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This research presents a new learning model, the Parallel Decision DAG (PDDAG), and
shows how to use it to represent an ensemble of decision trees while using significantly
less storage. Ensembles such as Bagging and Boosting have a high probability of encoding
redundant data structures, and PDDAGs provide a way to remove this redundancy in
decision tree based ensembles. When trained by encoding an ensemble, the new model
behaves similar to the original ensemble, and can be made to perform identically to it.
The reduced storage requirements allow an ensemble approach to be used in cases where
storage requirements would normally be exceeded, and the smaller model can potentially
execute faster by reducing redundant computation.
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1. Introduction

A pioneering work in machine learning is the development of the ID3 decision tree
learning algorithm by Quinlan.1 This algorithm expanded on other work in decision
trees, such as CART by Breiman et al.2 Successor tree based algorithms such as
C4.53 and random forests4 have expanded the success of decision trees.

Although decision trees are powerful learners, it has been observed that they
tend to have high variance. It is not uncommon for tree-based algorithms to be used
in conjunction with combination techniques such as Bagging5 or random forests.

Ensembles such as Bagging contain many individual models, consuming space
resources, and each individual model must be evaluated during execution, impacting
speed. This research presents the Parallel Decision DAG (PDDAG), which general-
izes the concept of a decision tree to a rooted directed acyclic graph structure and
can have multiple paths from the root node to each subtree. PDDAGs also have
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parallel nodes, which allow more than one decision path to be queried in finding
the classification. This research shows how this extension allows the strengths of
ensembles to be leveraged without the same overhead in storage.

The concept of using a graph structure instead of a decision tree has previously
been explored by Oliver.6 When inducing subtrees somewhat deep in the decision
tree, the data can tend to become scarce as most of the training set is sectioned off
in higher levels. This issue can impact large portions of the overall tree, especially at
or near the leaf nodes. Oliver motivates the use of a directed acyclic graph to avoid
data scarcity, using more data to induce subgraphs. Parallel Decision DAGs employ
a parallel node not found in Oliver’s model. This allows PDDAGs to evaluate more
than one subgraph and provides a natural representation of Bagged hypotheses.

Work in pruning to reduce decision tree ensemble size has been performed by
Margineantu and Dietterich.7 In this work, the model was able to significantly re-
duce the size of the ensemble, while still maintaining about 80% of the improvement
of Bagging. Domingos8 gives a method for reducing the size of an ensemble of C4.5
Rules models by generating a new set of input vectors and classifying the data with
the ensemble, and then using this data set to construct a new rule model. Zeng9

continues this idea by approximating an ensemble with a neural network. The accu-
racy of the approximating neural network is only marginally lower than the Bagged
ensemble. A method of reducing model size is also given by Menke et al.,10 where
any arbitrarily large model can be reduced in size by constructing a smaller neural
network model trained to mimic the larger model. Such “oracle trained” models
are significantly smaller, with only a marginal loss of accuracy.

The above size reduction methods each present an approach that significantly
reduces model size while retaining varying levels of the accuracy of the original
model. This research gives a method for producing a PDDAG model that is per-
fectly faithful to the original Bagged model’s behavior while still giving significant
size reduction. Alternatively, section 4 will show that PDDAG representations can
reduce the size of an ensemble even further with essentially the same performance.

2. Parallel Decision DAGs

The core idea presented here is the Parallel Decision Directed Acyclic Graph
(PDDAG). PDDAGs are a generalized concept of decision trees with added support
for ensemble-type behavior. A decision tree takes as input a vector of attributes,
which may be nominally-valued or real-valued. During classification, each tree node
examines one attribute and uses its value to delegate the decision to one of its sub-
trees. A tree may be composed of three types of nodes:

(i) Nominal nodes, which branch on the value of a nominally-valued input and
have a subtree for every possible value.

(ii) Real-valued nodes, which branch on a real-valued input relative to a threshold
value and have two subtrees.

(iii) Leaf nodes, which simply return a classification decision.
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During classification, the tree is traversed from the root node down to a single
leaf node by examining a feature attribute at each branching node. The leaf node
arrived at determines the pattern’s classification. Decision trees may be induced
using algorithms such as ID3 and C4.5.3 Here, ID3 is used. Because ID3 tends to
have high variance, Bagging ensembles are effective for improving accuracy.

Bagging is performed by taking the training set and resampling (with replace-
ment) to form a new training set, from which a single model is induced. This is
repeated until several individual models are obtained, which are then executed sep-
arately during classification, with each model casting a vote for the classification.

When constructing multiple trees for Bagging, some trees may end up perform-
ing redundant computations. To leverage these redundant structures, the trees are
first composed into a single model, using a new type of tree node: the parallel node.
A parallel node has one or more subtrees as children. During execution, all subtrees
are evaluated and these decisions are combined using a plurality vote.

3. Packing Algorithms

By using a parallel node as the root of a tree, individual trees can be combined into
a single model with the behavior of a decision tree ensemble. Nodes which perform
the same function can be collapsed into a single node while preserving the overall
behavior. This is done by traversing the tree depth-first and post-order, storing
unique subtrees and removing redundant nodes. Two nodes are equivalent if:

• both are leaves which return the same classification, or
• both are nominal nodes which split on the same attribute and branch to matching

subtrees, or
• both are real-valued nodes which split on the same attribute, have the same

threshold, and branch to matching left and right subtrees.

This packing method (see algorithm 1) will be referred to as basic packing. Its
worst case time complexity is O(n log n), in the number of tree nodes.

With redundant subtrees merged, it may be possible to improve the execution
time of the tree. In a packed model, the same subtree may be queried multiple
times for a single pattern. Tree nodes may have more than one parent, and parallel
nodes cause more than one path through the model to be evaluated. By storing
responses for such subtrees as they are evaluated, they need only be evaluated once
per pattern. In a Bagged model, such redundant trees would have to be re-evaluated
within each component model in which they occur.

The ability to collapse redundant subtrees is somewhat hampered in trees with
real-valued splits because of the requirement that the real-valued threshold match
exactly. Although such matches do occur, various conditions such as round-off error,
inexact representations, and varying orders of operations can result in real-valued
thresholds which are very close to each other. Although a threshold may not be an
exact match, the effective difference may have a negligible impact on accuracy.
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Algorithm 1 Constructing a PDDAG from an ensemble model.
function Make PDDAG(D) ! Construct a PDDAG from data D

N :=∅, M :=∅ ! Initialize the final model M and the set of seen nodes N
for all Bi ∈ bag(D) do ! For each Bagged tree

Mi:=DFS traverse(Bi, N) ! Collapse the tree and add it to the model
5: return M ! Return the model, a list of root nodes with shared children

function DFS traverse(Bi, N) ! Traverse tree Bi depth-first
R:=root(Bi) ! Find the root node of Bi

for all Ci ∈ children(R) do ! Replace each child tree . . .
10: Ci:=DFS traverse(Ci, N) ! with a shared equivalent node, if available

if type(R)=‘leaf’ then ! Find an equivalent leaf node in N
n:=find(n ∈ N where type(n)=‘leaf’ and class(n)=class(R) )

else if type(R)=‘nom-spl’ then ! . . . Or an equivalent nominal-split node
n:=find(n ∈ N where type(n)=‘nom-spl’ and feature(n)=feature(R)

and children(n)=children(R) )
15: else if type(R)=‘rl-spl’ then ! . . . Or an equivalent real-valued split node

n:=find(n ∈ N where type(n)=‘rl-spl’ and feature(n)=feature(R) and
threshold(n)=threshold(R) and children(n)=children(R) )

if n = ∅ then ! If R isn’t found in N
N ← R ! Add R to N
return R ! . . . and return it

20: else ! Otherwise
return n ! . . . return the equivalent node from N

The requirement for an exact threshold match on real-valued nodes may be
relaxed to use a heuristic match instead during packing. This research explores two
such heuristics:

• Conservative: There are no training instances in the training set which fall
between the two thresholds.

• Mapped Class: Of all the instances processed by either node, only one output
class is represented by patterns falling between the thresholds.

When two real-value split nodes are merged using one of these heuristics, the thresh-
old of the new node is a weighted average of the thresholds of the original nodes,
with each threshold weighted according to how many parents it has.

4. Results and Analysis

To show the utility of packing Bagged ensembles, experiments were run on fifteen
problems in the Irvine Machine Learning Repository.11 These tasks were selected
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Table 1. The average size in nodes for the tree ensemble and the reduc-
tion algorithm with perfect fidelity. The accuracy figures show the mean
accuracy, and also the standard deviation preceded by a plus/minus sign.

Dataset Accuracy Original Packed Relative size

balanc 75.1 ± 2.3 26890.6 1806.4 6.7%
bupa 68.3 ± 3.6 5318.8 2173.1 40.9%
iono 91.8 ± 3.6 1769.2 735.0 41.5%
iris 96.1 ± 1.2 824.0 198.5 24.1%
lymph 80.1 ± 4.0 4706.3 419.7 8.9%
musk1 84.7 ± 3.1 3358.4 1542.9 45.9%
newthy 93.6 ± 2.3 1085.0 335.5 30.9%
pima 76.8 ± 0.9 9072.2 3846.4 42.4%
segm 96.7 ± 0.8 7051.6 2775.3 39.4%
sonar 74.3 ± 5.4 1570.8 701.8 44.7%
sthear 80.2 ± 4.4 3918.6 957.2 24.4%
stvehi 73.8 ± 1.8 10304.8 4271.1 41.4%
vowel 85.3 ± 2.3 8999.0 3867.6 43.0%
wine 94.2 ± 2.1 866.2 281.4 32.5%
zoo 88.9 ± 7.7 1691.0 132.0 7.8%

to cover a variety of tasks. The balanc, lymph, sthear, and stvehi task have nominal
features, while all other tasks are real-valued, and sthear has both feature types.

In each set of experiments, a Bagged model containing 100 decision trees is
constructed and then packed using one of six packing heuristics. The accuracies
and relative sizes of the packed model and original bagged model are compared. 5x2
cross-validation is used, as recommended by Dietterich.12 That is, ten measurement
samplings are obtained for each task by running twofold cross-validation five times.

The first packing method tested is the exact mapping wherein nodes are only
collapsed if they are exactly equivalent. This is a purely representational transfor-
mation so accuracy numbers are not reported, as they are identical to the original
Bagged model. As Table 1 shows, the representation for every learning task has
significantly fewer nodes in the packed model than in the original Bagged model.
In every case, the node count for the packed model is less than 50% of the size of
the original, and in a few cases, the model’s node count is reduced to as little as
7% of the original.

A large amount of the size reduction in the Bagged models is a direct con-
sequence of collapsing the leaf nodes. For any decision tree, the leaf nodes will
outnumber the internal nodes of the tree. In many decision tree models, there is no
need for more leaf nodes than there are classes, so most of these leaf nodes are re-
dundant. By collapsing these leaf nodes alone, significant model size reduction can
occur, and this is leveraged to the fullest extent in a PDDAG since all individual
models may share the same leaf nodes. The realization that pooling leaf nodes can
reduce model size significantly may by itself motivate the use of graph structures
for decision tree learning.

The savings in node count are most significant in the three tasks balanc, lymph,
and zoo, which have only nominal inputs. In learning tasks where the values given
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in input each take on one of several values, the likelihood of finding equivalent nodes
appears empirically to be relatively high (as evidenced by the relative size drop for
balanc, lymph, and zoo), resulting in significant space savings when removing this
redundancy. Empirically, it appears that when a problem domain has nominally
valued inputs, use of PDDAGs for Bagging is a clear and significant win for model
space reduction.

Exact matches can be less likely for real-valued split nodes. Real valued thresh-
olds are chosen by picking the midpoint between two training instances. Because
the resampling of Bagging can cause any training instance to be either present or
absent, chosen midpoint values can vary between models which are given a differ-
ent sampling of the training instances. This results in real-valued node equivalence
being much less likely than nominally valued node equivalence.

Despite the difficulty in general of meeting real-valued equivalence criteria, some
of the tasks with real-valued input attributes (although not exhibiting the extreme
size reduction of the three nominally valued tasks) still show significant size reduc-
tions. Notable among these are iris, newthy, and sthear, each showing size reductions
in excess of 2/3. In general, though, the real-valued splits in many problems cause
exact matches in nodes to be less common. The experiments below explore reduc-
ing nodes which, although not exactly equivalent, have relatively small differences
in function. These results are given in Table 2. (Tasks which have no real-valued
inputs are omitted.)

The first of these packing strategies explored for real-valued inputs is conserva-
tive packing. Rather than requiring the thresholds of two real-valued split nodes to
be identical, two nodes may be considered equal if their thresholds are so close that
no training instances fall between them. The middle columns of Table 2 summarize
the results for these models, comparing them with the original Bagged model. In
these results, it can be observed that the model sizes are generally improved by

Table 2. Accuracy and relative size of packed models, using conservative and
mapped-class packing.

Basic packing Conservative packing Mapped class packing

Dataset Accuracy Size Accuracy Size Accuracy Size

bupa 68.3 ± 3.6 40.9% 68.3 ± 3.6 39.0% 68.3 ± 3.5 36.4%
iono 91.8 ± 3.6 41.5% 91.9 ± 3.6 39.8% 91.9 ± 3.4 35.3%
iris 96.1 ± 1.2 24.1% 96.1 ± 1.2 20.1% 96.3 ± 1.5 17.1%
musk1 84.7 ± 3.1 45.9% 84.7 ± 3.1 44.5% 84.6 ± 3.0 41.1%
newthy 93.6 ± 2.3 30.9% 93.6 ± 2.4 28.3% 93.3 ± 2.1 22.9%
pima 76.8 ± 0.9 42.4% 76.8 ± 0.9 40.7% 76.8 ± 1.0 37.6%
segm 96.7 ± 0.8 39.4% 96.7 ± 0.8 38.4% 96.7 ± 0.8 31.4%
sonar 74.3 ± 5.4 44.7% 74.3 ± 5.4 42.6% 73.9 ± 5.1 38.4%
sthear 80.2 ± 4.4 24.4% 80.2 ± 4.4 23.2% 80.3 ± 3.9 20.7%
stvehi 73.8 ± 1.8 41.4% 73.8 ± 1.8 39.9% 73.8 ± 1.7 37.7%
vowel 85.3 ± 2.3 43.0% 85.3 ± 2.4 41.1% 85.3 ± 2.1 34.9%
wine 94.2 ± 2.1 32.5% 94.2 ± 2.4 29.4% 94.4 ± 2.7 21.7%
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between one and two percent of the original model’s size, with one case (iris) as
high as four percent. More interesting, though, is that the accuracy measurements
are extremely close between the two sets (and well within a standard deviation).
In the only instance (iono) where there is a visible difference in the mean, the
conservatively packed model’s accuracy is slightly higher than the original Bagged
model.

The second method of packing explored, mapped class packing, allows patterns
to fall between the two threshold values of the candidate nodes as long as those
processed by either of the original nodes all belong to the same output class. These
results are in the right most columns of Table 2. For the most part, accuracy
values track fairly well with their Bagging counterparts, although variation is more
pronounced than with conservative packing. Size reductions tend to be between 3%
and 8% improvement in size over conservative packing.

Although this research has only shown packing Bagged models, any model that
takes the form of a collection of trees with a weighted voting for the top level
decision may be packed as a PDDAG model. For this research, experiments were
also performed with AdaBoost13 models and the same datasets. In summary, the
relative size improvement was greater for a Boosted ensemble than it was for the
corresponding Bagged ensemble for eleven of the fifteen examples. This result is
reasonable when one considers the difference in the way Bagged and Boosted en-
sembles are constructed. In Bagging, a new component model is constructed from a
new and independent resampling of the training set. Thus, each component model
is relatively independent from the others with respect to the original training set.
With Boosting, on the other hand, the training set is resampled for each new model
based on the previous performance on the patterns. As the Boosted models struggle
to learn some subset of points, the resampled training sets will tend to be correlated
in including these patterns, leading to a correlation in the structures of the models.
These correlated structures are more likely to include repeated subtrees that can be
packed in a PDDAG, leading to greater size reduction in a PDDAG representation.

5. Conclusion and Future Work

Three procedures and variants were explored for removing redundant tree structures
from the ensemble. For nominal-input valued tasks and some real-valued tasks,
significant space savings were shown without any effect on the accuracy or behavior
of the model, using the most conservative packing method. For some real-valued
tasks, the space savings using this transformation were less, and much of that
savings can be attributed to the removal of redundant leaf nodes.

When packing Bagging models for real-valued trees, All packing methods tend
to give accuracy comparable to Bagging, while taking up significantly less space.

This research has shown the use of a parallel rooted graph structure to leverage
the principles behind ensembles such as Bagging and Boosting for decision trees.
The packing methods in this research are relatively conservative, with one of the
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methods effecting no change in the original ensemble behavior at all. It is likely
that other transformations and packing methods exist which should be more fully
explored in future work.

The authors are also exploring methods of training PDDAGs directly without
using ensembles as an intermediary. A direct training algorithm would save the
initial cost of first constructing an ensemble model. It would also be able to use
parallel nodes in other locations of the tree beyond the root node. This can be useful
because a parallel root node is the most expensive of parallel nodes, impacting all
patterns classified. Additionally, there may be other portions of the tree which may
benefit from formulating multiple alternate models.

Parallel nodes in a decision tree also provide a natural way for decision trees to
output probabilities over all classes rather than a single classification. The voting
mechanism in the decision of a parallel node can be configured to pass a proba-
bility over each classification rather than a single decision. The ability to output
probabilities can increase the usefulness of decision tree classifiers in utility theory.
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