauses of in-
stance hardness that are measured with the hardness nseddatbematically, the class
overlap of an instance for a binary task can be expressed as:

classOverlap({zi,yi)) = p(Filvi, t) — p(yilwi, t). 3)

wherey; represents an incorrect class for the input feature vegtorhe class skew of the
class of an instance can be expressed as:

_ p(wilt) 4

== 4)
p(¥ilt)

There is no known method to measure class overlap or to detemmen class skew affects

instance hardness. The hardness measures allow a useimatestlass overlap and class

skew as well as other uncharacterized sources of hardngsstiéns 3 and 4 could be
extended to multi-class problems with a 1 vs. 1, or a 1 vs.pgt@ach.

classSkew({xi, yi))

4 Experimental Methodology

In this section we provide our experimental methodologycdRethat to compute the in-
stance hardness of an instangewe must compute the probability thatis misclassified
when the learner is trained on the other points from the dat&ice this type of leave-one-
out procedure is computationally prohibitive, the leagnaitgorithms are evaluated using 5
by 10-fold cross-validatich We use five repetitions to better measure the instance éssdn

4 5 by 10-fold cross-validation runs 10-fold cross-validatis times, each time with a different random
seed for selecting the 10 partitions of the data.
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Table 3 Datasets used organized by number of instances, numbaeribéites, and attribute type.

. Attribute Type
#Instances|  # Attributes Categorical Numerical Mixed
o k<10 Balloons Post-Operative
S Contact Lenses| cmlreq
\% Lung Cancer desharnais Labor
] 10 < k£ < 100 Trains
Pasture
Breast-w Iris Badges 2
Breast Cancer Ecoli Teaching-
Pima Indians Assistant
k<10 Glass
Bupa
= Balance Scale
S Audiology lonosphere Annealing
\% Soybean(large) Wine Dermatology
= Lymphography Sonar Credit-A
v Congressional- Heart-Statlog Credit-G
o \oting Records arl Horse Colic
= 10 <k <100 \?owel Heart-c
Primary-Tumor Hepatitis
Zoo Autos
Heart-h
eucalyptus
k > 100 AP _Breast Uterus Arrhythmia
o Car Evaluation Yeast Abalone
= k<10 Chess
S Titanic
vV Mushroom Waveform-5000 Thyroid-
= Splice Segment (sick &
v k < 100 Spambase hypothyroid)
S Ozone level-
= Detection
k > 100 Musk (version 2)
Nursery MAGIC Gamma-
§ k<10 Telescope
S Chess- Adult-Census-
A k < 100 (King-Rook VS. Income (KDD)
= King-Pawn) Eye movements
Letter

of each instance and to protect against the dependency afathaised in each fold. We
then compare the hardness measures with instance hardness.

We examine instance hardness on a large and varied set ofelatahosen with the
intent of being representative of those commonly encoedtgrmachine learning problems.
We analyze the instances from 57 UCI data sets (Frank andciksyrni2010) and 7 non-
UCI data sets (Thomson and McQueen, 1996; Salojarvi et0@5;2Sayyad Shirabad and
Menzies, 2005; Stiglic and Kokol, 2009). Table 3 shows the d&ts used in this study
organized according to the number of instances, numbertiduges, and attribute type.
The non-UCI data sets are in bold.

We compare calculating instance hardness using all of #railey algorithms inC with
calculating instance hardness using a single learningitign In additionp(y;|zi, g(t, «))
is estimated using two methods: 1) the indicator functiehifid) which establishes the fre-
guency of an instance being misclassified and 2) the classdiges (IHclass). IHind and
IH_class are calculated using 5 by 10-fold cross-validaticenesally, classification learn-
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ing algorithms classify an instance into nominal classespduce a real-valued score,
we calculate classifier scores for the nine investigatexhieg algorithms. Obviously, the

indicator function and the classifier scores do not produee probabilities. However, the

classifier scores can provide the confidence of an inferredkehfor the class label of an in-

stance. Below, we present how we calculate the classifieesdor the investigated learning
algorithms.

Multilayer Perceptron: For multiple classes, each class from a data set is repesbeiith
an output node. The classifier score is the largest valueeobditput nodes normalized
between zero and one (tBeftmax(Bridle, 1989)):

s Cule) — 0i(x)

p(ylz) ELYloi(I)
wherey is a class from the set of possible clas¥eando; is the value from the output
node corresponding to clags

Decision Tree: To calculate a classifier score, an instance first followsirideced set of
rules until it reaches a leaf node. The classifier score ishaurof training instances that
have the same class as the examined instance divided bytladl tbhining instances that
also reach the same leaf node.

5-NN: 5-NN returns the percentage of the nearest-neighbors gine¢ avith the class label
of an instance as the classifier score.

LWL: LWL finds thek-nearest neighbors for an instance from the training dadaeaights
them by their distance from the test instance. The weigktadarest neighbors are
then used to train a base classifier. Weka uses a decisiop sisithe base classifier. A
decision stump is a decision tree that makes a singe binétysghe most informative
attribute. A test instance is propagated to a leaf node. Uilhvea$ weights of the training
instances in the leaf node that have the same class value &ssthinstance is divided
by the sum of the weights of all of the training instances mltaf node.

Naive Bayes: Returns the probability of the most probable class by mlyitig the prob-
ability of the class by the probabilities of the attributdues for an instance given the
class:

||

ax p(y; 1y
max p(y;) l:[p(wzlyj)

NNge: Since NNge only keeps exemplars of the training data, a stam® of 1 is returned
if an instance agrees with the class of the nearest exenofterwise a 0 is returned.

Random Forest: Random forests return the class counts from the leaf nodesabf tree in
the forest. The counts for each class are summed togethénamadormalized between
Oand 1.

RIDOR: RIDOR creates a set of rules, but does not keep track of thévauwnf training
instances covered by a rule. A classifier score of 1 is retuihRIDOR predicts the
correct class for an instance, otherwise a 0 is returnedgsenthe indicator function).

RIPPER: RIPPER returns the percentage of training instances teat@rered by a rule
and share the same class as the examined instance.

To our knowledge, instance hardness is the only measuretnanseeks to identify
instances that are hard to classify. However, there arer otie¢hods that could be used
to identify hard instances that have not been examined #ntitying hard instances. One
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such method that we compare against is active learningvé\lgtarning is a semi-supervised
technique that uses a mode inferred from the labeled instanachoose which unlabeled in-
stances are the most informative to be labeled by an exteraele. The informative scores
assigned by active learning techniques can be used as a&banaieasure. This assumes that
the most informative instances are those that the modehs tertain about, which would
include the border points. We implemented two active legyméchniques: uncertainty sam-
pling (US) (Lewis and Gale, 1994) and query-by-committeBQ)D(Seung et al, 1992). For
uncertainty sampling, we use margin sampling (Scheffel, @081):

a* = argminp(J1|z) — p(J2|z)
xT

whereg; andg. are the first and second most probable class labels for thenires:. We
use naive Bayes to calculate the probability of the claksean instance. For query-by-
committee, we use a committee of five learning algorithmagisjuery by bagging (Abe
and Mamitsuka, 1998). The level of disagreement is detexthirsing vote entropy (Dagan
and Engelson, 1995):

x _ N~ Vi), Vi)
x —argzrcnax ; C log C

wherey; ranges over all possible class labélgy;) is the number of votes that a class
label received from the committee, afdis the size of the committee. We examine QBC
using naive Bayes and decision trees. Active learningireg|that some labeled instances
are available to the models to produce the scores for the mtstances. We divide the data
set in half, using one half of the instances to calculate toees for the other half.

We emphasize the extensiveness of our analysis. We exam@rel®0,000 instances
individually. A total of 28,750 models are produced from 8rleing algorithms trained with
64 data sets using 5 by 10-fold cross-validafiowith this volume and diversity, our results
can provide more useful insight about the extent to whichl hastances exist and what
contributes to instance hardness.

5 Instance-level Analysis

In this section we examine the hardness measures to idéatiflinstances and the hardness
measures to discover what causes an instance to be mifiethsdie use instance hardness
with the indicator function (IHind) to establish the frequency of an instance being mis-
classified. Figure 3 shows the cumulative percentage odiiicsts that are misclassified a
specified percentage of times by the learning algorithm& ifTable 1). The first pair of
columns shows that all of the instances were classified ciyrey zero or more of the con-
sidered learning algorithms. The second pair of columnsvshbe percentage of instances
that were misclassified by at least one of the consideredif@aglgorithms. Overall, 2.4%
of the instances from the UCI data sets are misclassified|nf ghe considered learning
algorithms and 16.8% are misclassified by at least half. fi@irtstances from the non-UCI
data sets, 1.7% are misclassified by all of the consideredifenalgorithms and 22.7%
are misclassified by at least half. The trend of hardnessrigasifor the UCI and non-UCI
data sets. For the set of instances from the UCI and non-Utal gkts, only 38.3% of the
instances are classified correctly 100% of the time by thenemed learning algorithms.

5 Ridor was not used on the Letter data set as it ran out of memitiy4 Gb of RAM. The remaining 8
learning algorithms still give a good indication of how diffit each instance is to correctly classify.
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Fig. 3 Percentage of instances that are misclassified by at leastanage of the learning algorithms.

Table 4 Spearman correlation matrix for the hardness measuresnagaitude of only one pair of measures
is stronger than 0.95, showing that the measures measteeedif aspects of instance hardness.

kDN DS DCP TOP TDU CL CLD MV CB
kDN 1.0 -0.519 -0.420 0.189 0.301 -0.715 -0.703  0.387 0.240
DS 1.0 0.570 -0.405 -0.348 0.571 0.559 -0.303 -0.139
DCP 1.0 -0.340 -0.202  0.452 0.432 -0.235 -0.051
TD_P 1.0 0.859 -0.276 -0.312 0.030 0.113
TD.U 1.0 -0.414 -0.441 0.162 0.293
CL 1.0 0.989 -0.386 -0.225
CLD 1.0 -0.359 -0.224
MV 1.0 0.783
CB 1.0

These results show that a considerable amount of instamedsaed to classify correctly.
Seeking to improve our understanding of why these instaamesisclassified is the goal
of the hardness measures.

We calculate the hardness measures for all of the instargasdiess of their instance
hardness. We first examine the relationship between thenassdneasures. This will pro-
vide insight into how similar the measures are with eachrogimel detect possible overlap
in what they measure (see Table 2 for the hardness measuar@ghahthey measure). Next,
we examine the relationship of the hardness measures \gtidnice hardness. We first nor-
malize the measures by subtracting the mean and dividinigeagtandard deviation for each
measure before analyzing the results.

We first examine the correlation between the hardness me=aslable 4 shows a pair-
wise comparison of the hardness measures using the Speaamatation. Only (CL) and
class likelihood difference (CLD) are strongly correlateith a correlation coefficient of
0.989. This suggests that, besides CL and CLD, the hardneasures measure different
properties of the hardness of an instance.
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Table 5 The Spearman correlation coefficients for the hardnessuresmselating to the examined methods
for identifying hard instances. The correlation coeffitgewith the strongest correlation with Ikd and
IH_class are in bold.

kDN DS DCP TDP TDU CL CLD MV CB Lin
IH_ind 0.830 -0.547 -0.475 0.324 0475 -0.670 -0.660 0.522 0.436885
s MLP 0.668 -0.420 -0.397 0.270 0.354 -0.484 -0.476 0.367 0.287725
5 C5 0.625 -0.459 -0.453 0.262 0.353 -0.469 -0.458 0.361 0.299801
S 5-NN 0.648 -0.307 -0.295 0.254 0.304 -0.319 -0.318 0.293 0.23D738
LoLwL 0.549 -0.363 -0.302 0.149 0.288 -0.484 -0.470 0.506 0.44%671
% NB 0.545 -0.339 -0.302 0.162 0.284 -0.506 -0.499 0.405 0.328626
© NNge 0.716 -0.464 -0.432 0.304 0.394 -0.552 -0.543 0.359 0.270753
E RandFor | 0.669 -0.490 -0.448 0.276 0.349 -0.487 -0.479 0.393 0.312760
Ridor 0.711 -0.437 -0.391 0.216 0.355 -0.575 -0.558 0.473 0.398761
RIPPER | 0.675 -0.420 -0.387 0.172 0.306 -0.555 -0.538 0.496 0.33D747
IHclass | 0.875 -0.615 -0.540 0.341 0.513 -0.782 -0.767 0.542 0.42p938
o MLP 0.764 -0.515 -0.528 0.399 0.516 -0.679 -0.667 0.419 0.324809
g C45 0.680 -0.629 -0.711 0.452 0.483 -0.644 -0.627 0.391 0.234.874
» 5NN 0.771 -0.316 -0.309 0.000 0.187 -0.574 -0.556 0.384 0.232818
@ LwL 0.736 -0.538 -0.432 0.198 0.426-0.745 -0.718 0.615 0.521 0.874
‘%5 NB 0.698 -0.471 -0.411 0.205 0.382-0.775 -0.762 0.411 0.273| 0.779
& NNge 0.716 -0.464 -0.432 0.304 0.394 -0.552 -0.543 0.359 0.270753
O RandFor | 0.852 -0.611 -0.539 0.322 0.463 -0.724 -0.708 0.475 0.348901
Ridor 0.711 -0.437 -0.391 0.216 0.355 -0.575 -0.558 0.473 0.398761
RIPPER | 0.717 -0.542 -0.583 0.417 0.486 -0.673 -0.649 0.398 0.26B854
US.NB -0.656 0.451 0.374 -0.097 -0.3100.889 0.881 -0.373 -0.187 0.859
QBC.NB | 0.440 -0.229 -0.169 0.083 0.222-0.521 -0.534 0.265 0.201| 0.500
QBC.C4.5| 0.672 -0.486 -0.358 0.362 0.542 -0.605 -0.597 0.357 0.322726

The more interesting question to consider is how does insthardness relate to the
considered hardness measures. Table 5 shows the Speamaatiom coefficients relating
instance hardness to the other considered hardness nme#sutee UCI and non-UCI data
sets. The hardness measure with the strongest correlatiomatance hardness lihd and
IH_class is in bold. The first section of the table uses the itdidanction to calculate in-
stance hardness, the second section uses the classifies seaalculate instance hardness,
and the third section shows the results for active learriidgnd and IH.class use the in-
dicator function and classifier scores respectively frohofathe learning algorithms i
to calculate instance hardness. The following rows usegiesiaarning algorithm to calcu-
late instance hardness. For all of the hardness measis DCP, CL, and CLD have the
strongest correlation with all of the hardness measuresgU3CA on the hardness mea-
sureskDN, CL, and CLD have the largest coefficients for the first gipal component (thus
accounting for more variance than the other measuk&sy, CL, and CLD measure class
overlap using all of the features from the data set. The ottesures (which measure over-
lap on a subset of the features, class skew, and the desnrietigth) are not as indicative of
an instance being hard to classify. The results from the@acorrelation coefficients and
the PCA analysis suggest that, in general, class overlapriseipal contributor to instance
hardness for the considered data sets whether consideBibé<in general (IHind and
IH _class) or for a specific learning algorithm. The effect okslaverlap on instance hard-
ness can also be seen by examining individual instanceshairdcbrresponding hardness
measures. The hardness measures and instance hardnessfoala sample of instances
are provided in Table 6. The first instance is a clear exanmaleexhibits class overlap and
should be misclassified as indicated by the values of theneasdmeasures (i.e. high value
for kDN, CLD is negative, etc.).



14 Smith et al.

Table 6 The hardness measures and instance hardness values fanaple@set of instances.

#/data  id |kDN DS DCP TDP TDU CL CLD MV CB|IH.ind IH_cla USNB QBC_.NB QBC.C4.5

llyeast 147(0.98 0 0.25 12 9 0.28-0.320.470j061 0.84 0.20 0.09 0.60
2|colon 56046 1 098 4 3 1 1 0 0.150.84 0.69 1 0 1
3larl 84(037 0 033 5 2 092084 0 0p991 0.71 1 0.74 0.55

One of the difficulties of identifying hard instances is ti@rdness may arise from
several sources. For example, instances 2 and 3 in TableeGrhaliiple possible reasons
for why they are misclassified, but no hardness measuregiyrordicates that it should be
misclassified (i.e. th&DN values are less than 0.5, meaning that the instances afftee
the majority of their neighbors). The last column “Lin” indla 5 shows the correlation
coefficients of a linear model of the hardness measuresqgpireglithe hardness measures.
The instance hardness and hardness measures from the UGdrutdC| data sets for each
instance were compiled and linear regression was used ticptbe hardness measures.
Apart from USNB and QBCNB, a linear combination of the hardness measures results in
a stronger correlation with instance hardness than anyedhtlividual measures suggesting
that there is no one measure that sufficiently captures ttmbss of an instance.

Comparing the hardness measures,cléks has the strongest correlation with the lin-
ear combination of the hardness measureskid. IH_class also has a strong correlation
with CL and CLD. Only USNB has a stronger correlation with CL and CLD thandhss.
These strong correlations with Ielass suggest that lidlass may be a good candidate for
determining the hardness of an instance. The QBC methodsoas strongly correlated
with any of the hardness measures as the other hardnessresedkhe active learning ap-
proaches select border points as the hardest instancedp mdt indicate that the outlier
instances are hard. We also observe that using classifiezssbas a stronger correlation
with the hardness measures than using the indicator funtdioalculate instance hardness.
For all of the considered learning algorithms, calculaiimgtance hardness with the clas-
sifier scores provide a stronger or equal correlation withlrdness measures than the
indicator function, suggesting that the classifier scoray provide a better indication of
which instances are hard to classify. Also, for our exanmmadf when ESLAs misclassify
an instance, using an ensemble of learning algorithms trmé@te hardness has a stronger
correlation with the hardness measures than a single fepahgorithm.

The previous results suggest that, in general, class @vedases instance hardness.
However, in making this point, we realize that all data setgehdifferent levels and causes
of hardness. Table 7 shows the correlation betweenléds and the hardness measures for
the instances in each data set. The column “DSH” refers tdakee set hardnesand is the
average IHclass value for the instances in the data set. The hardesdttdave a higher
DSH value. The values in bold represent the hardness meathathave the strongest
correlation with IHclass for the instances in the data set. The underlined valte the
hardness measures with a correlation magnitude greaterOtiid. The values in Table 7
indicate that the hardness of the majority of the data sessrimgly correlated with the
hardness measures that measure class overlap. There areatéesets that have a strong
correlation between Iitlass and the measures that measure class skew (MV and GB). Th
most notable are the post-opPatient and zoo data sets. ¢%@ thata sets, in addition to
having a strong correlation with MV and CB, instance hardrisslso strongly correlated
with other hardness measures that measure class overlap.

It is not surprising that class overlap is observed as a ipa@hcontributor to instance
hardness since outliers and border points, which exhibgscbverlap, have been observed
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Table 7 The correlation of the hardness measures witttlass for the instances in each data set. DSH is
the average I|ktlass value of the instances in the data set. The underliale@s are the hardness measures
with a correlation magnitude greater than 0.75. The boldeskepresent the hardness measures that have

the strongest correlation with Udlass for each data set.

Dataset DSH kDN DS DCP ThDP TDU CL CLD MV CB
abalone 0.815 0.859 -0.485 -0.287 -0.203 -0.085 -0.194 -0.141 0.323 0.323
adult-census 0.208 0.898 -0.722 -0.743 0.515 0.599 -0.737 -0.737 0.569 0.569
anneal.ORIG 0.108 0.658 -0.600 -0.349 0.326 0.4160.689 -0.687 0.425 0.425
AP_BreastUterug 0.056 0.563 -0.615 -0.279 0.094 0.323 -0.168 -0.168 0.535 0.535
arl 0.126 0.684 -0.814 -0.388 0.726 0.395 0.450 0.450 0.450 0.450
arrhythmia 0.416 0.845 -0.769 -0.334 -0.655 -0.478 -0.404 -0.407 0.687 0.687
audiology 0.339 0.836 -0.783 -0.262 -0.011 -0.010 -0.681 -0.668 0.653 0.653
autos 0.337 0.752 -0.405 -0.082 0.064 0.033 -0.450 -0.447 0.086 0.086
badges2 0.003 0.216 -0.563 NA NA NA -0.377 -0.377 0.563 0.563
balance-scale | 0.259 0.935 -0.851 -0.578 0.792 0.749 -0.775 -0.797 0.466 0.466
balloons 0.072 0.746 -0.390 NA 0.035 0.035-0.931 -0.931 -0.283 -0.283
breast-cancer | 0.339 0.877 -0.632 -0.764 0.256 0.265 -0.490 -0.490 0.645 0.645
breast-w 0.059 0.627 -0.809 -0.610 0.746 0.804 -0.525 -0.533 0.598 0.598
bupa 0.396 0.715 -0.512 -0.358 0.395 0.404 0.191 0.191 0.389 0.389
carEval 0.140 0.924 -0.883 -0.561 0.886 0.873 -0.937 -0.912 0.705 0.705
chess 0.614 0.606 -0.245 -0.498 0.226 0.073 -0.310 -0.242 0.190 0.190
chess-KRVKP | 0.087 0.608 -0.348 -0.317 0.725 0.7260.860 -0.860 0.126 0.126
cmlreq 0.324 0.628 -0.166-0.710 0.548 NA 0.236 0.236 0.710 0.710
colic 0.223 0.796 -0.660 -0.644 0.325 0.296 -0.444 -0.443 0.282 0.282
colon 0.286 0.620 -0.528 0.391 -0.316 -0.342 -0.173 -0.173 0.495 0.495
contact-lenses | 0.281 0.859 -0.880 -0.744 0.907 0.868 -0.877 -0.871 0.551 0.551
credit-a 0.197 0.755 -0.581 -0.743 0.367 0.574 -0.511 -0.511 0.360 0.360
credit-g 0.321 0.887 -0.595 -0.420 0.288 0.556 -0.620 -0.620 0.675 0.675
dermatology 0.099 0.757 -0.689 -0.444 0.494 0.457 -0.738 -0.744 0.526 0.526
desharnais 0.386 0.877 -0.714 -0.199 -0.024 -0.381 0.053 0.136 0.562 0.562
ecoli 0.229 0.870 -0.741 -0.234 -0.137 0.213 -0.8310.829 0.712 0.712
eucalyptus 0.467 0.845 -0.632 -0.506 0.380 0.352 -0.390 -0.381 0.298 0.298
eyemovements | 0.492 0.618 -0.459 -0.115 0.198 0.254 -0.289 -0.265 -0.159 -0.159
glass 0.399 0.816 -0.606 0.045 0.136 0.144 -0.477 -0.474 -0.055 -0.055
heart-c 0.244 0.816 -0.756 -0.314 0.413 0.368 -0.740 -0.743 0.046 0.046
heart-h 0.237 0.803 -0.751 -0.563 0.297 -0.181 -0.675 -0.681 0.394 0.394
heart-statlog 0.248 0.793 -0.672 -0.187 0.496 0.497 -0.719 -0.719 0.095 0.095
hepatitis 0.222 0.825 -0.888 -0.011 0.550 0.635 -0.715 -0.715 0.615 0.615
hypothyroid 0.039 0.655 -0.281 -0.144 0.284 0.272 -0.617 -0.619 0.449 0.449
ionosphere 0.138 0.350 -0.556 0.044 0.182 0.183 -0.265 -0.262 0.119 0.119
iris 0.071 0.598 -0.579 -0.4630.870 0.846 -0.626 -0.626 NA NA
labor 0.177 0.667 -0.455 -0.514 0.336 -0.248 -0.553 -0.553 0.389 0.389
letter 0.347 0.752 -0.790 -0.244 0.518 0.588 -0.785-0.769 0.040 0.040
lungCancer 0.537 0.736 -0.393 -0.251 0.283 0.203 -0.052 -0.057 -0.200 -0.200
lymphography | 0.251 0.776 -0.759 -0.113 0.291 0.299 -0.546 -0.538 0.246 0.246
MagicTelescope| 0.223 0.821 -0.624 -0.387 -0.116 0.088 -0.611 -0.612 0.435 0.435
mushroom 0.016 0.085 -0.342 NA -0.565 -0.565 -0.147 -0.140 0.451 0.451
nursery 0.110 0.569 -0.879-0.384 0.896 0.904 -0.897 -0.892 0.717 0.717
ozone 0.071 0.550 -0.547 -0.217 0.2240.587 -0.499 -0.503 0.290 0.290
pasture 0.295 0.745 -0.672 -0.133 0.569 0.667 -0.671 -0.673 NA NA
pimaDiabetes | 0.305 0.895 -0.696 -0.625 0.510 0.659 -0.622 -0.622 0.481 0.481
post-opPatient | 0.425 0.785 -0.573 -0.788 0.145 NA -0.079 -0.071 _0.775 0.775
primary-tumor | 0.678 0.887 -0.486 -0.754 0.260 0.311 -0.539 -0.489 0.476 0.476
segment 0.115 0.616 -0.911 -0.476 0.783 0.719 -0.636 -0.637 NA NA
sick 0.037 0.591 0.002 0.407 0.137 0.3330.772 -0.772 0.390 0.390
sonar 0.274 0.652 -0.568 -0.330 0.303 0.2640.715 -0.715 0.027 0.027
soybean 0.181 0.820 -0.718 -0.221 0.275 0.259 -0.586 -0.591 0.138 0.138

Continued on next page
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Table 7 (cont.) The correlation of the hardness measures wittclass for the instances in each data set.
DSH is the average IHlass value of the instances in the data set. The underliake#s are the hardness
measures with a correlation magnitude greater than 0.7& bold values represent the hardness measures
that have the strongest correlation with_dtass for each data set.

Dataset DSH kDN DS DCP TOP TDU CL CLD MV CB
spambase 0.133 0.583 -0.655 -0.273 0.343 0.261 -0.603 -0.616 0.037 0.037
splice 0.158 0.373 -0.549 -0.402 0.520 0.5040.674 -0.673 0.283 0.283
teachingAssistanf 0.495 0.790 -0.629 -0.388 0.055 -0.161 -0.219 -0.218 0.066 0.066
titanic 0.305 0.356 0.272 -0.888 0.030 0.030 -0.140 -0.140 0.256 0.256
trains 0.411 0.756 -0.362 -0.241 0.071 NA -0.200 -0.200 NA NA
vote 0.070 0.674 -0.825 -0.622 0.811 0.691 -0.645 -0.654 0.549 0.549
vowel 0.287 0.364 -0.521 -0.190 0.343 0.320 -0.443 -0.403 NA NA
waveform-5000 | 0.268 0.805 -0.595 0.116 0.419 0.417 -0.651 -0.651 -0.184 -0.184
wine 0.079 0.711 -0.519 -0.242 -0.093 -0.368 -0.538 -0.539 -0.102 -0.102
yeast 0.523 0.893 -0.674 -0.342 0.081 0.285 -0.285 -0.222 -0.026 -0.026
Z00 0.134 0.900 -0.836 -0.392 0.690 0.684 _-0.828-0.821 0.830 0.830

Table 8 Various statistics for the hardness measures for insteéhaédelong to the majority class and those

that do not. For the instances that belong to the minoritgs;lthe values for the measures indicate higher
levels of class overlap. The column “easy” gives the expmeetdue for the hardness measure if an instance
has low instance hardness.

Minority Class Majority Class
Min. Mean Max. Std Dev| Min. Mean Max. Std Dev| easy
DN 0 0.348 1 0.307 0 0.172 1 0.236 0
DS 0 0.179 1 0.286 0 0.363 1 0.410 1
DCP 0 0.786 1 0.300 | 0.002 0.909 1 0.170 1
TD_P 1 9.530 59.88 6.232 1 9.593  136.265 7.355| 1
TD.U 0 7.315 29 4.809 0 5.555 29 4.526 1
CL 0 0.563 1 0.375 0 0.886 1 0.188 1
CLD -1 0.297 1 0.602 -1 0.803 1 0.306 1
MV 1 0.308 0.910 0.278 0 0 0 0 1
CB -0.471 -0.026 0.189 0.111| O 0.213 0.213 0.155| 1
IH_class 0 0.410  0.999 0.269 0 0.163 0.994 0.200 0

to be more difficult to classify correctly. However, instaachat belong to a minority class
have also been observed to be more difficult to classify ctyteThis is confirmed as the
coefficients for the class imbalance measures (MV and CB)aribear regression models
are statistically significant. Also, removing MV and CB frdime linear model results in
a weaker correlation. To what extent does class skew affistance hardness? One of the
core problems seen with class skew is that of data ambiguiitgn multiple instances have
the same feature values but different classes. In thess,dasanstances that belong to the
minority class will be misclassified. There are only 204 simstances, about 0.1% of all of
the instances used in this study. We removed all of the arobiginstances and then divided
the instances into those that have a MV value of 0 (they betorige majority class) and
those that have a value greater than 0. This considers amanagsthat does not belong to
the majority class as belonging to a minority class. Theeedd469 instances that belong to
the majority class and 92,669 instances that do not. We wbdeat instances that belong to
a minority class are harder to classify correctly than titbaedo not. The average lElass
value for the instances that belong to a majority class i§ @tile the average instance
hardness value for the instances not belonging to the magass is 0.41. Table 8 compares
the hardness measures for the instances that belong to &tynelass and those that belong
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Table 9 The hardness measures and instance hardness values famapl@set of instances from the chess
data set.

id |kbN DS DCP TDP TDU CL CLD MV CB|IH.ind IHcla USNB QBC.NB QBC.C4.5
220330.64 029 1 5 5 0.09-036 O O.E]ZID.24 0.41 0.33 0.00 0.40

26549 0.64 0.29 1 5 5 0.12 -0.36 0.52 00®.49 0.39 0.39 0.00 0.32

to the majority class. The last column (easy) gives the védueghe hardness measures
for the easiest instances (the instances that are alwayectgrclassified). Not including
MV and CB (which are biased since all of the instances thatrigeko the non-majority
classes are separated from the majority class instandiesf){tee hardness measures except
for pruned tree depth (TIP) indicate that the instances that belong to a minoritysctas
harder to classify correctly as well. Thus, we observe tlestscskew exacerbates the effects
of the underlying causes for instance hardness. This asscwith Batista’s conclusion
that class skew alone does not hinder learning algorithifopeance, but rather class skew
magnifies the hardness already present in the instancestéBat al, 2004). For example,
Table 9 gives the hardness measure values for two instarmestifie chess data set. The
hardness measures are similar for each measure excepsthediance (id 22037) belongs
to the majority class while instance 26549 does not. Thediffce in the IHnd value for
the instances is considerable. The difference ircléks values does not vary considerably
since many of the class scores are similar to the hardnessunesa This supports the fact
that class skew exacerbates the effects of class overlaglandshows that IHnd may

be better able to incorporate the effects of class skew tHarldss. Given that class skew
exacerbates the effects of class overlap on instance resdihe expected instance hardness
for an instance is related to the class overlap (Equatiom@x#ass skew (Equation 4) of the
instance:

E[IH({xs,y:))] ~ f(classOverlap({zi,yi)), classSkew({x;,y:))).

The exact form off is unknown at this stage. Additionally, other factors natcdissed here
may affect the hardness of an instance. Discovering théorthip between class overlap,
class skew, and instance hardness, as well as identifyfreg sburces of hardness, is left for
future work.

6 Integrating Instance Hardness into the Learning Process

In this section we examine how to exploit instance hardnesiagl the learning process to
alleviate the effects of class overlap and instance hasdhesorporating instance hardness
into the learning process provides significant improvemémiaccuracy. Note that the im-
provement requires computing instance hardness for eatdmice. In the experiments, we
opt to use IHclass instead of IHnd as they are strongly correlated and dtass produces
slightly better results. We also ran the experiments catmg instance hardness with the
same single learning algorithm that is inferring the modiis provides the opportunity to
compare whether it is more appropriate to use a specific meainstance hardness rather
than a more general one. In addition, we ran the experimesintg the active learning hard-
ness measures. The active learning techniques are nondddig identify hard instances
and using them as a hardness measure often resulted in madtsrén order to avoid a
deluge of data, we do not show their results.
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6.1 Informative Error

Informative error(IE) is based on the premise of knowing if an instasheuldbe misclas-
sified. We implement IE in multilayer perceptrons (MLPs)ineal with backpropagation
using instance hardness computed using 1) all of the legmgorithms inL (IEgsz a)

and 2) only using a MLP (I 1 p). We use instance hardness to estimate if an instance
should be misclassified. A common approach for classifingtimblems with MLPs is to
create one output node for every class value. If the dataasetiltlass with three possible
values, then three output nodes are created. The targettaatipe for each node is either 1

if the instance belongs to that class or 0 if it does not. Therdéunction oftarget — output

for each of thek output nodes can then be formulated as:

1—op If t(CL‘) = Kkeclass
error(x) = )
0 — o, otherwise
whereoy, is the output value for nodk, ¢(x) is the target value for instanaeandk.;qss iS
the class represented by nade
We modify the error function such that it subtracts the inséahardness value of an
instance from the target value for the output node only.

error(a) = {1 ~H(, () = o #(z) = Ketass
0— o otherwise
The instance hardness value is only subtracted from thesbotge that corresponds with
the target class value of an instance. If the instance hasdredue were added to the output
value for the output nodes that do not correspond with thgetarlass value of an instance
then this could potentially confuse the network as an ircgasincorrect for one class value
yet correct for all of the others. For example, if an instahae an instance hardness value
of 1, then the errors would essentially tell the network thattarget value is wrong whereas
all of the other classes are correct. Also, if an instancedmedstance hardness value of 0.5,
all output nodes would have the same target value and noniattion is gained. IE places
more emphasis on the non-overlapping instances by redtiseng/eight of the error from
instances with high instance hardness values.

Table 10 shows the results of using IE to train a MLP on 52 data &he data sets
that did not have instance hardness greater than 0.5 wergsad) compared against two
filtering techniques (repeated edited nearest neighboN{RETomek, 1976) and fast local
kernel noise reduction (FaLKNR) (Segata et al, 2009)) and Ibwosting methods (Ad-
aBoost (Freund and Schapire, 1996) and MultiBoost (WebB®0QR0sing a MLP as the base
algorithm). RENN repeatedly removes the instances thatréselassified by a 3-nearest
neighbor classifier and has produced good results. FaLKN®Rves any instances that dis-
agree with the predicted class from a support vector madhaeed on the neighborhood
of the selected instance. The average accuracy, the nurfiieres that the accuracy us-
ing IE; 1 p is better, the same, or worse than the other methods, arpvihleie calculated
using the Wilcoxon signed-rank test are provided in thedmtthree rows as a summary
of the table. There are 14 data sets on whicky i increases accuracy by more than 5%,
indicated by an asterisk. On the lung cancer data set, agcimereases by 21.9% and is
3 percentage points higher than the next best algorithmKR&). On the labor data set,
IExs 1 p increases accuracy by 10.5% and is 5 percentage pointegthah the next best
algorithm. On average, Iz p increases more than 3% in accuracy over the original and
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Table 10 Pairwise comparison of informative error with standardipacpagation, RENN, FaLKNR, Ad-
aBoost, and MultiBoost. An asterisk indicates data sets lnislWE, 1, » improves accuracy more than 5%.

Dataset Orig RENN  FaLKNR AdaBoost MultiBoost IEsrpa IEnrp
abalone 26.24 27.80 28.78 26.24 26.24 27.84 29.12
adult-census 82.91 83.82 83.45 82.91 8291 85.22 84.46
anneal.ORIG 98.78 98.33 97.55 98.89 98.89 99.33 96.82
arrhythmia 67.70 61.50 67.92 67.70 67.70 71.68 71.06
audiology 83.19 74.78 77.88 83.19 83.19 79.65 81.95
autos 80.00 76.10 68.29 79.51 78.05 78.05 80.39
balance-scale 90.72 89.45 90.72 92.64 92.80 90.40 91.71
breast-cancer* 64.69 74.48 73.08 70.28 69.93 75.87 74.34
breast-w 95.28 96.14 96.28 94.99 95.85 96.57 96.62
bupa 71.59 71.88 71.01 71.88 7159 7275 71.59
carEval 99.54 92.53 99.25 99.54 99.54 98.61 99.46
chess-KRvskKP 99.41 99.31 99.47 99.41 99.41 99.41 99.39
chess 62.25 56.94 62.18 65.75 67.60 51.49 61.31
colic* 80.43 83.70 85.33 80.98 82.07 85.33 86.25
contact-lenses* 70.83 91.67 83.33 70.83 70.83 91.67 87.50
credit-a 84.20 87.97 84.78 84.20 84.35 86.52 87.62
credit-g* 71.60 76.00 72.80 71.50 73.00 76.90 78.22
dermatology 96.17 96.45 97.81 96.17 96.17 97.54 98.69
ecoli 86.01 87.20 87.50 84.23 85.12 86.90 87.20
glass 67.76 70.09 68.22 71.50 67.29 70.56 71.96
heart-c* 80.86 82.51 79.54 77.56 79.87 84.16 86.20
heart-h 85.03 84.35 84.01 80.27 81.63 82.99 84.42
heart-statlog* 78.15 82.96 83.33 78.15 80.37 85.93 84.81
hepatitis* 80.00 86.45 82.58 79.35 79.35 87.10 89.68
hypothyroid 94.04 94.35 94.57 94.62 95.10 95.52 94.90
ionosphere 91.17 86.61 86.61 91.17 91.74 91.74 89.23
iris 97.33 96.67 96.67 96.67 96.67 96.67 96.80
labor* 85.96 85.97 91.23 85.96 85.96 96.49 91.93
letter 82.08 82.56 82.60 88.35 87.30 80.48 81.86
lungCancer* 37.50 50.00 56.25 37.50 37.50 59.38 60.00
lymphography 84.46 83.78 83.11 84.46 85.14 85.14 85.95
MagicTelescope 85.87 85.42 85.19 85.90 86.25 85.53 86.36
nursery 99.73 97.45 98.89 99.97 99.97 99.87 99.92
ozone 96.41 96.81 97.12 96.41 99.73 96.96 97.41
pimaDiabetes 75.39 76.69 75.91 75.26 75.13 77.08 78.07
post-opPatient* 55.56 71.11 71.11 52.22 54.44 66.67 72.22
primary-tumor* 38.35 47.20 46.02 43.07 43.07 49.56 51.27
segment 96.06 95.97 96.41 96.06 95.93 96.10 96.84
sick 97.27 97.27 96.85 97.27 97.11 97.51 97.42
sonar* 82.21 84.13 85.10 83.65 83.17 87.98 88.17
soybean 93.41 92.97 95.17 93.41 93.41 95.17 94.73
spambase 91.44 91.05 92.18 91.44 91.05 92.24 92.65
splice 95.96 95.24 95.36 95.96 95.96 96.80 96.78
teachingAssistanty 58.94 61.59 63.58 58.94 58.94 64.90 65.56
titanic 78.46 79.06 79.06 78.60 78.96 78.87 79.06
trains* 70.00 80.00 50.00 70.00 70.00 90.00 90.00
vote 94.71 94.71 96.55 94.48 94.48 95.17 95.95
vowel 92.73 93.84 93.64 96.26 96.67 91.62 91.94
waveform-5000 83.56 84.93 86.30 83.36 83.50 85.66 86.60
wine 97.19 96.63 96.63 97.19 97.19 97.75 98.65
yeast 59.43 59.03 60.31 59.43 59.10 59.97 60.77
Z00 96.04 94.06 94.06 96.04 96.04 96.04 95.84
Average 81.05 82.45 82.14 81.37 81.60 84.03 84.57
better-same-worsg¢ 40-1-11 43-0-9 43-1-8 40-0-12 38-1-13 36-1-15
p-Value < 0.001 <0.001 <0.001 < 0.001 < 0.001 0.003
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2% over RENN. The increases in accuracy are statisticajlyifstant. In this case, I p
is significantly better than IEsr 4. Thus, in this case, using a specific bias from a learning
algorithm is preferred. This is examined in more detail ia tiext section.

Although IE is described in the context of MLPs, it can als@pplied to other learning
algorithms that are incrementally updated based on an eatoe such as the class of non-
closed form regression models (i.e., logistic regressimhigotonic regression). Similar to
informative error, instance hardness could be used to w#ighnstances prior to training a
model. This weight could then be used in a number of learniggridhms such as nearest-
neighbor or naive Bayes algorithms.

6.2 Filtering the data set

A simple idea to handle hard instances and reduce overlayfilter or remove them from

a data set prior to training. The idea of filtering is to remtheinstances that are suspected
outliers or noise and thus increase class separation (amittMartinez, 2011). We use the
IH_class values to determine which instances to filter from tita dets. We compare the
results to those by RENN and the majority and consensussfifterposed by Brodley and
Friedl (1999). The majority and consensus filters removenatance if it is misclassified
respectively by the majority of, or all, three learning altfons (C4.5, IB1, and thermal
linear machine (Brodley and Utgoff, 1995)). When using th&tance hardness values, we
use the classifier scores from the five folds of the nine legraigorithms as our ensemble
and remove any instances with an_fitass value greater than a set threshold. We set the
threshold at 0.5 (IH.5), 0.7 (IH0.7) and 0.9 (IHO0.9). We also compare using each learning
algorithm to filter the instances and as the learning algorifiH_LA). For example, IHLA

for MLP uses a MLP to identify which instances to filter priar training a MLP. Each
filtering technique was used on a set of 52 data sets evaluated five by ten-fold cross-
validation on the nine learning algorithms. Testing is doneall of the data, including the
instances that were removed.

For the nine learning algorithms, Table 11 shows the aveaagaracy, pairwise com-
parison of the accuracies, apevalues from the Wilcoxon signed-rank statistical signifi-
cance test comparing the filtering method to the originaliezy. Only the averages are
displayed to avoid the overload of tables and much of theeggge information is present
in the pairwise comparison of the algorithms (number of #riteat a learning algorithm
increases-stays the same-decreases the accuracy) gndaioe from the Wilcoxon signed
rank significance test. Filtering significantly increaslessification accuracy for most of the
filtering techniques and learning algorithms. IH 0.7 ackgethe greatest increase in accu-
racy, being slightly better than the majority filter. One lbé tadvantages of using instance
hardness is that various thresholds can be used to filtem#tances. However, we note
that there is not one filtering approach that is best for altdang algorithms and data sets
(as indicated by the counts). For filtering, using the saraeniag algorithm to infer the
model and to determine which instances to filter is only betian using all of the learning
algorithms inZ for C4.5 and 5-NN.

To examine the variability of each data set and learningrédlgn combination, we
examine an adaptive filtering approach that generates &lsaroing algorithms to calculate
instance hardness for a specific data set/learning algogthmbination. We call the set of
learning algorithms used to calculate instance hardndiéieaset The adaptive approach
discovers the filter set through a greedy search.ofhe adaptive approach iteratively adds
a learning algorithm front to a filter set by selecting the learning algorithm that pieztu
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Table 11 The average accuracy values for the nine learning algositomparing filtering techniques against
not filtering the data (Orig). “count” gives the number of ésthat a filtering algorithm improves, maintains,
or reduces classification accuracy. On average, filteringl#ita sets significantly improves the classification
accuracy. Thep-values in bold represent the cases where filtering significancreases the classification
accuracy over not filtering. For each learning algorithre,dhcuracy for the filtering technique that produces
the highest accuracy is in bold.

Algorithm | Orig  IH.0.5 IH.0.7 IH.0.9 RENN  Majority Consen IHA
MLP 81.05 83.12 83.58 81.86 82.45 82.52 81.92 82.95
count 35-1-16  37-0-15  30-2-20 28-3-21  25-0-27 24-0-28  36-0-16
p-value 0.001 < 0.001 0.025 0.047 0.151 0.246 0.002
C4.5 80.11 80.23 81.46 80.53 80.51 81.48 81.11 82.06
count 32-0-20 41-2-9 25-2-25  25-4-23  32-3-17 36-3-13  38-2-12
p-value 0.054 < 0.001 0.226 0.122 0.002 0.001 < 0.0015
5-NN 79.03 81.42 82.14 80.21 82.28 81.62 81.05 82.34
count 39-1-12  38-3-11  37-4-11  39-2-11  36-5-11  32-9-11 41-2-9
p-value < 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
LWL 69.36 71.05 69.65 69.80 69.75 70.80 70.32 67.69
count 32-11-9  26-12-14 23-13-16 24-14-14 33-8-11 22-18-12 2183
p-value 0.002 0.127 0.103 0.091  0.002 0.009 0.634

NB 75.68 77.79 77.22 76.50 76.17 77.52 77.05 75.04
count 37-1-14 36-0-16 32-3-17  27-7-18  35-4-13  31-8-13 21-1-30
p-value < 0.001 < 0.001 0.008 0.083 0.001 < 0.001 0.871
NNge 79.45 81.69 82.16 80.05 81.16 81.40 81.10 81.57
count 34-0-18 41-0-11 29-2-21  30-3-19 31-4-17 29-7-16 36-0-16
p-value < 0.001 < 0.001 0.070 0.040 0.006 0.003 0.001
RandFor |[81.59 82.52 83.07 81.83 82.44 82.37 81.97 82.80
count 28-3-21 36-0-16 29-1-22  26-6-20 24-5-23  25-8-19 27-4-21
p-value 0.0m 0.001 0.081 0.045 0.051 0.026 0.031
Ridor 78.09 79.29 79.22 78.45 78.16 78.87 78.94 78.65
count 36-3-13  36-2-14  25-1-26  27-2-23  34-3-15 29-7-16 = 32-3-17
p-value < 0.001 0.001 0.173 0.419 0.003 0.021 0.013
RIPPER | 77.83 79.21 79.16 78.44 7752 79.79 78.89 78.83
count 37-1-14  38-0-14  32-1-19 26-4-22  36-1-15 32-7-13  37-2-13
p-value < 0.001 < 0.0015 0.019 0.464 0.001 0.001 0.003
Average | 78.02 79.59 79.74 78.63 78.94 79.60 79.15 79.10
count 42-0-10 45-0-7 38-0-14 33-1-18 38-0-14 39-0-13  38-0-14
p-value < 0.001 <0.001 <0.001 0.003 < 0.001 < 0.001 0.001

the highest classification accuracy when added to the fileras shown in Algorithm 1.
A constant threshold value is set to filter instancesam L A(F') for all iterations. We
examine thresholds of 0.5, 0.7, and 0.9. The baseline anctwathe greedy approach is
the accuracy of the learning algorithm without filtering.€Téearch stops once adding one
of the remaining learning algorithms to the filter set doesmzrease accuracy. The running
time for the adaptive approach@(N?) whereN is the number of learning algorithms to
search over. The significant improvement in accuracy mdiestcrease in computational
time reasonable in most cases.

Table 12 gives the results for adaptively filtering for a sfiedata set/learning algorithm
combination. The adaptive approach significantly incredise classification accuracy over
IH_0.7 for all of the learning algorithms and thresholds. Theuaacy increases for at least
85% of the data sets regardless of which learning algorithbeing used for classification.
A _0.9 achieves the highest classification accuracy for thptagaapproach. Interestingly,
there is no one particular learning algorithm that is alweyduded in a filter set for a
particular learning algorithm. The frequency for how oftelearning algorithm is included



22 Smith et al.

Algorithm 1 Adaptively constructing a filter set.

: Let F' be the filter set used for filtering antibe the set of candidate learning algorithms far

. Initialize F' to the empty setf” < {}

. Initialize the current accuracy to the accuracy from arpgniilter set: currAcc < runLA({}).
runLA(F) returns the accuracy from a learning algorithm trained oata det filtered withF".

4: while £ # {} do

5 bestAcc <+ currAcc;

6: bestLA <+ null;

7:

8

WN P

forall g € £do
tempF < F + g;

9: acc <+ runLA(tempF);
10: if acc > bestAcc then
11: bestAcc < acc;

12: bestLA <+ g;

13: end if

14:  end for

15: if best Acc > currAccthen
16: L + L —bestLA;
17: F <+ F + bestLA;
18: currAcc < bestAcc;
19: else

20: break;

21: endif

22: end while

in a filter set for each learning algorithm and an aggregatmic(verall) is given in Table
13. MLPs and random forests are included in more than 50%en€dnstructed filter sets
while RIPPER and NB are included in less than 2% of the filtes.Sehe remaining learning
algorithms are used in a filter set between 13% and 23% of mhe. it is interesting that
some of the learning algorithms include a particular leagralgorithm in the filter set for
most of the data sets while other learning algorithms newearely include it. For example,
MLP is always included in the filter set for NB, yet never foNB{. Also, only the MLP and
5-NN learning algorithms frequently include themselvethiafilter set. Thus, hardness for
a learning algorithm is often better detected using a diffetearning algorithm.

7 Data Set-level Analysis

Our work has focused on hardness at the instance-level. Wowgior work has been done
that examines what causes hardness at the data set levéilafdress measures and hard-
ness measures can be averaged together to measure hatdhesdada set level. The av-
eraged hardness measures can provide insight into a datalsmtacteristics and possibly
provide direction into which methods are the most appropriar the data set. Previous
studies have primarily looked at only binary classificagwablems. We compare instance
hardness at the data set level with other data set complmégsures. We use a set of
complexity measures by Ho and Basu (2002) (implemented ®@bL (Orriols-Puig et al,
2009)). In this study we do not limit our examination to twlass problems. Hence, we do
not use the measurements from Ho and Basu that are only feclass problems. Ho and
Basu’s complexity measures that were used are shown in Tabl&ome of the original
measures were adapted to handle multi-class problem(©Ruig et al, 2009).

We first compare our measures to those used by Ho and Basu)(20@2 matrix of
Spearman correlation coefficients comparing the hardnessunes against those measures
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Table 12 The average accuracy values for nine learning algorithmepening the adaptive filtering approach
against IH 0.7. “count” gives the number of times that a fiftgralgorithm improves, maintains, or reduces
classification accuracy. The adaptive filtering approaghiicantly increases classification accuracy.

Algorithm IH.0.7 A0.5 AO0.7 A0.9
MLP 83.583 86.302 86.863 87.997
counts 51-1-0 52-0-0 52-0-0
p-value <0.001 <0.001 <0.001
C4.5 81.459 84.854 86.023 86.875
counts 49-1-2 51-1-0 52-0-0
p-value <0.001 <0.001 <0.001
5-NN 82.135 85.953 87.189 89.162
counts 49-3-0 51-1-0 52-0-0
p-value <0.001 <0.001 <0.001
LWL 69.649 74.382 74.043 74.048
counts 46-4-2 43-7-2 43-7-2
p-value <0.001 <0.001 <0.001
NB 77.220 80.368 80.637 80.345
counts 49-2-1 50-1-1 50-1-1
p-value <0.001 <0.001 <0.001
NNge 82.158 85.876 87.145 88.892
counts 49-2-1 50-1-1 50-1-1
p-value <0.001 <0.001 <O0.001
RandForest | 83.065 86.306 87.353 89.506
counts 49-2-1 51-0-1 51-0-1
p-value <0.001 <0.001 <0.001
Ridor 77.699 81.802 82.509 83.494
counts 50-1-1 51-0-1 51-0-1
p-value <0.001 <0.001 <0.001
RIPPER 79.163 84.418 85.197 86.197
counts 49-1-2 50-1-1 51-0-1
p-value <0.001 <0.001 <0.001
Average 79.742 83.535 84.280 85.342
counts 51-0-1 51-0-1 51-0-1
p-value <0.001 <0.001 <0.001

Table 13 The frequency of selecting a learning algorithm when agalyticonstructing a filter set. Each
row gives the percentage of cases that the learning algonths included in the filter set for the learning
algorithm in the column.

Overall | MLP | C4.5 | 5-NN | LWL NB Nnge | RandF | Ridor | RIP
MLP 51.59 | 86.67 | 16.67 0 53.33 | 100 | 13.33| 26.67 | 80.00 | 93.33
C4.5 17.46 | 13.33| 16.67 | 6.67 | 26.67 0 13.33 | 20.00 | 26.67 | 33.33
5-NN 23.81 | 6.67 0 86.67 | 6.67 0 26.67 | 26.67 | 20.00 | 26.67
LWL 15.87 0 0 40.00 0 66.67 0 6.67 | 20.00 0
NB 1.59 0 0 0 13.33 0 0 0 0 0
NNge 18.25 | 26.67 | 16.67 | 20.00 | 13.33 0 46.67 | 93.33 | 13.33 0
RandF | 55.56 | 26.67 | 100 | 80.00 | 6.67 0 80.00 0 86.67 | 53.33
Ridor 13.49 | 13.33 | 50.00 0 6.67 | 53.33| 6.67 6.67 6.67 0
RIP 0.79 0 0 0 0 6.67 0 0 0 0

used by Ho and Basu are shown in Table 15. The measures waenalizad by subtracting
the mean and dividing by the standard deviation. The valué®id represent correlations
with a magnitude greater than 0.75. Only N1 and N3 are styormirelated withkDN, CL,
and CLD. N1 is the percentage of instances with at least caeeseneighbor of a different
class. N3 is the leave-one-out error of the one-neareshbeigclassifier. Both N1 and N3
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Table 14 List of complexity measures from Ho and Basu (2002).

F2:

F3:

F4:

N1:

N2:

N3:
T1:

T2:

Volume of overlap regionThe overlap of the per-class bounding boxes calculategdoh
attribute by normalizing the difference of the maximum arnidimum values from each class.
Max individual feature efficiency: For all of the features, the maximum ratio of the number of
instances not in the overlapping region to the total numbarstances.

Collective feature efficiency F3 only return the ratio for the attribute that maximizes thtio.
F4 is a measure for all of the attributes.

Fraction of points on class boundary The fraction of instances in a data set that are
connected to their nearest neighbors that have a diffelesé m a spanning tree.

Ratio of ave intra/inter class NN dist The average distance to the nearest intra-class
neighbors divided by the average distance to the nearestdlass neighbors.

Error rate of 1NN classifier: Leave-one-out error estimate of 1NN.

Fraction of maximum covering spheres The normalized count of the number of clusters of
instances containing a single class

Ave number of points per dimension Compares the number of instances to the number of
features.

Table 15 Spearman correlation matrix comparing the hardness memsgainst the complexity measures

from Ho and Basu. The strong correlation (bolded valuesicatd that there is some overlap between our

measures and those by Ho and Basu.

F2 F3 F4 N1 N2 N3 T1 T2
DN 0.433 0.112 0.237 0.908 0.696 0.867 0.298 -0.142
DS -0.550 0.063 0.011 -0.523 -0.427 -0.464 -0.123 -0.445

DCP | -0.542 0.086 0.107 -0.661 -0.456 -0.676 -0.147 -0.033
TD_P | 0.403 0.014 0.079 0.283 0.235 0.233 -0.040 0.340
TD_.U | 0.306 0.121 0.233 0.336 0.221 0.240 -0.071 0.338
CL -0.490 0.008 -0.186 -0.797 -0.644 -0.763 -0.246 -0.078

CLD -0.463 -0.035 -0.162 -0.805 -0.649 -0.775 -0.272 -0.063

MV 0.424  0.336 0.162 0.307 0.304 0.318 0.163 -0.148
CB 0.148 0.201 0.008 -0.034 0.062 0.015 0.065  -0.027

Table 16 The Spearman correlation coefficients for each hardnessureeand Ho and Basu’s complexity

measures relating to data set hardness. The measures thatirmelass overlap have a strong correlation

with data set hardness.

kDN DS DCP TOP TD.U CL CLD MV CB | Lin

0.901 -0.561 -0.758 0.427 0.354 -0.86¢4 -0.868 0.313 0.088| 0.882

F2 F3 F4 N1 N2 N3 T1 T2 | Lin
0.455 0.078 0.190 0.860 0.675 0.828 0.222 -0.127| 0.844

are similar and can be categorized as measuring class béjpar&l1, N3, kDN, CL, and
CLD measure class overlap using all of the features in thee skztt

We examined each hardness measure and complexity meadividually to determine
how well it predicts data set hardness (the average instaanrciess of the instances in the

data set). The Spearman correlation coefficient for thertemslmeasures and the measures

from Ho and Basu with data set hardness are shown in TablkDi6,. CL, CLD, N1, and
N3 all have a correlation coefficient greater than 0.8. RélcatkDN, CL, CLD are strongly
correlated with N1 and N3. Despite diversity in the measuvely these few are strongly
correlated with data set hardness and they measure clatamve
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We also apply linear regression to evaluate data set hazdrgea combination of the
hardness measures and the measures from Ho and Basu. Tékatamrcoefficients are
shown in the column “Lin” in Table 16. For the linear model béthardness measures, only
kDN is statistically significant for the hardness measures.Ho and Basu’s complexity
measures, only N1 is statistically significant. The cotfetaof data set hardness with the
linear models of the hardness measures and the measuresifrand Basu are weaker
than the correlation of data set hardness with an indivichedsure. When using both sets
of measures, the resulting correlation coefficient is 0.886 none of the measures being
statistically significant. The linear model also has a weakerelation coefficient than only
usingkDN.

Based on correlation from a linear regression model, oureggge hardness measures
are competitive with those from Ho and Basu. When the haslnesasures are used in
combination with those from Ho and Basu, a slightly strongm@relation is achieved. This
is somewhat expected as there are many underlying and neisiodd factors that affect
complexity. By measuring the complexity from many differangles, more perspective can
be found.

The averaged hardness measures at the data set level paavitdication of the source
of hardness and could further indicate which learning atlgars and/or methods for in-
tegrating instance hardness into the learning procesharmost appropriate to use for a
particular data set. A cursory examination of the correfatif the hardness measures with
instance hardness at the data set level (Table 16) does veal r@n obvious connection.
Further in depth analysis is left for future work.

8 Related Work

There are a number of methods and approaches that can be@idextify instances that are
hard to classify correctly. In this section we review somevus work for identifying hard
instances. Fundamentally, instances that are hard toifglassrectly are those for which
a learning algorithm has a low probability of predicting tterect class label after having
been trained on a training set. To compare the related watksngtance hardness we refer-
ence the hypothetical data set in Figure 2. For conveniemeegproduce Figure 2 in Figure
4. We also compare instance hardnessiitiand IHclass) with related works in Table 17
on a subset of the examined instances. The columns undgrQlassifier Scores” are in-
stance hardness values calculated using the classifier &ra specific learning algorithm.
Table 17 is divided into three sections: the first sectiorta@ios instances with high instance
hardness (IHnd ~ 1), the second section contains instances with low insthaceness
(IH_ind ~ 0), and the third section contains instances with instaacértess around 0.5. We
will refer to Table 17 throughout this section.

Machine learning research has observed that data setstanenmisy and contain out-
liers, and that noise and outliers are harder to classifyectly. Although we do not ex-
plicitly search for outliers, outliers and noisy instangéh constitute a subset of the hard
instances. Much work has been put forth to identify outleerd noise. Discovering outliers
is important in anomaly detection where an outlier may re@né an important instance.
For example, an outlier in a database of credit card traimsectnay represent a fraudu-
lent transaction. Anomaly detection is generally unsuigen/and looks at the data set as a
whole. One of the difficulties with outlier detection is thlagre is no agreed-upon definition
of what constitutes an outlier or noise. Thus, a variety fiedent outlier detection methods
exist, such as statistical methods (Barnett and Lewis, 1 @iftance-based methods (Knorr
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Fig. 4 Hypothetical 2-dimensional data set.

Table 17 Comparison summary of the methods that identify hard imgtsnThe first section of the table
shows examples of instances that have high instance hardméges (IH = 1), the second section shows
examples that are easy but the LoOP value is high(IH&& LOP ~ 1), the third section has instances with
medium instance hardness (49.5). The active learning values are the uncertainty sebigker values
represent more uncertainty; the outlier detection valuesyas” if the instance is an outlier and “no” if it is
not—for LOP, higher values indicate a higher likelihood eiirty an outlier. The values in bold represent values
that are unexpected given the instance hardness valuex&ampée, an instance with an instance hardness
value of 1 is expected to be considered an outlier. On the bided, it is unexpected when an instance with
a low instance hardness value () is categorized as an outlier instance.

data IH IH;,—Classifier Scores Active Learn| Outlier Detection
set id |ind classMLP C4.5 IB5 LWL NB NNg Rand Rid RIFUSN QN QC|LOP Maj Con REN
ecoli 2631 089 1 078 1 091 1 1 092 1 09899 0 0.720.26 yes no yes
ta 128 1 0.820.76 0.900.99 0.78 0.95 1 098 1 0/8%3 0.140.52 0 yes no yes
abal 4014 1 08094 1 1 091 1 1 1 1 0.88.040.46 0.470.04 yes yes no
yeast 327/ 1 0.86§0.99 099 1 087095 1 0.88 1 0/8630.170.420.22 yes yes no
abal 7201 089 1 1 1 1 1 1 1 1 1/0.990.08.32 1 yes yes no
spam 39130.07 0.09059 0 O 020 0O O 002 0 0.051 O 0131 no no no
splice 1807 0 0.03 O 0O O 011 0 0 039 0 0.040.99 0O 0 |0.96 no no yes
adult 3067¢0.04 0.050.05 0.02 0 0.06 0.00.400.11 0 0181 O 0| 1 no no no
adult 30833 0 0.000.11 0.08 0 0.07003 0O O O O XB94 0O 0| 1 no no no
wave 35240.58 0.530.660.98 1 0.81 0.190 0.58 0.600.6/0.60 0 0.540.34 yes yes yes
chess 86910.53 0.530.82 0.72 0.580.87 0.81 0 0.46 0.400.48.04 0.570.38 0 yes no no
annea 715/0.53 0.560.02 0.64 1 0.56 0.670.80 0.76 0.400.160.18 0.68 0.7®.01 yes yes yes
arrhy 69 |0.51 0.570.92045 1 043 0 1 076 0 0.22 1 0.950.420.18 yes yes yes

and Ng, 1999), and density-based methods (Breunig et ab)28@omaly detection meth-
ods identify anomalous instances as those that lie outis&lgroup(s) of the majority of the
other instances in the data set. In the hypothetical tweedsional data set shown in Figure
4, instances C and D would be identified as anomalous but statrines A and B.

Most anomaly detection methods do not have a continuousubatgl are not super-
vised. One anomaly detection method that outputs contgwalues is local outlier factor.
Local outlier factor (LOF) (Breunig et al, 2000) suggestttbach instance has a degree of
“outlierness” rather than a binary labeling. LOF seeks teroeme the problem facing most
anomaly detection methods—that the sub-spaces within ohataysets have different densi-
ties. LOF considers relative density rather than the gldeakity of the data set. Instances
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with a LOF value of 1 or less are not outliers. The values pcedby LOF are somewhat
hard to interpret as there is no upper bound or any value tiditdates when a LOF value
represents an outlier. For one data set, an LOF value of lylrepaesent an outlier while a
value of 2 could represent an outlier in another data set.

There are a number of approaches that aim at overcoming thesrpretability of LOF
(Kriegel et al, 2011). One approach is local outlier probigh{LoOP) (Kriegel et al, 2009).
LoOP builds on LOF with statistical methods to produce a ghbility that an instance is
a local density outlier. This allows the values to be comgpaeross data sets. There are
two major assumptions that LoOOP makes: 1) thatthmearest neighbors of an instance
p are centered aroungand 2) that the distances behave like the positive leg of malor
distribution. Despite being more interpretable, LoOP fiiees not identify hard instances
as outliers and identifies easy instances as outliers aswsinoliable 17 (LOP). Low values
indicate that an instance is not likely to be an outlier adowy to LoOP.

Filtering, or removing instances prior to training, is ar@tapproach that seeks to iden-
tify mislabeled and/or noisy instances with the intent opioving an inferred model of the
data. Unlike anomaly detection, filtering is often supesdisremoving instances that are
misclassified by a learning algorithm. In Figure 4, filteringuld likely identify instances
A, B, and some of the border points as hard to classify. A papapproach to outlier detec-
tion is repeated-edited nearest-neighbor (RENN) (Tom@k61 which repeatedly removes
the instances that are misclassified by a 3-nearest neighdssifier and has produced good
results. Brodley and Friedl (1999) expanded this idea byokéng the instances that were
misclassified by all or the majority of the learning algomihin an ensemble of three learn-
ing algorithms. These methods do not output a continuousevallit they do take into ac-
count the class label. As shown in Table 17, these methods¢org and REN) do not often
identify easy instances as outliers, but they may not ifiehtird instances as outliers.

Some learning algorithms produce probabilistic outputhsas naive Bayes, Bayes nets,
and Gaussian processes. The output from probabilisticitiigts could naturally answer the
question of which instances are hard to classify correklbyever, there are often assump-
tions that are made that are not true of the data distrib(tienthe attributes are independent
or the data is normally distributed). Many other machinerigs algorithms do not produce
a probabilistic output. In those cases, the probabilites lve approximated by normalizing
the output values or using some heuristic to produce pseratiapilistic values. The pos-
terior classifier probabilities from the learning algonith in £ for a subset of the instances
are provided in Table 17. The posterior classifier probtisliprovide a good approximation
for instance hardness, but, as discovered in Section 5hidney a lower correlation with the
hardness measures. This is apparent when examining iestémt have an instance hard-
ness measure around 0.5 (the last four instances in Tahle 17)

Probabilistic outputs from a classifier are important whiee dutputs are combined
with other sources of information for making decisions,tsas the outputs from other clas-
sifiers. Probabilistic outputs are often not well calibdatsuch as the output from naive
Bayes (Domingos and Pazzani, 1996). As such, a number ofocketiave been proposed
to calibrate classifier scores (Bennett, 2000; Platt, 2@@@drozny and Elkan, 2001, 2002).
For binary classification problems, the calibration is ligudone by training the learning
algorithm to get the classifier scoregr) and then mapping these scores into a probability
estimateP (y|x) by learning a mapping function. Platt (2000) suggests fipdire parame-
ters A and B for a sigmoid function of the forn#(y|z) = W to map the classifier
scoress(z) to the probability estimates minimizing the log-likelitbof the data. Multi-
class classification problems are broken down into binaagsification problems such as 1
vs lor1lvsall 1vs1creates a classifier for each pair of efadsvs all creates a classifier
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that discriminates between the instances of a particuasand all the instances that have a
different class. The calibrated probabilities from thedbjnclassification problems are then
recombined back together. Classifier scores are superaiggroduce continuous outputs
for identifying hard instances. In Figure 4, instances AaBd the border points would be
identified as being hard to classify.

Active learning (Settles, 2010) seeks to find the most in&dive instances in a data
set. Active learning assumes that there is a set of labekgdrines and an abundance of
unlabeled training data and that labeling the data is expgnthus, the most informative
instances should be labeled first. In active learning, anlegralgorithm chooses which
instances to use for training. Active learning assigns helked instances a degree of how
informative they may be to a learning algorithm by optim@ia given criterion. This in-
formative measure could be used as a means of identifying inatances. For example,
uncertainty sampling (Lewis and Gale, 1994) selects arbefga instance™ whose label-
ing the learning algorithm is least certain about:

" = argmax 1 — p(g|x)

wherey is the class label with the highest posterior probabilitytfe learning algorithm.
Other methods, such as query-by-committee (Seung et a2; F98und et al, 1992) and a
Support Vector Machine method by Tong and Koller (2001)kgeeeduce the size of the
version space(Mitchell, 1982). Query-by-committee uses a committee ofigis trained
on the labeled instances and selects the instances thatrtiraittee disagrees about most.
Thus, active learning identifies the border points as bearg ko classify. Table 17 shows
that active learning scores vary widely for the same inganor instances with an instance
hardness value near 1, it would be expected that the unagrizalue would be close to
either 1 or 0. Since the class is not included for active liegrra hard instance would appear
to be the wrong class (i.e. the instance is mislabeled) ooitldvhave high uncertainty. For
the easy instances, a low uncertainty value would be expetgive learning scores do not
have a high correlation with instance hardness.

Clearly, none of the previous work was designed to betteerstdnd why instances are
misclassified as is the case with instance hardness. Fompdxafiitering aims at removing
mislabeled instances from a data set, and the classifieesene for applications where a
confidence on a prediction is required. Incorporating treagdof previous work, instance
hardness provides a framework for identifying which insesare hard to classify and un-
derstanding why they are hard to classify.

9 Conclusions and Future Work

In this paper we examined why instances are misclassifiechewdto characterize them.
We presented instance hardness to empirically discoveshwhstances are hard to classify
correctly. We also presented a set of hardness measureartictdrize why some instances
are difficult to classify correctly. We used a broad set ohdsgts and learning algorithms
and examined hardness at the instance level. We found tezt olerlap is a principal con-
tributor to instance hardness and data set hardness. Tedsarmeasurd®N, CL, and
CLD capture class overlap and are strongly correlated wigkance hardness. Class skew
has been observed to increase instance hardness. We fairadatss skew alone does not

6 Version space is the subset of parameters that correctigifies the labeled examples.
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cause instances to be misclassified. Rather, class skewrbaées the other characteristics,
such as class overlap, that cause an instance to be mifieldss demonstrated when the
instances and their hardness values were segregated iagcavdheir MV value (Table
8). Continued study of instance hardness should lead tdiadali insights regarding data
complexity.

Being able to measure instance hardness and complexitymi@stant ramifications
for future machine learning and meta-learning researchbdly examined integrating
instance hardness into the learning process by filteringléta sets prior to training and
using informative error. In each case, integrating intolg@ning process the knowledge
of which instances are hard to classify correctly resulted significant increase in classi-
fication accuracy. As a specific example, informative erignificantly increased the clas-
sification accuracy over various filtering and boosting apphes. These techniques show
that integrating into the learning process the knowledgriatvhich instances are hard can
increase generalization accuracy. Future work includdsratanding the circumstances and
situations which are most appropriate for each technigberdis no one technique for iden-
tifying hard instances that is best for all data sets as detreied with the adaptive filter
sets.

Calculating instance hardness and the hardness measuarbs eacomputationally ex-
pensive procedure. Despite requiring the computatiaN tfarning algorithms, the instance
hardness values only need to be computed once and they caethénua wide variety of
applications as was shown in Section 6. The hardness measerd to be calculated only
once as well. For many data sets, this additional compuaticomplexity is acceptable.
For massive data sets, though, the additional computatimmaplexity can be a significant
concern. In this case, the set of learning algorithms usedltulate instance hardness and
the hardness measures can be altered to those that bettiés hassive data sets. Also, we
showed that there is no specific set of learning algorithras ithbest for all data sets and
learning algorithms. Using the same learning algorithmalecuate instance hardness and
to infer the model of the data does not always result in thet mosurate model.

Being able to better analyze data would allow a practitidaeselect an algorithm more
suited to their purposes. Also, the evaluation of a learaiggrithm could be enhanced by
knowing which instances are hard and, with a high likelihoedl be misclassified. This
could lead to a better stopping criterion. We expect thaetgoration of instance hardness
and data complexity may lead to more in depth investigatrmhapplications in new areas
of machine learning and data mining. Instance hardnesshentiardness measures could
be used in combination with techniques from active leariingetermine a subset of the
most important instances from a data set. Future work atdades work in meta-learning.
For example, the hardness measures could be used to edtimaerformance of a learning
algorithm on a data set.
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