JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 5, 26-58 (1988)

Adaptive Parallel Logic Networks™

ToNY R. MARTINEZ

Computer Science Department, Brigham Young University, Provo, Utah 84602
AND

JACQUES J. VIDAL

Computer Science Department, University of California, Los Angeles, California 90024

Received July 12, 1986

This paper presents a novel class of special purpose processors referred to as ASOCS
(adaptive self-organizing concurrent systems). Intended applications include adaptive
logic devices, robotics, process control, system malfunction management, and in general,
applications of logic reasoning. ASOCS combines massive parallelism with self-orga-
nization to attain a distributed mechanism for adaptation. The ASOCS approach is
based on an adaptive network composed of many simple computing elements (nodes)
which operate in a combinational and asynchronous fashion. Problem specification
(programming) is obtained by presenting to the system if-then rules expressed as Boolean
conjunctions. New rules are added incrementally. In the current model, when conflicts
occur, precedence is given to the most recent inputs. With each rule, desired network
response is simply presented to the system, following which the network adjusts itself
to maintain consistency and parsimony of representation. Data processing and adap-
tation form two separate phases of operation. During processing, the network acts as
a parallel hardware circuit. Control of the adaptive process is distributed among the
network nodes and efficiently exploits parallelism. © 1988 Academic Press, Inc.

1. INTRODUCTION

This paper presents a novel class of special purpose processors referred to
as ASOCS (adaptive self-organizing concurrent systems). Intended applications

* This research was supported in part by the Aerojet-UCLA Cooperative Research Master
Agreement No. D841211 and NASA NAG 2-302.

26

0743-7315/88 $3.00
Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ADAPTIVE PARALLEL LOGIC NETWORKS 27

include adaptive logic devices, robotics, process control, system malfunction
management, and in general, applications of logic reasoning. ASOCS combines
massive parallelism with self-organization to attain a distributed mechanism
for adaptation.

It is becoming apparent that the sequential “fetch and execute” model of
von Neumann computing is inefficient for many classes of computation. Our
research has sought computational paradigms benefiting from parallelism in
a connectionist fashion. A further goal is to discover systems whose function-
ality can adapt as the problem is changed. However, parallel adaptive systems
are highly complex, are difficult to program, and suffer from slow adaptation
mechanisms. Highly dense systems are also limited due to the disparity in
I/O bandwidth relative to internal processing capacity (as seen in current
VLSI technology where communication on and off chip is an increasingly
severe bottleneck). We have found that self-organizing mechanisms solve these
problems by avoiding prescriptive programming, allowing substantial paral-
lelism in the adaptation process, and by requiring limited control information '

" from the outside environment.

The basic problem is to design concurrent digital networks able to solve
problems defined by propositional logic. Problem specification (programming)
is obtained by presenting to the system if-then rules expressed as Boolean
conjunctions and referred to as instances. New rules (instances) are added
incrementally to the rule base. In the present model, when conflicts occur,
the most recent entry has priority over previously introduced information.
Real-world applications using rule-based propositional logic have been forth-
coming, including a detailed system for in-flight fault maintenance for the
Space Shuttle [2].

The ASOCS approach is based on an adaptive network composed of many
simple computing elements (nodes) which operate in a combinational and
asynchronous fashion. Control and processing in the network is distributed
among the network nodes. Figure 1 displays a high- level view of the model.
Adaptation and data processing form two separate phases of operation. During
processing, the network acts as a hardware circuit of Boolean gates, mapping
input states to output states. Inputs and outputs of the network are Boolean
values. Logic predicates (instances) which have been implicitly “stored” by
the connections of the network are processed in data-flow fashion to extract
logical inferences.

During adaptation, the network structure and the node functions can change
to update the overall network function to match the incrementally entered
instances. As new instances are added to the rule base, the network indepen-
dently reconfigures to a logic circuit that remains both minimal and consistent
with the rule base. Thus, there is no explicit programming. Desired network
response is simply presented to the system, following which the network adjusts
itself accordingly. The internal configuration is hidden from observation, and

28 MARTINEZ AND VIDAL

Z) 2,2, Zy

Instances

XXX X

FiG. 1. ASOCS model.

its natural redundancy (many possible correct configurations for a given func-
tion) allows for fault tolerant mechanisms.

The control of the adaptive process is distributed among the network nodes
and efficiently exploits parallelism. Most communication takes place between
neighboring nodes with only minimal need for centralized processing. The
network modification is performed with considerable concurrency and the
adaptation time grows only linearly with the depth of the network.

The basic operational sequence for the adaptation process is as follows. A
new instance is entered and the rule base is made consistent and minimal,
The new instance is then broadcast to all the nodes of the logic network.
Nodes within the network contain some memory and are able to locally de-
termine their ability to aid in potential modifications of the network. These
nodes are then uniquely selected by a mechanism called selection waves. Dur-
ing a combination phase, selected nodes recombine and a correct network is
obtained. Finally, nodes which are no longer necessary for correct functioning
of the network self-delete.

Section 2 of this paper briefly describes previous work leading to the ASOCS
model. In Section 3, the method of incremental knowledge input is detailed.
Section 4 describes the basic architectural model. The fifth section develops
the internal algorithm that the system uses for adaptation. The final sections
present simulation results and discuss ongoing research.

The ASOCS engine, as discussed in this paper, is a kernel abstract machine
around which larger systems could be built. We restrict ourselves to discussion
of the basic model. Implementation issues, multi-ASOCS systems, and meth-
ods of integrating ASOCS into complete systems, are beyond the scope of
this presentation. Three models of ASOCS, each sharing much of the same
overall goals, have been proposed [4]. This paper gives a detailed discussion
of the first model.

ADAPTIVE PARALLEL LOGIC NETWORKS 29

2. PREVIOUS WORK

This work is part of an effort centered on a reexamination of perceptron-
related ideas [6, 9]. However, we have studied the use of digital building
blocks, rather than the traditional threshold unit. The search for VLSI com-
patible implementations of parallel pattern recognizers spawned the method
of implementing general logic functions with multiplexor circuits known as
universal logic modules or ULMs [10]. Two-input ULMs form sufficient
building blocks to compose general-purpose, programmable, logic processors.

In [7], Verstraete modifies the ULM scheme in a subtle but central way,
by reversing the conventional roles of data and control. In the process, multi-
input ULM networks become highly redundant structures. The modified
structures were referred to as dynamically programmable logic modules. These
networks are created by connecting two-input Boolean modules in tree struc-
tures. VLSI layout and testing of this concept have been initiated [5]. More
recently, effective algorithms for programming multilayered programmable
logic networks have been developed [8].

These approaches contrast with that of ASOCS in that they are directed to
the algorithmic assignment of node functions to a network of fixed topology
when a global goal function is provided. They are not meant to adapt to a
changing goal function. ASOCS on the other hand, which was first introduced
by Martinez in a Ph.D. dissertation [3], deals with the synthesis of topologically
adaptive logic networks with distributed control. A VLSI design of the ASOCS
model is currently in fabrication [1].

3. INSTANCES AND ADAPTATION
3.1. Instance Set

The atomic knowledge element of the system is the instance, which is a
Boolean rule defining what a given output should be when confronted with
a given (Boolean) input vector. Each instance is an if-then statement where
the antecedent is a conjunction of Boolean variables, and the consequent is
a single Boolean variable. Thus, the instance is a propositional production
rule. The following are examples of instances:

XIXZ——) Zl
X1X2X3—’Z_2
X2X3ZZ—> Z3 .

We define — as the implication operator that states “if the antecedent is
true, then the consequent must become true.” Note that an output variable
could be used in the antecedents of other instances. In this case the variable

30 MARTINEZ AND VIDAL

is known as a feedback variable. In the current model a feedback variable can
be treated like any other input variable. For ease of explanation in this paper
we will consider ony a single Boolean output variable, Z. The system is easily
extended to multiple variables and this is discussed later. The input to the
system is a vector of Boolean variables.

An instance does not need to contain (and rarely will) all variables in the
input. Instances are incomplete by nature. An instance, not matched by the
input environment, says nothing about what the output of the system should
be. The instance 4 — Z states that Z should be 1 when 4 is 1 regardless of
all other variables. Variables not appearing in an instance are don’s care vari-
ables for that instance.

In the ASOCS model, instances are input to the system incrementally and
the current collection of instances is called the instance set. The instance set
is the rule base of the system and as new instances are entered the instance
set is modified so as to remain consistent and minimal. By consistent it is
meant that no two instances can specify an opposite output for the same
input. Newer instances are given precedence and the contradicted portion of
an old instance is deleted from the set. Minimality means that the instance
set is stored using a minimal representation.

An input variable occurring in one instance, and occurring in its comple-
mented form in another instance, is a discriminant variable with respect to
the two instances.

An instance implying a positive output (Z = 1) is a positive instance, while
an instance implying a negated output is a negative instance. This is known
as the polarity of an instance. Two instances with the same polarity are con-
cordant, while those with opposite polarities are discordant.

We now consider how an instance set is processed in a network of logic
devices computing a single output. A logic network filfills the instance set if,
when any positive instance is matched, the network outputs a positive value
(1), and when any negative instance is matched, it outputs a negated: value
(0). The next section shows that a positive and negative instance cannot be
matched simultaneously in a consistent instance set. If the environment does
not match any instance in the set, the network can output either a positive
or a negative value.

3.2. Consistency

A consistent set of instances is one in which no two instances contradict
each other. Two instances contradict each other if and only if for some state
of the environment, they are both matched, and they are discordant instances.
For example, the two instances

A—>Z
B—>7Z

ADAPTIVE PARALLEL LOGIC NETWORKS 31

contradict each other when both 4 and B are 1. Contradictions occur when
discordant instances exist without discriminant variables in their antecedents.
Two instances with no discriminant variables can always for some value of
the input both be matched. A corollary to the above is that all pairs of instances
of opposite polarity must contain at least one discriminant variable with respect
to each other.

Let us now consider adaptation of the instance set when a new instance is
entered. In this paper we adopt the rule that the new instance has precedence
over older instances. Thus, when a new instance contradicts old instances,
the old instances (or those portions of the old instances which are contradicted)
are removed from the instance set. In a complete system, other rules for
instance set modification could be supported (i.e., verify new instances causing
large modifications, etc.).

There are two basic ways by which the instance set is modified due to a
contradiction. First, when the variables of a new instance (NI) are a subset
or equal to those of a discordant old instance (OI), the Ol is deleted from the
IS. For example,

ABC—Z (O
AB—>Z (NI).

Second, when there is no discriminant variable between the NI and the
discordant OI and the Ol is not a subset of the NI, the OI is replaced by one
or more modifications of itself. The modification includes all of the OI which
is not contradicted by the NI. Thus, the added instances contain the OI con-
catenated with one discriminant variable of the NI. For example,

AB—>Z (O]

ACD—Z (NI)
will be replaced by

ABC—Z (OI modification)

ABD—>Z (OI modification)

ACD—Z (NI).
One of the above two types of modification will occur with each discordant
Ol in the set which does not contain a discriminant variable with respect to
the NL

When considering the logic network, it should be noted that only the NI
can cause a network change to be necessary. Modified instances added to the

set in the manner of the second example are already fulfilled by the network,
since the root instance from which they are constructed was previously fulfilled.

32 MARTINEZ AND VIDAL

3.3. Minimization

Minimization can occur only between concordant instances. Minimization
is based on repeated application of the following three Boolean identities:

. x+xy=x
2. xp+xpy=x
. x+xp=x-+y.

The resultant minimal set always has the least possible number of instances,
and no instance in the set is reducible to an instance with less variables.
However, the minimal set is not unique, and there may be many functionally
equivalent sets having the same number of instances with differing variable
combinations.

Thus, we define an instance set as minimal if no two concordant instances
can be equivalently represented by one instance, or by two instances with
fewer variables.)

The environment can match more than one instance, as long as the matched
instances are concordant. For example, 4 = Z and B — Z are minimal with
respect to each other, and both would be matched in an environment state
where 4 and B were both equal to 1.

In terms of correct functioning of a logic network (i.e., that it fulfill the
instance set), it is not necessary that the instance set be minimal. Minimality
can reduce costs in terms of memory and number of necessary nodes. How-
ever, making the instance set minimal requires more time, so this time/space
tradeoff is a decision left to the designer. In this paper, we assume that the
set is made minimal.

4. ASOCS ARCHITECTURE

The adaptive self-organizing concurrent system (ASOCS) is made up of
Boolean inputs and outputs with an input channel provided for entering in-
stances (Fig. 1). There is no logical constraint on the total or relative number
of input and output variables. Figure 2 shows the ASOCS internal structure.
The two main components are the adaption unit (AU) and the logic network.
During execution mode, only the logic network is active. The input data flows
asynchronously through the network with only propagation delays. During
adaptation mode, the other parts of the system become active. The AU and
the logic network are connected by a broadcast bus. (Broadcast bus is a name
for an abstract component performing the broadcast mechanism, which could
be implemented as a wired bus, optical broadcast, message passing between
nodes, etc. Names given in this paper are not meant to predefine a specific
implementation methodology.) The AU can broadcast to the entire logic net-
work by placing a message on the broadcast bus, but it cannot address a

ADAPTIVE PARALLEL LOGIC NETWORKS 33

Outputs

Feedback P:

Output
Bind ath|

Instances

Adaption

Logic Network
Unit €

Input Binder!
and Router

Inputs

FIG. 2. Overall system structure.

specific node in the network. A node within the network can also place a
message on the broadcast bus, which can be read in turn by the AU or any
other node.

The AU can feed test data into the network on the presentation path and
through the input router, which is controlled by the AU. During adaptation,
the input router gets its input from the AU. During execution, the input
router passes Boolean inputs from the environment into the network.

It is also necessary to bind variables, in a flexible manner, to data lines.
This is done for both input and output variables by the input binder and
output binder. Thus, when new (not previously used) input or output variables
are used in a new instance, an input or output line will be allocated for the
new variable. The bindings take place under direction from the AU. The
feedback path allows output variables bound in the output binder to be fed
back to the input binder. The AU can also monitor the outputs of the network
through the test path.

4.1. Adaption Unit

The adaption unit (AU) guides the logic network through adaptation by
broadcasting commands to network nodes. This allows all nodes within the

34 MARTINEZ AND VIDAL

network to work cooperatively by simultaneously executing procedures trig-
gered by the command.

Instances are input incrementally to the adaption unit. The instance set is
maintained consistent and minimal, as described in previous sections, in the
AU and is stored in a data structure called the instance table (IT). The instance
table may be structured as a table with three columns. The first column stores
all positive instances and is called the Positive (P) column. The second column
contains the negative instances and is called the Negative (N) column. The
third column contains a one-bit discrimination flag and is labeled with (D).
This column is used during the adaptation phase and is discussed later. The
ordering of the instances is inconsequential and there is no relation between
the positive and negative instances that appear in the same row.

Initially each cell in the instance table is empty (represented by a “—).
When a new instance is input to the AU, it is stored in the first empty location
in the instance table. For example, if the NI is a positive instance, it is stored
in the first empty cell in the positive column. Each cell in the positive or
negative column of the table corresponds to one instance of the instance set.
An example of an instance table is shown in Fig. 3.

4.2. Network Node

A single node within the logic network is represented in Fig. 4. Each node
in the network has two basic parts: The control unit and a dyadic dynamic
programmable logic module (DPLM). During execution mode the DPLM is
the only active element, and the network functions like a hardwired logic
circuit.

During adaptation, the control unit can change the function of the DPLM.
It can also send and receive messages to or from neighbor nodes, and can
change the interconnections between itself and neighbor nodes. The control
unit has the ability to read from or write onto the broadcast bus. Each network

P N D
ABD ABE
BCD BCDF
AEF ABD
— ABC
ABC BCDEF
ABC BCEG
ABD —

F1G. 3. Instance table.

ADAPTIVE PARALLEL LOGIC NETWORKS 35

/ Broadéast

FiG. 4. Single network node.

node has identical structure, but differs from other nodes in the contents of
its control unit memory, and the current function of its corresponding DPLM.

4.2.1. Dynamic programmable logic module. The DPLM, as used in this
model, is a two-input single-output programmable logic gate. During the pro-
cessing phase, the DPLM functions like a normal Boolean gate. In the ad-
aptation phase, an input or output variable can have any one of three values
which will be called positive, negative, and don’t know. These three values are
represented as “1,” “0,” and “?.”” Thus, the DPLM is a three-state device.

For this model, it is only essential that the DPLM be programmable to
8 of the possible 16 Boolean functions of two inputs. These are the AND
and OR functions with all permutations of variable inversions as shown in
Table L.

The three state functions are defined in terms of the eight Boolean functions
which the DPLM can perform. Table II shows the truth table of the three-
state DPLM for the AND, OR, and NEGATION functions. The truth table
for any other function can be extrapolated from these three.

4.2.2. Node control unit. The node control unit contains a small amount
of memory, and has the ability to communicate with the nodes to which it
is directly connected. The control unit is only active during the adaptation
phase of the ASOCS model.

The control unit can send commands on a bidirectional path, which con-
nects it to its immediate neighbors. Each node receives inputs from exactly
two child nodes, and sends output to one or more parents. The two nodes
which input to a parent node are called sibling nodes with respect to
each other.

36 MARTINEZ AND VIDAL

TABLE I
BOOLEAN FUNCTIONS
X1X2 X1 X2 X1X2 XX
00 01 10 11 Function
0 0 0 1 X1+ X,
0 0 1 0 Xy)?2
0 1 0 0 X 1°X2
0 1 1 1 X + X,
1 0 0 0 X)X,
1 .0 1 1 X + X,
1 1 0 1 X+ x;
1 1 1 0 X + X,

Each node control unit in the network maintains a node table (NT) in its
local memory. The purpose of the NT is to store the value which its DPLM
outputs (1, 0, or ?) for each instance in the instance set when that instance is
matched by the environment.

(In the following we assume a specific structuring of the tables for purpose
of discussion. However, other functionally equivalent implementations could
be used.) The position of each instance in the NT (i.e., its indexing) is that
of the same instance stored in the instance table of the AU. Thus, the third
positive cell of every NT corresponds to the instance in the third positive cell
of the instance table. When a new instance is presented to the network, all
nodes allocate the next free space in their node table to the new instance.

Consequently, in the NT there is a four-state cell corresponding to each
cell of the IT. The four states are represented by “1,” “0,” “?2,” and “—.”
During the adaptation phase, the node table is updated. Thus, if a cell contains
a 1, then that node outputs a 1 for all states of the environment which match
the corresponding instance.

TABLE II
THREE-STATE TRUTH TABLES
X X And Or Xy
0 0 0 0 1
0 1 0 1 0
0 ? 0 ? ?
1 0 0 1 1
1 1 1 1 0
1 ? ? 1 ?
? 0 0 ? 1
? 1 ? 1 0
? ? ? ? ?

ADAPTIVE PARALLEL LOGIC NETWORKS 37

Figure 5 shows an example of a NT which corresponds to the instance
table shown in Fig. 3.

Thus, when a command corresponding to a given instance is broadcast to
the network, only an index value is needed to specify the proper cell for each
node. For example, if the third positive instance in the instance table were to
be deleted, a global message “Delete third positive instance” could be sent to
the network. Each node would then set the third cell of its positive column
to “—” (empty).

4.2.3. Instance discrimination. We now examine how a node discriminates
between discordant instances. It is never necessary to discriminate between
concordant instances, since they cannot contradict each other. The infor-
mation stored in the node table of each node indicates how that node can be
used for discrimination. If a node outputs one level for all states matching a
particular positive instance, and the opposite level for all states matching a
particular negative instance, then that node discriminates between those two
instances. For example, the node table of Fig. 5 shows that the node always
outputs a 1 when the environment matches the positive instance in the first
row, and a 0 when the environment matches the negative instance represented
in the same row. Thus, this particular node discriminates between these two
instances. In this case, the node discriminates the first positive instance from
the first, second, and fifth negative instances. It also discriminates the positive
instance in the third column from the negative instances in the fourth and
sixth columns, and so on.

The fact that a given node outputs a 1 does not mean that a positive instance
in its node table with the entry ‘1’ has been matched, but it does mean that
the negative instances with entries of “0” have not been matched. If a cell in
the node table is asserted (a 1 or a 0), that node discriminates the instance
represented by that cell from all discordant instances which have the opposite
assertion.

4.2.4. Node status. The discriminant function of a node discussed above
shows that a node can be in different states. The node control unit, by looking

Pl n]|D
1] o0
2 | o
o | 2
2 | o
0| 1
0 | —

FIG. 5. Node table.

38 MARTINEZ AND VIDAL

at its node table, can categorize and mark itself as being in one of the following
four states.

A discriminant node is a node which discriminates at least one positive
instance from one negative instance. In the node table there must be at least
one asserted cell in the positive column, and at least one cell with the opposite
level in the negative column. Figure 6a is an example of a discriminant node.

A nondiscriminant node is a node which does not discriminate at least one
positive instance from one negative instance. The node table of a nondiscrim-
inant node does not contain an asserted cell in the positive column and a cell
with the opposite polarity in the negative column (Fig. 6b).

A complete discriminant node is one which discriminates every positive
instance from every negative instance. In the node table all positive cells are
asserted at the same polarity, and all negative cells are asserted with the opposite
polarity (Fig. 6¢). The top node of the network must always be a complete
discriminant node in order for the network to fulfill the instance set.

A one-sided discriminant node is a discriminant node which always asserts
one value for either all positive or all negative instances, and the opposite
value for at least one instance in the discordant column. The one-sided dis-
criminant node discriminates at least one instance from all discordant instances
and is the type of node built to discriminate a new instance from all old
discordant instances (Fig. 6d).

5. ADAPTATION ALGORITHM

In this section we discuss the adaptation algorithm for the present ASOCS
structure. There is always a single top node for the output variable which is
a complete discriminant node. When a new instance is added to the set, and
if the top node does not already fulfill the new instance, a new node is created

| o Pl ~N]D [n] b PIN]|D

T

N | = o]z
SH

D || =

o|lo|o|lT

O |~ |=

~
-~
~
-~

[QO QT T TN Y

== OO |=|w|=
-
I
-
l

-
Yy
e

o oo

— 1 —

a) b) c) d)

FIG. 6. Normal, non- , complete, and one-sided discriminant nodes.

ADAPTIVE PARALLEL LOGIC NETWORKS 39

which discriminates the new instance from all old discordant instances. This
node is created by combining nodes within the network which already dis-
criminate a subset of the old discordant instances from the new instance. If
the union of these selected nodes is not sufficient to discriminate the new
instance from all discordant instances, then new nodes are allocated which
discriminate the remaining instances. Once this new node (a one-sided dis-
criminant node which discriminates the new instance from all discordant
instances) is built, it can be combined with the old top node (which discrim-
inates all old instances, but not the new instance) creating a new top node
which is a complete discriminant node for the given output variable. The
steps needed to complete this process are discussed in the next six subsections.
They are:

1. Instance set maintenance, whereby the instance is made consistent
and minimal after receipt of the new instance.

2. Instance presentation, which causes the broadcast of the new instance
to the network, whereupon nodes can add a new value to their node tables.

3. Node selection, where each node calculates its ability to aid in dis-
crimination of the new instance and the “best” discrimination nodes are
selected to participate in the modification process.

4. New node addition, optionally adds new nodes to the network, if
those available are not sufficient to completely discriminate the new instance.

5. Node combination, when selected and new nodes combine to form a
new top node which is a complete discriminant for the entire instance set.

6. Self-deletion, where all nodes no longer necessary for correct func-
tioning of the network are removed.

5.1. Instance Set Maintenance

The algorithmic method used to maintain the instance set is not critical to
the implementation and is not discussed here. Instance set maintenance was
discussed in Section 3. The result of the maintenance process is two lists of
instances. The delete-list is a list of old instances which have been deleted
from the instance set. The add-list is a list of instances which have been
modified by the NI. The NI is also a member of the add-list. It is possible
that either or both lists be empty, in which case the modification cycle is
complete for the given NI. The add-list can only be empty when the NI can
be deleted, i.e., when the current instance set already fulfills it.

For example, let us assume that the current instance set contains the single
instance AB — Z. Next, C = Z is input. The old instance AB — Z is now
contradicted and will be replaced by ABC — Z. Thus, the delete-list will
contain AB — Z and the add-list will contain ABC — Z and C - Z.

The index of any deleted instance is broadcast to the network. Each node

40 MARTINEZ AND VIDAL

places an empty token in the corresponding cell. The instance is also deleted
from the instance table in the AU.

5.2. Instance Presentation

The AU presents an instance to the network by setting the network data
lines to the values matching the instance which is being presented. Each node
can then independently detect what it currently outputs for that instance.
The node can then use this information to evaluate its ability to be involved
in the network adaptation.

Since instances are incomplete (they do not contain all the variables in the
environment) there are many different environment states which could match
any instance being presented. The adaption unit sets the network input through
the input router. Those input variables which occur in the instance being
presented are set to a 1 or a O (i.e. asserted), and all remaining variables are
set as don’t knows, since their value in a given environment state does not
affect the network output.

Assume, for instance, that there are currently eight bound input variables
entering the network from the environment: X, 1 — Xs. The AU presents the
instance X, X3 X; = Z to the network. The input router asserts the variables
X and X; to 1 and the variable X5 to 0. The other five variables are set to
don’t know. These data then flow combinatorially through the network data
paths (Fig. 7).

The NI is added to the instance table in the AU. The AU enters the NI in
the first empty cell in the column corresponding to its polarity. A global
presentation command is sent to the network that contains the polarity (pos-
itive or negative) of the NI and the index of the presented instance. Each
control unit then detects the output of its particular DPLM and stores the
value in the indexed cell. Once presented, the AU can then read the output
variable Z at the top node, which is either 1, 0, or 2. If the new instance
polarity and the Z output match, then the network requires no adaptation
because it already fulfills the new instance for all states of the environment.
If the output were discordant or a ?, network adaptation would have to take
place.

7 2, 7, Z,

FIG. 7. Instance presentation.

ADAPTIVE PARALLEL LOGIC NETWORKS 41

Without three-state logic, each possible state of the environment matching
the instance presented would have to be sequentially presented to the logic
network to achieve the same results. For a given instance, 27~ states of the
environment would have to be shown to the network, where 7 is the number
of bound variables in the environment, and j is the number of variables in
the instance.

5.3. Node Selection

If the network must be modified, some applicable nodes must be se-
lected to be part of the modification. The method used is referred to as selec-
tion waves.

When a global selection command is given, each node calculates a locally
derived value representing its ability to discriminate the new instance from -
old instances, called the discriminant count. This process is shown by example.
Assume a node in the network with the node table shown in Fig. 8 after the
presentation of a new negative instance. The bottom cell in the negative col-
umn (shown in bold) was the first empty cell in the negative column. The
output of the DPLM for this instance is a 1, so that value is placed in the cell
during presentation.)

At the beginning of the selection process, each node sets the values in its
discriminate column to 0. The node in Fig. 8 discriminates the NI from the
positive instances in the third, sixth, and seventh cells of the positive column.
Thus, the node discriminates the NI from three old instances. This value is
the discriminant count for the node. Each node calculates its own discriminant
count by summing the number of cells in the column opposite of the new
instance which have an assertion opposite to the value in the cell representing
the NI, and which have a 0 in the discriminate column of the same row. A
node outputting a don’t know for the NI always has a discriminant count of
0 since it cannot discriminate any instances from the NI

After calculation of its own discriminant count, a node waits to receive the

P l N ‘ D
1 0 0
? 0 0
0 ? 0
— 1 0
? 0 0
0 1 0
0 1 0

FIG. 8. Node table after new instance presentation.

42 MARTINEZ AND VIDAL

discriminant counts of its two child nodes. The node then chooses the max-
imum discriminant count between its own and that of its two children. The
node then sets its selection state. The selection state is a ternary value which
can be set to self, lefi, or right. In summary,

self, if node has maximum count
selection state (node) = < right, if right child has maximum count
left, if left child has maximum count.

Ties can be decided arbitrarily. After setting its selection state, each node
passes the maximum value up to its parents. When the upward data flow is
complete, the top node has received the maximum value existing in the
network.

Once the upward wave is completed, a downward flow may optionally be
initiated. A binary token is passed down to obtain the selection of a single
node. Each node follows the same steps.

1. If a 0 is received from all parents, then pass a 0 to both children.

2. Ifa 1 is received from any parent, then
a. If state is seff, then this node is selected. Send a 0 to both children.
b. If state is /eff, send a 1 to the left child and a 0 to the right child.
c. If state is right, send a 1 to the right child and a 0 to the left child.

Thus, one node is always uniquely selected during the downward wave. The
total time necessary to select a node in the selection wave is proportional to
two times the depth of the network. Thus, selection time is O(d) and
~O(log(n)), where d is the depth of the network and 7 is the number of nodes.

An example of a selection wave is given below. Figure 9 shows a logical
network where each node has calculated its own discriminant count. Each
bottom node sets its selection state to self'and passes up its value to the second
layer. In this case the first node in the second layer sets itself to right and the
second node sets itself to leff. Both of these nodes pass an 8 up to the top
node. The top node can arbitrarily decide to set itself to either right or lefi.
Assume that the top node sets itself to right. It then passes the active token
(1) to its right child and a O to its left child. The right child has a state of /eft,
so it would pass a 1 to its left child, which is the bottom middle node, Upon
receipt of the 1, this node would know that it has been selected.

Once a node is selected, it sets itself as a growth node, and it will be combined
with other growth nodes during the subsequent combination phase. At this
point the selected node puts a 1 in the discriminate column in each row
containing an old instance which it can discriminate from the new instance.
For the current example node, the discriminate column would appear as in
Fig. 10. Since a unique node is selected during a selection wave, it can then

ADAPTIVE PARALLEL LOGIC NETWORKS 43

AN
NN
[N [N [N

Fi1G. 9. Network with deduced scores.

place information on the broadcast bus without possibility of contention. The
node places the contents of its discriminate column, which is called the dis-
criminant vector, on the broadcast bus. All other nodes in the network then
do a logical OR of the discriminant vector on the broadcast bus with their
own discriminant vectors. After each selection wave, all nodes have the exact
same discriminant vector.

The adaption unit also reads the broadcast bus and performs the same
operation with its own discriminant vector in the instance table. Any 0’s
remaining in the common discriminant vector represent instances which are
not yet discriminated from the new instance. If this is the case, another selection
wave is started. The discriminant count is again calculated at each node, but
cells are not counted if they have a 1 in the discriminate column. Thus, only
those instances which have not yet been discriminated can be counted toward
the new discriminant count of a node.

P |

M
1 0| O
21 0|0
ol ? | 1
— | 1 0
21 0|0
0 1 1
0| 1 1

FIG. 10. Discriminate column setting.

44 MARTINEZ AND VIDAL

Another node is then selected. The AU checks the maximum discriminant
count of the network at the output of the top node after the upward wave.
As long as the count is greater than 0, a downward wave is initiated, which
selects a new growth node. The selected node then broadcasts its updated
discriminant vector and again all nodes update their discriminant vectors
accordingly. Once the discriminant vector contains only 1’s, then enough
nodes have been selected to discriminate the new instance and combination
can be started. By contrast, if the outcome of the upward wave is 0 and there
are still one or more zeros in the discriminant vector (instances which have
not been discriminated), then new nodes must be added.

5.4. New Node Addition

If after the selection phase there are still old instances which cannot be
discriminated by nodes currently within the network, then new node addition
takes place. If there are still nondiscriminated instances, the AU will have a
0 in the discriminant column across from each nondiscriminated instance.
New nodes are added to the network as follows. For each nondiscriminated
instance in the instance table, one discriminant variable, occurring in itself
and the new instance, is chosen. New nodes are then allocated with inputs
taken from the set of selected discriminant variables,

Assume, for example, that after the selection process the instance table
appears as in Fig. 11, where the NI is the negative instance in the last row.
The possible discriminant variables which can be used are the complement
of the variables in the NI: 4, B, D, and E. 1t is sufficient to choose one of
these variables from each of the nondiscriminated instances. We know that
each of these discordant instances contains at least one of these variables,
otherwise there would be a contradiction and the instance set would not be
consistent.

We must choose one of the above discriminant variables from each of the
two instances: ABD and AEF. From the first instance we can use the variable

P N D
ABD ABE 0
BCD BCDF 1
AEF ABD 0

— ABC 1
ABC BCDEF 1
ABC BCEG 1
ABD ABDE 1

FIG. 11. Instance table after selection.

ADAPTIVE PARALLEL LOGIC NETWORKS 45

D and from the second instance we could use either 4 or E. If a discriminating
variable is shared between the two nondiscriminated instances, then one vari-
able is sufficient to discriminate both instances. Thus, a set of discriminant
variables, where at least one variable is found in each nondiscriminated in-
stance, is sufficient to build the new nodes.

The new node must assert either 1 or 0 when the discriminant variables
are both matched by the current state of the environment, and the complement
when either is not matched. This node can then be combined, during com-
bination, with the other growth nodes to create a node which discriminates
all discordant instances from the new instance.

Assume that D and A are chosen. Since there are two variables, one new
node will be added. For two inputs this can always be done by setting the
DPLM to either the AND or the OR function (Fig. 12).

The node table of the new node must then be initialized to correct values.
The AU calculates the positive and negative columns for the node table of
the new node, since the inputs to the new node are literal input variables, as
stored in the instance table. The AU then broadcasts this information to the
node. The new node(s) is then set as a growth node, and it is ready for the
combination phase.

5.5. Node Combination

At this point sufficient growth nodes have been selected to make creation
of a complete discriminant node possible. Node combination is the process
by which growth nodes combine such that a complete discriminant node is
formed. The method used to pair up growth nodes for combination is im-
plementation dependent and not discussed here. Below are the basic steps.

1. While there are growth nodes in the network
a. Growth nodes are paired and a new node is allocated (created) for
each pair of growth nodes.
b. The function and the memory of the new node are set by the child
nodes, and the new node is set as a growth node.

2. The last created growth node (a one-sided discriminant node) com-
bines with the old top node.

D A D A

FIG. 12. Possible new node implementation.

46 MARTINEZ AND VIDAL

3. The function and memory of the new top node are set by the
child nodes.

The order in which nodes are combined, or which nodes are connected to
which, is not critical except in terms of the depth of the network. The same
number of combinations take place regardless of the order.

Every growth node in the network outputs an asserted value of either polarity
for the NI. A growth node which outputs a 1 when the NI is matched is called
a positive growth node. A growth node which outputs a 0 when the NI is
matched is called a negative growth node. A positive growth node outputs a
0 when any of the old instances which it discriminates from the NI is matched
by the environment, and vice versa. The function of the newly allocated
parent node is determined by the growth polarity of the children nodes. For
each combination of children growth polarities, the parent node can be set
to be either a positive or a negative growth node. Except for the top node, it
does not matter which growth polarity is chosen. The information is passed
to the new parent by its children. Table III shows the possible functions which
a new parent node can receive, depending on whether the children nodes are
positive or negative growth nodes. The same functions are used, as shown in
the table, regardless of whether the NI is a positive or a negative instance.
The new node will discriminate the union of the instances discriminated by
the two child nodes.

After the function of the new node is set, its node table must be loaded by
its children nodes. This is done by applying the new function of the parent
node to the cell values of the children cells, and then putting the output into
the new node table. Once the table is filled, the node sets itself as a growth
node, and can then be combined with some other growth node. These com-
binations of nodes can take place independently and concurrently. For #
original growth nodes in the network, exactly n — 1 combinations take place,
adding n — 1 new nodes to the network.

TABLE III
FUNCTION SETTINGS FOR NEW NODES

Left child Right child Parent function Parent growth polarity
Negative Negative X+ X Negative
Negative Negative Xy Xy Positive
Negative Positive X+ X, Negative
Negative Positive XX Positive
Positive Negative X+ x Negative
Positive Negative X1+ Xy Positive
Positive Positive X+ X Negative

Positive Positive Xi* X, Positive

ADAPTIVE PARALLEL LOGIC NETWORKS 47

The following is an example of the combination of two growth nodes. We
continue to assume for the following examples that the NI is the negative
instance in the last row. Figure 13 shows the node tables of the two growth
nodes which are about to be combined. If the parent node is chosen to be a
positive growth node, then the function of the parent node must be x;- X,
as shown in Table III. Figure 14 shows the table of the new parent node after
combination. Now only the first positive instance remains nondiscriminated.
(The discriminate column was filled for clarity although it would not actually
be updated during combination.) The number of instances discriminated by
the NI cell always increases as nodes are combined.

When all of the growth nodes have been combined a one-sided discriminant
node will be created which discriminates the NI from all of the old discordant
instances. The one-sided discriminant node is either a positive or a negative
growth node, and it has a form as shown in the left table of Fig. 15.

This one-sided discriminant node is then combined with the former top
node, shown in the right table of Fig. 15, to form a new complete discriminant
node. The function setting of the created node is different than that used for
the previous growth nodes. The top node, which was a complete discriminant
node before presentation, will now be a one-sided discriminant node since
only the NI cell will have changed. The cell corresponding to the NI in the
old top node is always either a don’t know, or the complement of what it
should be. Note that the discriminant vector of the old top node always con-
tains all 0’s because the NI cell is either a don’t know, or it is the same as all
the discordant instances. Thus, it cannot discriminate any OI from the NI,
although it discriminates all other positive instances from all negative instances.
By contrast, the new one-sided discriminant discriminates all OI’s from the
NI and thus by combining these two, all instances can be discriminated.

The way in which the new one-sided discriminant node and the old top
node are combined is polarity sensitive. There are four ways in which the
nodes can combine, depending on whether the new one-sided discriminant

Pl n]|D Pl ~n][D
1] o] o 2 | 1] o
2 | oo HERE
HIERE ol oo
1 0 IHERE
2 | oo 1] 0| 1
o | 1 |1 HERE
NIERE 2 | oo

FiG. 13. Left and right child tables.

48 MARTINEZ AND VIDAL

= |v|lo|=|v|lojo|lZz
N RN E N RN P Fe N)

O|ojo|o|ojoi~}|lT

FIG. 14. New parent node with DPLM function x, « ;.

is a positive or a negative growth node, and whether the NI is positive or
negative (Table IV).

To explain this intuitively, assume the old top node and new one-sided
discriminant (NOSD) as shown in Figure 15. If the output of the NOSD is a
0, then we know nothing, in terms of the NOSD, about what the network
output should be, because the NOSD can output 0 for either positive or
negative instances. However, if the output of the NOSD is a 1, then we know
that the network output must be a 1, since the NOSD outputs 0 for all negative
instances matched by the environment. Conversely, if the NOSD outputs a
0, then we know that the NI has not been matched, since the NOSD always
outputs a 1 when the NI is matched. So, when the NOSD outputs a 0, then
the output of the old top node gives the correct network output, since it
outputs correctly for all instances except the new instance. For this case,
having a negative new instance and a positive NOSD growth node, the function
is X; * x as shown in Table IV. At this point the network again has a complete
discriminant as the top node, and it fulfills the instance set.

Pl Nn]D P n]D
o o] 1]o]o
o | o1 1] oo
HERE 1]o]o
o | 1]+ 1]o]o
o o1 1]o]o
N ERE 1o o
N ERE 1] 210

FIG. 15. New one-sided discriminant node and old top node.

ADAPTIVE PARALLEL LOGIC NETWORKS 49

TABLE IV
NEw Top NODE FUNCTION
New instance New one-sided discriminant New top node function
Negative Negative X1+ X
Negative Positive . Xy X
Positive Negative X+ X,
Positive Positive X; + X

5.6. Self-Deletion

After a correct network is fashioned, the self-deletion command is broadcast.
There are three basic types of self-deletion, explained briefly in the following
sections.

5.6.1. Complete discriminant deletion. When a node discovers from its
node table that it is a complete discriminant node, all nodes above it can be
deleted and it can become the new top node. A command is sent from the
complete discriminant node to its parents telling them to self-delete. The
parents in turn, send the same command to their parents and to the child
which did not initiate the deletion command. This continues recursively until
only the new top node and its descendants remain in the network.

5.6.2. Nondiscriminant deletion. A node which discovers, by observing its
node table, that it is a nondiscriminant node, can self-delete. The node also
sends delete commands to both of its child nodes. If a child has more than
one parent, then the link to the nondiscriminant node is removed. If the
nondiscriminant node was its only parent, then the child self-deletes and
forwards the deletion command to its two children. This continues recursively,
deleting the subtree rooted at the nondiscriminant node. The parent of the
nondiscriminant node is also deleted and the sibling of the nondiscriminant
node will connect to the grandparent of the nondiscriminant node.

5.6.3. Locally redundant deletion. Another type of self-deletion can occur
when a node is determined to be locally redundant. A locally redundant node
is a discriminant node that is not necessary to the overall fulfilling of the
instance set because other nodes in the network already compute a superset
of the information computed by the locally redundant node. The processing
required to discover if a node is locally redundant can be carried out during
execution mode since the control unit is not used during that time. The meth-
ods for discovering local redundancy are diverse and are not covered here.

5.7. Add-List Instances Other Than the New Instance

Any instance which has been modified but not deleted will pass through
the same modification mechanism as the NI. One instance modification cycle
is necessary for each modified old instance. These modified instances are

50 MARTINEZ AND VIDAL

placed in the add-list due to either contradiction or minimization. However,
although these instances are in the same add-list as the NI, the amount of
effort in the modification cycle will usually be less.

An add-list instance created by contradiction always has gained one more
variable. The network will always fulfill the modified instance since it is a
subset of what the network already fulfills. Thus, the modification cycle does
not proceed beyond the presentation phase, since modification is unnecessary.
The only action is to update the node tables within the already extant nodes.

There is one way by which minimization can cause an instance to be placed
in the add-list. This happens when there is one discriminant variable between
the new instance and a concordant old instance, and the old instance contains
all the variables of the new instance plus at least one variable not contained
in the new instance. For example, assume the old instance ABC — Z and
the new instance 4B — Z. The old instance would be minimized to AC —
Z. The modified instance contains one less variable than before. After pre-
sentation, the cell corresponding to this modified instance in the top node of
the network could become a don’t know. In that case the top node ceases to
be a complete discriminant node and the system would continue through the
other phases of adaptation. This is known as a modification iteration.

This iterative process can be avoided in two basic ways. First, even though
the top node can contain a don’t know value in a cell after such a presentation,
it still correctly fulfills the instance set. Extra memory can be used to flag this
situation and no extra processing will be necessary. The other approach is
not to minimize in this case. This would not affect the system’s ability to
fulfill the instance set; it would only cause the instance set to be slightly larger
than optimal. Either of these methods would ensure that the adaptation time
could be kept within a bounded value linear with the depth of the network.

6. EXAMPLE

In this section we give an example of the adaptation algorithm at work.
We start with a null instance set and begin adding instances and building the
network. We avoid restating fine detail which has already been discussed. For
example, if it is necessary to select a discriminating variable for new node
addition, one will arbitrarily be chosen.

We will again be concerned with one output variable Z. The first instance
input to the system is ABC — Z. Since there are currently no nodes in the
network the delete-list is empty and the add-list is Jjust the NI. The system
will go to new node addition. If we choose 4 as the discriminating variable,
then one node could be added to the network as shown in Fig. 16. (Only the
positive and negative columns are shown and the function of the node is
indicated below the node table). The function Right signifies that the DPLM

ADAPTIVE PARALLEL LOGIC NETWORKS 51

FiG. 16. Initial node.

simply passes its right input to the output. (This function was not mentioned
as one of the eight essential, and indeed it could be replaced by the AND
function with both inputs set to 4). This node fulfills the instance set, but it
is more than necessary. In fact, since the node is a nondiscriminant node it:
will delete itself from the network. Therefore, the system output is simply set
to 1 at all times.

Two more positive instances are then added to the system: BCDE — Z
and ABCE — Z. Since these are positive instances, they cannot contradict
the positive instance in the IS. In this case, they also cannot be further min-
imized. No change to the system can be made. Any node which would be
added to the network to fulfill this IS would still self-delete, since it would be
nondiscriminant. At this point the instance set is as follows,

ABC—>Z
BCDE—~>Z
ABCE — Z.

(When displaying the instance set during this example, positive instances are
shown first, followed by the negative instances. We assume that the image in
the node tables match the order in which the instances are shown.)

The next instance is ABCD — Z. This instance does not contradict any of
the earlier instances, and thus it is added to the IS with no modification to
the OD’s. Since this is a negative instance, and since Z is currently always
positive, there must be an update. Because there are still no nodes in the
network, the system proceeds to new node addition. Since the negative NI is
not yet discriminated from any of the positive OD’s, it is necessary to add
sufficient nodes to do this discrimination. Variables C and D are discriminating
variables, chosen from the three positive instances, which together are sufficient
to discriminate the NI from the three original OI's. A new node is allocated
with these two variables as input. The new node can be either a positive or a
negative growth node. If the node became a negative growth node, it would

52 MARTINEZ AND VIDAL

switch to positive upon recognizing that it is a complete discriminant. The
allocated node is shown in Fig. 17 and the cell representing the NI is shown
in bold.

The next instance input is ACDE — Z. This instance does not cause either
contradiction or minimization, and thus it is added directly to the IS. Now
that there is a node in the network, the algorithm will go through all of its
steps. The NI is presented to the network and the output is a 0. Thus, the
network already fulfills the NI and no modification to the network is necessary,
except for adding a 0 to the cell in the node table representing the NI. At this
point the instance set appears as follows,

ABC— 7

BCDE—~Z

ABCE —~ 7

ABCD— 7

ACDE — 7,
The next instance added is ABCF — Z. This instance does not cause min-
imization, but it does contradict the first instance in the set. Thus, the NI is
added, the first positive instance is put in the delete-list, and the substituted

instance ABCF — Z is put together with the NI in the add-list. The new
instance set is

ABCF—>Z7
BCDE— 7
ABCE—>Z
ABCD— 7
ACDE—~Z
ABCF—Z.

z

c D
FIG. 17. Modified node.

ADAPTIVE PARALLEL LOGIC NETWORKS 53

The index of the deleted instance is then broadcast and an empty marker
placed in the first positive cell. The modified instance is presented to the
network, and a 1 is placed in the empty cell. The node continues to be a
complete discriminant node. When the NI is presented, the output of the
network is 1. Since this is incorrect the network must be modified. One se-
lection wave results in a 0 from the top node, since the single current node
does not discriminate the NI from any Ol. New node addition must then
take place. Variables B and F can be used as discriminating variables to dis-
criminate the NI from the three positive OI’s. A new node is added, combining
these two variables. This new node is the only original growth node and is a
one-sided discriminant node. It is then combined with the old top node and
the new top node is given a function according to Table III. The modified
network is shown in Fig. 18.

The next instance added is ACDF — Z. This NI cannot be minimized with
any concordant instance, nor does it contradict a discordant instance. When
the NI is presented to the network, the output of the top node is a don’t
know. After the NI presentation, the state of the network would be as shown
in Fig. 19.

A selection wave is then initiated, and the bottom right node is selected as
a growth node, having a discriminant count of 2. Another selection wave is
then initiated, but O reaches the top node, since no other node can discriminate
the NI. The AU chooses one discriminant variable from the single instance,
the third negative instance, which is not yet discriminated. The only possible
variable is A. The variable 4 is combined with the selected growth node, and
the resulting one-sided discriminant node is combined with the old top node,
to form a new complete discriminant node. Figure 20 shows one possible

F1G. 18. Modified network.

54 MARTINEZ AND VIDAL

Z

ol I

F1G. 19. Modified network.

combination scheme where the first new node was made a negative growth
node. The self-deletion phase is entered, but no nodes are deleted, since they
are all discriminant nodes.

FI1G. 20. Modified network.

ADAPTIVE PARALLEL LOGIC NETWORKS 55

The last instance input to the system is AC —=> Z. This instance causes both
minimization and contradiction. It completely contradicts the second negative
instance, causing that instance to be deleted. This fact is broadcast to the
network and an empty marker is placed in the cell of each node which cor-
responded to that instance. The NI also causes minimization with the first
positive instance. It is also deleted and the same information is sent to the
network. The NI also causes minimization with the last concordant instance.
This is a case where a modification iteration would take place since the top
node will no longer be a complete discriminant, The NI can then be added
to the IS. The new instance set is

AC—>Z
BCDE—>Z
ABCE—~>Z

At this point, the NI is presented to the network. The NI is placed in the
first cell of the positive column, since that cell just became empty when the
OI was deleted. After presentation, the state of the network is as shown in
Fig. 21. In this case the output from the top node is correct and network
modification is unnecessary. The bottom right node has now become a com-
plete discriminant node. During the self-deletion phase everything above it
will be recursively deleted. After the network finishes the self-pruning process,
the total network fulfilling the current instance set is as shown in Fig. 22.

This example has shown each of the major steps which occur during network
reconfiguration. The network acts as a discrimination network which keeps
itself relatively optimal. In this example there were seven variables, but only
a few instances, and the number of nodes necessary to perform the correct
discrimination for all 27, or 128, environment states is quite small.

7. MULTIPLE OUTPUTS

The basic extension needed for multiple outputs is for each node to maintain
a separate node table for each output. In this way, a single node can participate
in the discrimination of any number of output variables. Commands broadcast
by the AU specify the output variable targeted. The node status is also relative
to output variables. For instance, if a node becomes nondiscriminant for one
output variable, but it is still a discriminant for a different variable, it cannot
be deleted.

56 MARTINEZ AND VIDAL

z

~>f Of Of -9
-~

] e o] g
(=]

And Or

ZI I

F C D A
F1G. 21. Modified network.

Instances for each output variable need to be kept in independent instance
sets within the AU, Minimization or contradiction does not take place between
instances defining different output variables.

8. SIMULATION RESULTS AND CURRENT RESEARCH

A software simulation of the described system confirmed the operation of
the adaptation algorithm. The average number of nodes in a logic network

c D

FIG. 22. Final network.

ADAPTIVE PARALLEL LOGIC NETWORKS 57

solving an instance set is equal to the number of instances in the set. It is
also found that the time necessary to complete an adaptation step is O(d)
where d is the depth of the network and O(log(n)) where 7 is the number of
network nodes. Since 7 is approximately equal to the number of instances,
adaptation time is also O(log(i)) where i is the number of instances. The
minimization preprocess in the adaption unit exceeds linear time, but this
can be resolved by either decreasing or removing the minimization criteria,
while still maintaining a correctly functioning system.

A detailed and formal exposition of the adaptation algorithm is found in
[3]. It also discusses other ASOCS issues such as fault tolerance, physical
implementation, and advanced architectures. The main drawback of this ad-
aptation algorithm is that the amount of memory required at each node is
proportional to the size of the instance set. The memory also grows propor-
tional to the number of output variables in the system.

The aforementioned dissertation describes two more recent adaptation al-
gorithms with improved features over the first. The main improvement is
that the newer algorithms have a small fixed memory at each node which
does not increase with the size of the instance set or the number of output
variables. Both do not require the instance set to be maintained in the adaption
unit. Rather, a new instance is simply broadcast to the network and the in-
stance set is maintained implicitly within the logic network.

Work is currently funded and ongoing to develop prototypes and VLSI
fabrication of the ASOCS model.

9. CONCLUSION

In this paper we have proposed an architectural model for adaptive com-
binational logic which uses concurrency in both the processing and the control
stages. Functional specification is incrementally input to the system in the
form of propositional rules. The current overall function is maintained as a
consistent and minimal instance set. The rules are broadcast one by one to
a network of identical nodes which then evaluate their ability to discriminate
the new instance from the previous set. Useful nodes are selected and com-
bination takes place without any outside agent knowing the location or struc-
ture of any internal node. Nodes can also detect when they are not actively
involved in fulfilling the instance set and will subsequently self-delete. The
overall adaptation is done in a self-organizing fashion and the time necessary
for an adaptation is linear with the depth of the network.

REFERENCES

1. Chang, J., and Vidal, J. J., Inferencing in hardware. Proceedings of the MCC-University
Research Symposium, Austin, TX, July 1987.

58

9.

10.

MARTINEZ AND VIDAL

. Helly, J. J., Bates, W. V., and Kelem, S., A representational basis for the development of a

distributed expert system for space shuttle flight control. NASA Technical Memorandum
58258, May 1984.

. Martinez, T. R., Adaptive self-organizing logic networks. Ph.D, dissertation, Computer Science

Department, University of California, Los Angeles, CA, May 1986,

. Martinez, T. R., Models of parallel adaptive logic. Proceedings of the IEEE Conference on

System Man and Cybernetics, October 1987.

. Moore, D. W., General purpose perceptron. Rep. CSD-830817, Computer Science Department,

University of California, Los Angeles, CA, June 1983.

. Rosenblatt, F., Principles of Neurodynamics. Spartan Books, Washington, DC, 1962.
. Verstraete, R. A., General purpose perceptrons: A Boolean treatment. M.S. thesis, Computer

Science Department, University of California, Los Angeles, CA, Dec. 1982.

. Verstraete, R. A., Assignment of functional responsibility in perceptrons. Ph.D. dissertation,

Computer Science Department, University of California, Los Angeles, CA, June 1986.
Vidal, J. J., Silicon brains: Whither neuromimetic computer architectures. Proc. IEEE Con-
Jerence on Computer Design-VLSI in Computers, 1983, pp. 17-20.

Yau, S. S., and Tang, C. K., Universal logic circuits and their modular realizations. AFIPS
Conference Proceedings, 1968, Vol. 32, pp. 297-305.

