
Choosing a Starting Configuration for Particle
Swarm Optimization

Mark Richards
Department of Computer Science

Brigham Young University
Provo, UT 84604

E-mail: mdr@cs.byu.edu

Dan Ventura
Department of Computer Science

Brigham Young University
Provo, UT 84604

E-mail: ventura@cs.byu.edu

Abstract— The performance of Particle Swarm Optimization
can be improved by strategically selecting the starting positions
of the particles. This work suggests the use of generators
from centroidal Voronoi tessellations as the starting points for
the swarm. The performance of swarms initialized with this
method is compared with the standard PSO algorithm on several
standard test functions. Results suggest that CVT initialization
improves PSO performance in high-dimensional spaces.

I. INTRODUCTION

Particle Swarm Optimization (PSO) was introduced in 1995
by James Kennedy and Russell Eberhart as an optimizer for
unconstrained continuous functions [7][8]. PSO models the
search through the problem space as the flight of a swarm of
particles (points). The goal is to have the particles converge
on the global minimum or maximum.

Like many other optimization algorithms, PSO includes
some stochastic behavior. At each iteration, a particle adjusts
its position x and velocity v along each dimension d, based
on the best position bd it has encountered so far in its flight
and the best position nd found by any other particle in its
neighborhood:

vt

d
= χ

[

vt−1

d
+ φ1r1(bd − xt−1

d
) + φ2r2(nd − xt−1

d
)
]

xt

d
= xt−1

d
+ vt

d

where χ, φ1, and φ2 are constants and r1 and r2 are uniform
random numbers on [0, 1]. A particle’s neighborhood is com-
prised of the subset of other particles in the swarm with which
it has direct communication. (This network of communication
links in the swarm that determines the particles’ neighbor-
hoods, known as the sociometry of the swarm, is the subject
of ongoing research [5][6][9][10].) Because the magnitudes of
the attraction to a particle’s own best position and the attraction
to the best position of its neighbors are determined by two
random numbers, the performance of the algorithm may vary
considerably from run to run, even when all of the user-
defined parameters (swarm size, sociometry, trust coefficients,
inertia weight, constriction coefficient) are held constant. This
inconsistency is a necessary evil, as the randomness is critical
to the success of the algorithm. However, the algorithm would
be more attractive if its performance was more predictable, so
the variability should be reduced as much as possible.

Additional variability in PSO performance results from the
use of random starting configurations. The initial position for a
particle in the swarm is selected by drawing a uniform random
number along each dimension of the problem space. To ensure
broad coverage of the search space, the particles should be
initialized so that they are distributed as evenly as possible
throughout the space. The standard method of initialization
fails to accomplish this goal, especially in high-dimensional
spaces.

Using a starting configuration based on centroidal Voronoi
tessellations (CVT) can lead to improved performance. Sec-
tion II explains what centroidal Voronoi tessellations are and
how they can be computed. Section III discusses experimental
results comparing PSO performance with and without CVT
initialization. Conclusions and possibilities for future work are
presented in Section IV.

II. CENTROIDAL VORONOI TESSELLATIONS

Voronoi tessellations can be thought of as a way to partition
a space into compartments. A group of points in the space
is designated to be the set of generators. The space is then
partitioned into subsets, based on each point’s proximity to
the generators. Each subset is associated with one of the
generators and consists of all of the points that are closer to
that generator than to any of the other generators, with respect
to some given distance function (e.g., the L2 norm). Figure 1
shows a graphical representation of Voronoi tessellations using
50 generators. The generators are depicted as dots. The lines
mark the boundaries of the Voronoi cells. In this example, the
generators were selected the same way initial points would
be chosen for Particle Swarm Optimization. Note that the
generators are not very evenly distributed throughout the
space. By chance, some of the generators are at almost exactly
the same point in the space. Note also the region near the
lower righthand corner where there is a fairly large area with
no generators. The result of this poor distribution is that some
of the Voronoi cells are much larger than others.

With centroidal Voronoi tessellations, the generators lie at
the center of their corresponding cells. Computation of CVTs
can be expensive. Two of the most well-known algorithms
for computing CVTs are MacQueen’s method [3] and Lloyd’s
method [1]. MacQueen’s method is probabilistic and requires



many iterations to converge, but each iteration is relatively
simple. Conversely, Lloyd’s algorithm is deterministic and
requires only a few iterations, but each one is computation-
ally expensive. Ju, Du, and Gunzburger have developed an
algorithm that combines elements of both methods [4]. Their
algorithm produces computationally feasible approximations
of CVTs. The only motivation for using CVTs in the present
research is to have the particles’ initial positions more evenly
distributed in the search space. Thus, it is unnecessary to
require that the CVTs are completely accurate. A reasonable
approximation will do. Pseudo-code for the Ju-Du-Gunzburger
(JDG) algorithm is shown below.

function CVT(integer k) returns set of k CVT generators
Choose k random points {gi}

k

i=1
as initial generators

do
Choose q random points
for i = 1 to k

Gather into Gi the subset of the q points that are closer
to gi than to any of the other generators

Compute the average ai of the points in Gi

Move gi some percentage of the distance closer to ai

next i

until stopping criterion met
return {gi}

k

i=1

When the algorithm starts, k random points are chosen as
the generators. These generators are incrementally updated to
improve the spacing between them. At each iteration, a set of
q random points is chosen. Each of these random points is
assigned to the current generator that it is closest to. Then,
each generator’s position is updated so that it moves closer to
the average location of the random points that are associated
with it. Figure 2 shows an example of generators found after
five iterations of the algorithm. Note that although the Voronoi
cells are still not exactly the same size, the generator points
are much more evenly distributed than in Figure 1.

Fig. 1. Voronoi tessellations for 50 random points. The generators were
created by drawing uniform random numbers along each dimension.

Fig. 2. Approximate centroidal Voronoi tessellations for 50 points. The
generators were found by the JDG algorithm.

Fig. 3. The Rastrigin function.

III. EXPERIMENTAL RESULTS

The use of perfect CVT generators as the initial points for
the particles in PSO would minimize the maximum distance
that the global optimum could be from one of the starting
points, which should improve the algorithm’s performance.
The JDG algorithm does not produce perfect CVTs, but it
does create a good approximation in a feasible amount of
computation time.

PSO with CVT initialization was compared against the
standard PSO algorithm on several well-known test functions
(Table I). In all of the CVT experiments, the JDG algorithm
was run for 5 iterations, using 50,000 sample points at
each time step. Adding more sample points or allowing the
algorithm to run for more iterations did not appear to improve
the CVTs appreciably. On a modern desktop computer, the
generation of the CVTs takes only a few seconds or less. If a
large number of generators was required, the algorithm could
of course take much longer, but PSO is usually implemented
with only a few particles, perhaps 20–50.

CVT initialization did not appear to produce any improve-
ment in performance for problems with few dimensions. A vi-
sual analysis helps explain why this is the case. Figure 3 shows
the well-known Rastrigin test function in two dimensions.
Figure 4 shows the 30 initial starting points and the locations
of the function evaluations for the first 10 iterations of a typical



−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 4. Ten iterations of PSO on the two-dimensional Rastrigin function,
without CVT initialization. The circles show the starting positions. Subsequent
function evaluations are designated by +.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 5. Ten iterations of PSO on the two-dimensional Rastrigin function,
with CVT initialization. The circles show the starting positions. Subsequent
function evaluations are designated by +.

0 0.5 1 1.5 2 2.5

x 10
4

100

200

300

400

500

600

700

800

900

Function Evaluations

B
es

t 
F

it
n

es
s

CVT
standard

Fig. 6. Progress of the PSO algorithm over 25,000 function evaluations, with
and without CVT initialization.

run of standard PSO on the Rastrigin function. Figure 5 shows
similar information for PSO with CVT initialization. There
does not appear to be much difference in the coverage of
the space. For all of the test problems studied, there was no
significant difference in the mean best solution found by the
two versions of PSO over 30 runs of each algorithm. At least
for the two-dimensional case, the randomness of PSO seems to
produce good coverage of the space, even when the particles’
starting positions are not carefully selected.

As the number of dimensions in the search space increases,
the number of particles in the swarm quickly becomes sparse
with respect to the total size of the space. (The size of the
swarm may be increased, but large swarms are often inefficient
with respect to the number of function evaluations needed
for the optimization.) Because of this sparseness, the choice
of starting positions also becomes more important. Figure 6
shows a comparison of the two versions of PSO on the
Rastrigin function in 50 dimensions. The graph shows the
intermediate best fitness of the swarm over 25,000 function
evaluations. The lines trace the median best fitness of 30
runs at each time step. On average, the swarms with CVT
initialization find good points in the space much earlier than
their standard PSO counterparts. The gap does not narrow as
the optimization continues.

Table II shows the mean performance for both algorithms on
the test functions in 50 dimensions. CVT initialization leads
to significantly better results in all cases. Table III reports the
results of significance tests comparing the algorithms on each
problem in 20, 30, and 50 dimensions.

The one-sided p-values shown were obtained using random
permutation tests [2]. For each test, the results for 30 runs of
each algorithm were compiled and averaged. The difference
between the two means was recorded. Then the 60 values
were randomly shuffled and reassigned to two groups. The
new difference in group means was compared to the actual
difference. This process was repeated one million times. The
p-value reported in the table is the proportion of the one
million trials that produced a difference in group means that
was more extreme than the one that was actually observed.
This gives an estimate of the likelihood that a difference that
extreme would be observed by chance, if there were in fact no
difference between the two algorithms. A p-value of zero in
the table means that none of the one million trials produced a
difference more extreme than the observed one. This is strong
evidence that there is a difference in the performance of the
two algorithms.

The permutation tests are attractive because they make it
possible to obtain a highly accurate p-value without having to
use a two-sample t-test. The t-test assumes that the two popu-
lations being sampled are normally distributed and have equal
spreads. These assumptions are often egregiously violated for
PSO tests.

Table III shows how the importance of initial position
increases with the dimensionality of the problem. In 20 dimen-
sions, the CVT-initialized swarms perform significantly better
(at the α = .05 level) on only four of the eight problems. In



30 dimensions, the differences are significant for six problems.
In 50 dimensions, there is a highly significant difference for
all eight problems.

IV. CONCLUSIONS AND FUTURE WORK

The starting configuration of PSO can be critical to its
performance, especially on high-dimensional problems. By
using the generators of centroidal Voronoi tessellations as the
starting points, the particles can be more evenly distributed
throughout the problem space. Perfect CVTs can be computa-
tionally expensive to compute, but the JDG algorithm can be
used to generate approximate CVTs in a reasonable amount
of time.

The present research involved trials of PSO on several
popular test functions, but all of the functions have their global
optimum at the origin and do not have complex interactions
among their variables. Future research will address more
challenging optimization problems.

Future work will also address additional issues related to the
use of PSO in high-dimensional spaces, including the selection
of swarm size.

TABLE I

TEST FUNCTION DEFINITIONS

Function Formula Range

Ackley

f(x) = −20exp



−0.02

√

√

√

√n−1

n
∑

i=1

x2
i



−

exp

[

n−1
n
∑

i=1

cos(2πxi)

]

+ 20 + e

±30

DeJong f(x) =

n
∑

i=1

i · x4
i

±20

Griewank f(x) = 1
4000

n
∑

i=1

x2
i
−

n
∏

i=1

cos
[

xi
√

i

]

+ 1 ±300

Rastrigin f(x) =

n
∑

i=1

[

x2
i
− 10cos(2πxi) + 10

]

±5

Rosenbrock f(x) =

n
∑

i=1

[

100(xi+1 − x2
i
)2 + (xi − 1)2

]

±10

Schaffer f(x) =

n−1
∑

i=1

[

0.5 +

(

sin

√

x
2
i
+x

2
i+1

)2
−0.5

(

1+.001(x2
i
+x

2
i+1

)
)

2

]

±100

Schaffer2 f(x) =

(

n
∑

i=1

x2
i

)

.25


1 +



50

(

n
∑

i=1

x2
i

)

.1




2

 ±100

Sphere f(x) =
n
∑

i=1

x2
i

±50

TABLE II

AVERAGE PERFORMANCE OVER 30 RUNS FOR STANDARD PSO VS. PSO

WITH CVT INITIALIZATION FOR FUNCTIONS IN 50 DIMENSIONS

Function Standard CVT Diff

Ackleys 1.67 1.37 0.30

DeJong 1.07 .095 .975

Griewank .241 .107 .134

Rastrigin 144 58.5 85.5

Rosenbrock 234 144 90

Schaffer 18.4 14 4.4

Schaffer2 2250 1250 1000

Sphere .227 .055 .172

TABLE III

P-VALUES COMPARING AVERAGES OF 30 RUNS FOR BOTH STANDARD AND

CVT-INITIALIZED PSO

Function 20d 30d 50d

Ackleys .44 .28 0

DeJong .0022 0 0

Griewank .20 .30 0

Rastrigin 0 0 0

Rosenbrock .45 .03 0

Schaffer 0 0 0

Schaffer2 .002 2.5e-6 0

Sphere .06 8.0e-6 0

REFERENCES

[1] Q. Du, M. Faber, M. Gunzburger, “Centroidal Voronoi tessellations:
Applications and algorithms,” SIAM Review, vol. 41, 1999, pp. 637–676.

[2] P. Good, Permutation Tests: A Practical Guide to Resampling Methods
for Testing Hypothesis. New York: Springer-Verlag, 1994.

[3] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, vol. 1, University of California,
1967, pp. 281–297.

[4] L. Ju, Q. Du, M. Gunzburger, “Probabilistic methods for centroidal
Voronoi tessellations and their parallel implementations,” Penn State
Department of Mathematics Report No. AM250, 2001.

[5] J. Kennedy, “Small worlds and mega-minds: effects of neighborhood
topology on particle swarm performance,” Proceedings of the Congress
of Evolutionary Computation, Washington D.C., 1999, pp. 1931–1938.

[6] J. Kennedy, “Stereotyping: improving particle swarm performance with
cluster analysis,” Proceedings of the IEEE Congress on Evolutionary
Computation, San Diego, CA, 2000, pp. 1507–1512.

[7] J. Kennedy, R. Eberhart, “Particle Swarm Optimization,” Proceedings
of the IEEE Conference on Neural Networks, Perth, Australia, 1995,
pp. 1942-1948.

[8] J. Kennedy and R. Eberhart, Swarm Intelligence, New York: Academic
Press, 2001.

[9] J. Kennedy, R. Mendes, “Population structure and particle swarm per-
formance,” Proceedings of the Congress on Evolutionary Computation,
vol. 2, 2002, pp. 1671–1676.

[10] M. Richards, D. Ventura, “Dynamic sociometry in particle swarm
optimization,” Proceedings of the Sixth International Conference on
Computational Intelligence and Natural Computing, North Carolina,
2003, pp. 1557–1560.


