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Incrementally Defined Rule-Based Systems 
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Abstract-This paper presents an adaptive self-organizing concurrent 
system (ASOCS) model for massively parallel processing of incrementally 
defined rule systems in such areas as adaptive logic, robotics, logical 
inference, and dynamic control. An ASOCS is an adaptive network 
composed of many simple computing elements operating asynchronously 
and in parallel. This paper focuses on adaptive algorithm 3 (AA3) and 
details its architecture and learning algorithm. It has advantages over 
previous ASOCS models in simplicity, implementability, and cost. An 
ASOCS can operate in either a data processing mode or a learning mode. 
During the data processing mode, an ASOCS acts as a parallel hardware 
circuit. In learning mode, rules expressed as Boolean conjunctions are 
incrementally presented to the ASOCS. All ASOCS learning algorithms 
incorporate a new rule in a distributed fashion in a short, bounded time. 

I. INTRODUCTION 
This paper presents an adaptive self-organizing concurrent sys- 

tem (ASOCS) architecture [6], [7], [ 101 that guarantees learning 
for Boolean rule-based systems in bounded time. This particular 
ASOCS uses adaptive algorithm 3 and has significant simplicity, 
implementability, and cost advantages over previous ASOCS models 
[SI, [9]. Target applications include rule and example based systems 
for logical inference, robotics, adaptive logic, fault-recovery, and 
real-time dynamic control. 

The search for fast and robust computation has increased research 
in highly parallel systems with both traditional 121, [4] and connec- 
tionist [5] ,  [14] views. Researchers of massively parallel systems seek 
speed both during processing and learning. However, programming 
and updating massively parallel systems incur tremendous overhead 
and complexity. 

The goal of ASOCS is to train (program) a parallel digital 
network to solve problems defined by rule-based propositional logic. 
A system is trained (programmed) through the incremental input of 
rules expressed as conjunctions of Boolean variables. Real world 
applications using rule-based propositional logic are forthcoming [3]. 

A n  ASOCS is an adaptive network of many simple computing 
elements operating in a parallel, asynchronous fashion. ASOCS can 
operate in both data processing and data learning modes. 

During data processing the system acts as a parallel hardware 
circuit; it asynchronously maps input data to output data in 
O(max(d, log r t ) )  time, where (1 is the maximum depth (longest path) 
of the network, and r1 is the number of network nodes, as is typical 
for hardware circuits. 

During learning the system reconfigures itself in a distributed 
manner to accommodate new (and perhaps conflicting) rules. ASOCS 
potential comes from its ability to guarantee adaptation in (>(log 
( n ) )  time for any new rule. Through its learning process the system 
discovers the critical variables; it uses these to generalize and classify 
large input spaces. 
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The majority of ASOCS research on adaptive algorithms has 
focused on adaptive algorithm 1, adaptive algorithm 2, and adaptive 
algorithm 3. Details for AA1 can be found in [8]; details for AA2 can 
be found in [9]. These three algorithms vary dramatically, although 
AA3 shares some similarity to AA2. 

ASOCS arose from reexamining perceptron [ 121 related ideas. 
The basic building block, however, is that of digital programmable 
nodes, an idea spawned by the notion of a universal logic module 
(ULM) [ 161. Verstraete [ 151 sought methods of programming fixed 
ULM structures to solve arbitrary Boolean mappings. ASOCS departs 
from these efforts by using a nonpassive network that adapts in a 
self-organizing fashion [6] ,  [lo]. This technique has led to models 
promising parallel inference, high-speed adaptation, and internal 
consistency control. Proof of concept VLSI fabrication of ASOCS 
devices has been completed [l] and other implementations are 
currently underway. Formal proof of AA3 is found in [17]. 

Although ASOCS research was initiated with a neural network 
emphasis, the proposed mechanisms differ extensively from standard 
neural network paradigms. The authors make no claim to be modeling 
neural functionality with this model. Rather, distributed, parallel, and 
self-organizing paradigms are used in order to attain an improved 
computational mechanism, offering speed, fault tolerance, anci ease 
of use. 

The outline of the paper follows. Section I1 defines the mechanism 
of knowledge input. Section I11 described AA3 during processing 
mode. Section IV describes AA3 during learning mode. Section V 
works in detail a concrete example of AA3 learning. Section VI 
extends the model to multiple outputs. Section VI1 discusses the 
advantages of ASOCS. Sections VI11 and IX overview simulation 
results, comparisons with AA1 and AA2, and current research efforts. 

11. KNOWLEDGE INPUT 
The atomic knowledge element 1' the instance. Each instance is 

a (partial) function from a set of Boolean variables to a Boolean 
variable. Thus each instance is a propositional production rule. 

Following are examples of instances: 
I) m.4-B * c 

11) .4-BC * 4 
111) w.4-B * -C, 
Instance I forces C to become true whenever A and B are false. 

Instance I1 forces .-I to become false whenever A and C are true and 
B is false. Instance 111 forces C to become false whenever A and B 
are false. Instances I and 111 are inconsistent with each other; when 
-4 and B are false, instance I tries to set C to true while instance 
Ill tries to set C to false. When the variables of an instance are not 
matched, the instance says nothing about the output of the function. 
(An implementation may set the output variable to true, to false, or 
even to don't know.) Instances are incomplete and partial functions 
by definition. 

The union of a set of instances defines another partial function. 
It is a (partial) function defined by a set of rules, a functional rule 
base. A set of instances is called an instance set. An instance with a 
nonnegated variable on its right-hand side is called apositive instance; 
an instance with a negated variable on its right-hand side is called a 
negative instance. Thus each instance has either negative or positive 
polarity. 
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A Boolean variable occurring in one instance and occurring in its 
complemented form in another instance is said to be a discriminant 
variable for the two instances. 

An instance set S is consistent if S does not contain any two 
instances S and I’ where S is a positive instance, I- is a negative 
instance and 1) they have the same right-hand variable and 2) there 
is a set of Boolean values which can simultaneously match the left- 
hand sides of X and I-. We require an instance set to be well defined 
(consistent). Thus, no two instances have a common set of Boolean 
values for which the function produces inconsistent values. 

Two fundamental types of inconsistencies exist. The first type is ob- 
vious; the same variables define the output inconsistently as in -4C + 
B and *-IC -B. The second type is more subtle. Although the 
rules A D  + B and C + -B do not have identical left-hand vari- 
ables, when A. D .  and C are all true, B becomes both true and false. 

Fortunately, there is a basic computational tool for inconsistency. 
Its proof is omitted. 

Lemma: Two instances are inconsistent if and only if they are of 
opposite polarities and have no discriminant variable. 

I) A B  + C 
11) BC + -C 

111) -BC 3 -C. 
For example, Instance I above is inconsistent with I1 because there 

is no discriminant variable. Instance I is consistent with 111 because of 
the discriminant variable B.  Instances I1 and 111 cannot be inconsistent 
because they are of the same polarity. 

In the ASOCS model, instances are input incrementally. Let -TI 
be a new instance and S be an instance set. Either -1-1 is consistent 
with S or else there is at least one instance of S with which -1-1 
is inconsistent. 

An -TI may contain new information or be redundant to informa- 
tion already contained in the instance set. 

By definition, a -TI is redundant with respect to an instance set S ,  
if the partial function defined by the S I  is already contained in the 
partial function defined by S. For example, let the instance set be 

D * C  
B - C  

and let the new instance be A B  3 C. Clearly, the fact that AB forces 
C is already contained by the second instance of the original system. 
Since the new instance adds no information, parsimony suggests that 
we delete it. 

By definition, an -VI contains new information with respect to an 
instance set S if the partial function defined by the 1-1 extends the 
partial function defined by S. For example, let the instance set S be 

-4 * c 
B * C  

and let the new instance be ---I - B + C. In this case, the new 
instance tells us to set C‘ to true when A and B are false, an extension 
of the partial function defined by S. 

The principle of parsimony may also apply to new information. 
For example, let the instance set be 

.AB + C 

‘ 4 - c  + c 
B * C  

and let the S I  be A + C. The new instance contains new in- 
formation; it tells us what to do when -4 is true and B is false, 
as well as what to do when -4 is true and C is false. But more 
than that, the original instances A B  =+ C and -4 - C + C are 

now redundant as they are but special cases of A + C. If we can 
detect such redundancies quickly, then parsimony suggests they be 
deleted. However, perhaps more important than parsimony, is that 
by removing “don’t care” information, the system can find critical 
features that can aid in generalizing to a good output when the system 
receives input for which no training has taken place. 

If a new instance is inconsistent with an instance set, then we 
give precedence to the newer instance and remove the contradicted 
portion of the old instance. 

Theorem: Let S1 + Z be a new instance and S2 + -Z be an 
old instance. Suppose there is no discriminant variable for the new 
and old instance. If S1 is a subset of S2, then every part of the old 
instance contradicts the new instance. 

Proof: Since S2 is a subset of S1, every set of variables that 
realizes S2 (and forces Z to be false by the old instance) extends 
to variables that realize S1 (which forces Z to be true by the new 
instance). Therefore, every part of the partial function defined by 
S1 + Z is a rewrite of S2 -2, that is, the new instance con- 
tradicts everything for which the old rule stood. Q.E.D. 

Theorem: Let S1 + 2 be a new instance and S2 + -Z be an 
old instance. Suppose there is no discriminant variable for the new 
and old instance. Suppose S1 is not a subset of S2. Let S3 be those 
variables in S1 that are not in S2. Then the part of the old instance 
that is not contradicted by the new instance is given by the following 
set of instances (-152 + -Z: I is in S3) .  

Proof: Since S1 is not a subset of S2, there is a variable in S1 
that is not in S2.  Thus, the set S3 is not empty. Let I belong to S3. 
The instance 5 2  3 -Z is the union of the two rules: IS2  + -Z 
and -1.52 + -Z. Since I belongs to S1 and since there is no 
discriminant variable for S1 and S2, we can find Boolean values for 
S1, I ,  and S2 so that all hold, forcing Z to be set inconsistently. 
On the other hand, S1 + Z and -IS2 * -Z now share the 
discriminant variable I and are therefore not inconsistent. That is, 
we may save the -IS2 + -2 part of the old instance for each 
variable in S3. This concludes the proof of the theorem. Q.E.D. 

For example, consider the new instance .-ICD + -Z confront- 
ing the old instance -4Ll + Z. Since -4CD is not a subset of AB we 
form the variables in the new instance that are not in the old instance, 
namely C and D .  The theorem says to replace A B  + Z by the pair 
of instances -CAB + Z and -D.-IB + Z. 

We may therefore take any consistent instance set and any new 
instance and produce a new instance set that contains as much of 
the old instance set as can be saved with the new instance being 
given precedence. The number of instances in the new instance set 
may be greater than, less than, or equal to the number of instances 
in the original instance set (depending on the amount of redundancy 
or contradiction). In the new instance set, all instances have equal 
priority and order is again inconsequential. 

Instances may come from human intervention or automated mech- 
anisms. Typical learning has more general instances (those with 
fewer antecedent variables) entered first with refinement through more 
specific instances (those with more antecedent variables). 

In the A A 3  ASOCS implementation of the next section, the 
system maintains consistency in a manner invisible to the user. 
By dynamically modifying the instance set, the system discovers 
which variables are critical in making decisions. This leads to natural 
algorithmic generalization through critical variables when the system 
receives novel inputs. In the A A 3  ASOCS model, the system does 
not explicitly store the instance set; instead, the system stores the 
information implicitly in a distributed fashion. 

111. THE ASOCS A A 3  MODEL 
In this section we show how the AA3 ASOCS dynamic parallel 
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Fig. 3 .  Collector structure. 
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Fig. 4. Example network configuration 
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Fig. 2. AA3 network node 

network models a consistent instance set. We say that an A A 3  ASOCS 
model fulfills a consistent instance set if whenever an input forces the 
instance set to logically output Z (or -Z), then the A A 3  dynamic 
parallel network physically outputs the corresponding Z (or -Z). 

Fig. 1 gives the architecture of the A A 3  ASOCS model. This 
section only discusses those parts of the architecture needed for 
execution. In Section IV we discuss how the model knows how to 
represent itself (how it learns). 

During execution mode, only the logic network is active. The input 
data flows asynchronously through the network with only propagation 
delays. The feedback path allows the system to use an output variable 
as an input variable. (If a clocked register is added at the output 
binder, then the system is similar to a dynamically adaptable finite 
state machine.) 

Each node within the logic network has the structure of Fig. 2. 
During execution mode, only the dyadic AND gate is active. Each 
node has two inputs called children: the node child and the variable 
child. 

The node child receives its input from a node; the node child’s 
value represents a conjunction of other variables. 

The variable child is connected directly to an input variable. The 
conjunction of the node child and variable child is available for direct 
output as well as for further processing by another node. If a node 
outputs to another node, then it must output to exactly two nodes: 
its leftparent, and its right parent. Such parent nodes are said to be 
siblings with respect to each other. 

Each node control unit has memory for a 3-state polarity flag 

with value: P. D+.or D-. The symbol P signifies the node is a 
Primitive node (Pnode for short). D+ signifies the node is a positive 
Discriminant node (positive Dnode); D -  signifies the node is a 
negative Discriminant node (negative Dnode). 

Each node also contains a variable list, which is the total set of 
variables over which the node does a logical conjunction. 

The overall structure of the AA3 network is that of a binary 
decision tree as in Fig. 4. A node is a Dnode if and only if it is 
a (top) leaf in this structure (has no parents). A node is a Pnode if 
and only if it is an internal node in the tree (has parents). 

The output of all positive Dnodes is sent to the positive collector; 
the output of all negative Dnodes is sent to the negative collector. 
Each collector performs a logical OR of its received values. Since 
the overall network is a binary decision tree, exactly one Dnode will 
be active for any input. A three node structure handles the collector 
outputs in Fig. 3. The middle node is the output node; it outputs Z if 
the positive collector is active (a positive Dnode is active); it outputs 
-2 if the negative collector is active (a negative Dnode is active). 
If both positive and negative collector are inactive, or both collectors 
are active, then the network has an error. An error will not happen in 
the model as described, but could occur if there is a hardware fault 
in a physical implementation of the model. 

The bottom node of the network is the root node; it is has no inputs, 
its logic gate always outputs true, and i t  is initially a negative Dnode. 

The maximum depth of the network is equal to the number of bound 
input and feedback variables plus the root node. 

Fig. 4 illustrates a possible AA3 configuration. Each node repre- 
sents a conjunction of a set of variables. The symbol at the top of the 
node is the polarity and node indicator. The 16 possible outputs of the 
network in Fig. 4 are give in Table I. Note that although an instance 
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TABLE I 
NETWORK FUNCTION REPRESENTATION 

A B C D output 

0 0 0 0  1 
0 0 0 1  1 
0 0 1 0  1 
0 0 1 1  1 
0 1 0 0  0 
0 1 0 1  0 
0 1 1 0  1 
0 1 1 1  1 
1 0 0 0  0 
1 0 0 1  0 
1 0 1 0  0 
1 0 1 1  1 
1 1 0 0  0 
1 1 0 1  0 
1 1 1 0  0 
1 1 1 1  1 

set represents a partial function, an actual AA3 network represents a 
total function on those inputs that are part of the network. 

IV. THE AA3 LEARNING ALGORITHM 

In this section we first discuss the architecture that supports the 
learning algorithm and then the learning algorithm itself. 

A .  Architecture 
When the system receives a new instance that contains a new input 

variable, then the input binder of Fig. 1 allocates an input line for 
the new variable. 

When the system receives a new instance the adaption unit of Fig. 1 
broadcasts to the logic network the variables and polarity of the new 
instance. This information allows all nodes within the network to 
work cooperatively and in a distributed fashion. 

The node of Fig. 2 contains a control unit able to execute the 
learning and deletion algorithm. The control unit is also able to send 
messages to its node child and to its siblings (if they exist). 

We emphasize that the network does not store the original instance 
set. Indeed, as the example in Section V shows, it is usually logically 
impossible to reconstruct the instance set from the network. 

B. The Learning Algorithm 
We describe the AA3 learning algorithm that tells how a consistent 

network reconfigures itself when faced with a new instance. At the 
completion of the AA3 learning algorithm (and at the completion of 
its deletion algorithm) the network is still consistent and represents the 
functionality of the previous network coupled with new information 
from the new instance. 

Each node has a type (Dnode or Pnode), polarity, and variable list, 
labeled as node.type, node.polarity and node.variables respectively. 
Node.polarity is null for a Pnode. 

When the system receives a new instance, the AU broadcasts to 
each node the instance.variables and the instance.polarity of the 
new instance. Each node then independently follows the following 
learning algorithm. 

(01) if (node.type = D) and 
(02) 
(03) 

(04) 

(instance.polarity < > node.polarity) and 
there is no discriminant variable between 
instance.variables and node.variables then 

if (node.variables is a proper superset of 
instance.variab1es) then 

(05) polarity-inversion(n0de) 
else begin 

(06) 
(07) DVA (node,S) 

(08) Self-Deletion ( )  

S := instance.variables - node.variables 

end; 

end 

C. Remarks 
Line (01)-(03): Only a Dnode that has opposite polarity to the 

new instance and that cannot be discriminated from the new instance 
ever “learns” (is modified). 

Line (04)-(05); If a node has the same or more variables than the 
new instance, then the new instance directly contradicts the node for 
all active states. The contradiction will disappear if the node changes 
its polarity to that of the new instance. Polarity inversion flips the 
polarity of the node and redirects the node’s output to the opposite 
collector. 

Line (06): Since instance.variables is always non-empty and since 
i t  failed line (04), some instance.variable is not a node.variable. 
Therefore, the set S is not empty. For each variable in S, the 
new instance contradicts the node for some state. Therefore, for 
each such variable we add two nodes to the network to resolve this 
contradiction, We do this recursively through the procedure DVA. 

Line (07): Informally, the recursive procedure DVA takes a variable 
T from S ,  wires in two new parent nodes for S, deletes 1 ~ from S, 
changes the old node to a Pnode, and recursively calls itself for the 
concordant parent node if there still are some variables left. More 
formally, 

Procedure DVA (node, 5) ;  
(09) Allocate (node 1); Allocate (node 2); 
(10) Set 1. to an element of S ;  
(1 1) nodel.polarity := node.polarity. 

nodel.child := complement of I 
nodel.type := D; 

(12) node2.polarity := instance.polarity, 
node2.child := 1.; 
node2.type := D; 

(13) node.type := P;  
(14) if IS1 > 1, then DVA (node2, S - 1.); 

D. Remarkr 
Line (09): Node1 and node2 are the new parent nodes. 
Line ( I O ) :  The order of variables chosen is inconsequential 
Line (11-12): The new parents become Dnodes of opposite 

polarity, each differing in node.variables only by the discriminant 
variable I - .  

Line (13): Since node is no longer a Dnode, change its type to 
a Pnode. 

Line (24): If S has more than one element, then recursively call 
DVA for node2 and S - I - .  

We give an example of DVA. Consider the positive Dnode of Fig. 5 
with variables -4-B confronting the new instance ,1-BCD * -Z .  
The node executes the learning algorithm. The node is a Dnode, 
has opposite polarity to the new instance, and has no discriminant 
variable with respect to the new instance. Since A N B is not a 
superset of -4-BC D, the set of instance.variab1es-node.variables is 
{C. D } .  D1--4 is called twice. Assuming the discriminant variable C 
is chosen first, Fig. 6 shows the modification after one DVA recursion, 
and Fig. 7 the final reconfiguration after both. 

All DVA modifications take place independently and in parallel. 
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A 
Fig. 5. Initial positive Dnode. 
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Fig. 6. After one DVA. 
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Fig. 7. After complete DVA 
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Fig. 8. Initial network section. 

D 

Fig. 9. Final network section after self-deletion. 

The final step of the algorithm is self-deletion. Each Dnode has 
a unique sibling. At the end of the learning algorithm, each node 
independently executes the following deletion algorithm. 

(15) Self-Deletion 
(16) If (node.type = D) and 
(17) (node.polarity = sibling.polarity) then begin 
(18) Inform-child(node) 
(19) Self-Delete(node); 

Self-Delete(sib1ing). 
End; 

End; 
Lines (15)-(19). Sibling Dnodes that have the same polarity are 

superfluous; if their child node fires, then one of the two nodes must 
fire with their common polarity. Therefore, delete both nodes and 
make their child node a Dnode of the same polarity as the parents. 
This procedure is then recursively initiated by the new Dnode with 
its sibling. 

For example, assume initially the section of network shown in 
Fig. 8. 

Assume that the new instance -A-BE =+ 2 is broadcast. Nodes 
1 and 6 are the only discordant Dnodes. Node 6 is discriminated by 
variable B.  Node 1 is superset so it does polarity inversion, becoming 
a positive Dnode. Nodes 1 and 2 are both positive Dnodes and they 
self-delete, causing node 3 to become a positive Dnode. At this point 

Fig. 10. Initial network configuration. 

nodes 3 and 4 are both positive Dnodes and they self-delete causing 
node 5 to become a positive Dnode. Since the sibling of node 5 (node 
6) is a negative Dnode, no more self-deletion occurs in this section 
of the network. The final network section after these modifications 
is shown in Fig. 9. 

Like DVA, self-deletion occurs independently and in parallel 
throughout the network. 

v .  ILLUSTRATION OF THE DISTRIBUTED MECHANISM 
In this section we illustrate each aspect of AA3 with an example. 

The example demonstrates that the original instance set may be 
distributed throughout the system and that the original instance set 
need not be recoverable from the network. 

We start the network in the null state of Fig. 10. We describe the 
evolution of the network as seven instances are input. 

Instunce I - A-BC =+ -2 (negative): The root node begins as 
a negative Dnode. Since the initial network has no positive Dnodes, 
no matching occurs. The network remains as given in Fig. 10. 

Instance I1 - -ABDE =+ -Z (negative): Since Fig. 10 has no 
positive Dnodes, the network remains unchanged. 

Instance I l l  - B D E  =+ -Z (negative): Since there still are no 
positive Dnodes in Fig. 10, the network remains unchanged. 

Instance N - ABC =+ Z (positive): Since the root node has 
no variables, there is no discriminant variable for the root node and 
the new instance. Since ABC is a superset of the variables of the 
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Fig. 1 1 .  Modified network 

t t 

Fig. 12. Modified network 

root node, a DVA is done for each of the variables A. B.  C. If the 
DVA is done in alphabetical order, then Fig. 11 is produced. Since 
no self deletion is possible, the final network configuration remains 
as in Fig. 11. 

Instance V - --4D + 2 (positive): The variables - A D  are 
compared with the variables of the three negative Dnodes (2), (4), 
(6). -4 is a discriminant variable for node (4) and for node (6). Node 
(2) and the -TI do not share a discriminant variable. The variable 
list ---I of node (2) is a subset of the variable list -,-ID of the -1-1. 
Therefore, DVA is done at node 2 with the variable D .  Fig. 12 gives 
the network. Since no self-deletion is possible the network remains 
as in Fig. 12. 

-4-B-C are compared with the variables of the positive Dnodes (5 )  
and (8). C is a discriminant variable for node ( 5 ) ;  is a discriminant 
variable for node (8). Since there are no positive Dnode matches, 
the network remains unchanged. The S I  is already fulfilled by the 
network. 

Instance VI/ - B + Z (positive): The variable B is compared 
with the variables of the negative Dnodes (4), (6), and (7). B is a 
discriminant variable for node (4). Neither nodes (6) nor node (7) 
have a discriminant variable for B 3 2. The variables of node (6), 
AB -C, are a superset of the 3-1. Node (6) therefore undergoes 
polarity inversion. Since the variables of node (7) are not a superset 

Instance VI - .-I - B - C + -2 (negative): The variables 

-A 
A 

Fig. 13. After polarity inversion and DVA 

? r 

of the SI, DVA must be done. DVA is done for each variable in 
B 3 2 that does not appear in A-D, namely for B alone. Fig. 13 
gives the network. Self-deletion is now possible. Nodes (5 )  and (6) 
are siblings of the same (positive) polarity; they delete themselves; 
their child, node (3), becomes a positive Dnode as in Fig. 14. Self- 
deletion continues. Nodes (3) and (4) are siblings, but have opposite 
polarity. Nodes (9) and (10) are siblings, but have opposite polarity. 
There are no other siblings; the self-deletion stops. The final network 
is that of Fig. 14. 

Note that the network fulfills the instance set with a distributed 
mechanism. Indeed, no single node is responsible for the final instance 
B 3 2. The responsibility is spread across the three positive Dnodes 
(3) ,  (8), and (9). One of these nodes is active whenever B is true, 
depending on the value of the other inputs, thus fulfilling the instance. 

VI. MULTIPLE OUTPUTS 
Having discussed the architecture and learning and deletion algo- 

rithm for a single output, we extend to multiple outputs. We first 
discuss the changes to the architecture and then the changes to the 
algorithms. 

Architecturally, a node has an additional polarity flag for each 
output variable for which it is a Dnode. Each output variable has 
its own positive and negative collector. A node could be a positive 
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Dnode for one variable, a negative Dnode for another variable, and 
a Pnode for a third variable. 

During any learning cycle, the AU sends three items: the polarity 
of the instance, its variables, and the output variable name. Each node 
must check whether it is a Dnode for the output variable of the new 
instance. During DVA, a new Dnode must also set the corresponding 
polarity flag for the current output variable. If a node is being used for 
other variables, then when told to self-delete it simply sets its current 
output variable flag to nil. If a node is no longer being used for other 
variables, then when told to self-delete it can do a true node deletion. 

The real power and efficiency of the system becomes evident with 
multiple outputs; sharing of network nodes can be done with multiple 
outputs, leading to more efficient use of hardware. 

VII. FREEDOM FROM EXPONENTIAL COMPLEXln 
The majority of current connectionist models assume an initial 

fixed number of nodes and a static interconnect where the dynamic 
aspect of the network is in the weights on links between nodes. The 
ASOCS model assumes a dynamic structure where the number of 
nodes may increase or decrease and links between nodes are also 
dynamic. (Efficient implementation technologies to allow dynamic 
structure are mentioned below.) 

The main advantage of a dynamic structure is the potential for the 
model to solve complex functions without necessity of exponential 
space or time demands. For example, assume a static binary decision 
tree (BDT) that is universal for 20 input variables. By universal it 
is meant that it will be able to solve72any of the possible Boolean 
functions of 20 variables. There are 22 functions of r i  variables and 
in this case the BDT would have to have 2” or 1 000 000 nodes in 
order to guarantee representation of an arbitrary function of 20 inputs. 
As can be seen, the number of nodes grows exponentially. It appears 
that any static neural network model that guarantees arbitrary function 
learning will require an exponential amount of space whether it be in 
number of nodes, number of links, resolution of weights, etc. Use of a 
dynamically structured neural network allows models that guarantee 
learning of complex functions without requiring exponential space. 

There are random functions that appear to always require expo- 
nential demands, such as recognizing white noise on a raster screen. 
However, these types of applications are expressly outside of the ap- 
plication domain targeted by both artificial and natural neural systems 
[ l l ] .  The application space for which neural networks and ASOCS 
are targeted feature input/output mappings where generalization and 
minimization can take place, thus allowing a parsimonious network 
solution. However, since the specific mappings are not known U 

priori, it requires a dynamic network structure in order to take 
advantage of this occurrence. 

For example, in representing a Boolean function of 20 variables 
with a BDT, some branches of the tree may be of length 20, while 
the majority, when minimized, may be much shorter. The dynamic 
structure accommodates those parts of the network requiring the full 
complexity, while requiring only sufficient nodes for the rest of the 
network. 

There are a number of ways to implement a logically dynamic 
network. One model of AA3 uses small BDT’s, with a maximum 
depth of say 10. Complex connections exceeding 10 variables pass 
through a dynamic router into another 10-depth AA3 module. Extra 
modules are thus only used where required. Another class of mech- 
anisms uses a logically independent network with a single network 
node representing a Dnode, with the nodes connected to a broadcast 
topology [13], i.e., tree, mesh, optical, etc. This allows dynamic 
logical structure while maintaining parsimony of node usage at an 
implementation level. 

VIII. SIMULATION AND COMPARISON WITH 
Two OTHER ALOGRITHMS 

Software simulation of AA3 indicates that each instance generates 
two nodes on the average [6] for a single variable output. As discussed 
in Section VI, this statistic should improve with multiple variable 
outputs. 

AA3 improves AA1 [8] in two ways. 
1 )  Adaption unirfunctionality: In AA1 the adaption unit must store 

and maintain a consistent instance set. In AA3 the adaption unit 
merely broadcasts the instance to the network; the network handles 
storage and consistency in a distributed manner. 

2) Memory requirements: In AA1 the memory requirement per 
node is proportional to the product of the instance set size and the 
number of output variables. In AA3 a single variable list is stored 
at each node, and 2-bits are required for each output variable that a 
Dnode defines. 

Although AA3 is similar to AA2 [6], [ l l ] ,  it improves AA2 in 
two significant ways. 

1) Simpler learning algorithm: AA2 does comparison with all 
nodes, building a node that exactly matches each new instance. AA3 
matches only with discordant Dnodes, and requires only that the 
network can fulfill the instance set. 

2) Ease of implementation: AA2 requires dynamic interconnect 
between network nodes. AA3 uses a fixed interconnect model, with 
improved potential for VLSI design. 

IX. CONCLUSION 
This paper introduces adaptive algorithm 3 (AA3) for adaptive 

1) guaranteed mapping of arbitrary Boolean functions, 
2) bounded linear learning time (logarithmic with the number of 

nodes) 
3) stability of previously learned patterns, 
4) ability to extract critical features from a large environmental 

input. 

self-organizing concurrent systems. It features the following: 

AA3 implements an ASOCS model with: 
5) negligible memory requirements, 
6) distributed storage and maintenance of the knowledge base, 
7) a simple learning algorithm, 
8) a fixed interconnect. 
New models that allow simpler implementation and a more robust 

instance mechanisms are now being proposed. In order to give the 
model expanded utility in real-world applications, current research 
thrusts include: 

extension of ASOCS data and functional primitives to higher 
order structures (including analog and multistate variables), 
investigation and enhancements of the ASOCS feedback mech- 
anism to allow temporal dynamics and sequential algorithms, 
new models with improved speed, programmability, and fault 
tolerance, 
improved generalization mechanisms for handling inputs for 
which no explicit training has taken place. 
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the “actual” but unknown probability distribution over the set of 
events (states, conditions) in terms of which the problem is defined. 
However, the probabilistic information available for decisions under 
risk and uncertainty may also be characterized in this way. For 
decision under risk, the set li is a singleton: 

Ii = { p } .  

For decision under uncertainty, I< is the entire simplex of probability 
distributions over the event space of the problem. This perspective 
facilitates a unified approach to decision making using various forms 
of probabilistic information. 

Here, decision problems are considered with the following com- 
ponents: a set of possible acts A = {a1 . . . .  . a m } ,  a set of pos- 
sible states (or events) S = {SI,. . . , s , , } .  and a utility function 
U : S x A + R, where S is the Cartesian product of a (finite) 
set of finite variable domains: 

S = dom(l/,) = x,cc, dom(v). 

Probabilities p ( s J )  are determined only to the extent to which they 
may be inferred from a given collection of marginal probability 
distributions defined on Cartesian products of the domains of subsets 
of some set V of variables such that, usually, V, 

In general, the marginals determine a nonsingleton proper subset 
I< of Pv, . the set of all possible distributions over S (unconstrained 
by compatibility with any given set of marginals), any member of 
which could be the actual distribution. Thus, the type of decision 
problem under consideration is one of decision making under partial 
uncertainty proper, although it may in special cases (due either to the 
structure over which probabilities are available and its relation to the 
set S or to the quantities involved) reduce to one of decision making 

V. 

Decisions with Probabilities over Finite Product Spaces 

Michael Pittarelli 

Abstract-Techniques for decision making with probabilities over finite 
product spaces are discussed. In general, the type of decision problem 
generated by the available probabilistic information is one of decision 
under partial uncertainty: the probability distribution over the event 
space for the problem is determined only to the extent that it is contained 
in a convex polyhedron of distributions. The structure of this set makes 
computationally feasible the application of any of the various criteria 
for decision making with indeterminate probabilities that have appeared 
in the literature. Algorithms are developed for economically reducing the 
size of sets guaranteed to contain the unknown distribution over the event 
space for a given problem, thereby improving the quality of the decision 
made using any criterion. 

under risk or under uncertainty. 
The restriction that the set S of relevant events be a Cartesian 

product of finite variable domains is not as severe as it might at first 

I. INTRODUCTION 
Over the past 30 years, many authors have found it useful to 

classify decision problems into three types: decision under risk, 
decision under uncertainty, and decision under partial uncertainty. 
Partial uncertainty is usually characterized as involving knowledge of 
a set of distributions li such that any element p of li is potentially 
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seem. The variables v E V,, may represent attributes in terms of 
which a collection of entities is classified, as in the relational model 
of data [12] or in statistical analysis of categorical variables [ 5 ] .  

The collections of marginals available for a given decision problem 
are themselves treated as probabilistic databases [Z] here. They are 
manipulated via an algebra analogous to the relational algebra for 
relational databases in order to reduce the size of the set li of 
distributions over the set r/, compatible with the given marginals, 
while at the same time keeping the computational expense reasonably 
low. The effect of the reduction in size of K is to increase the 
likelihood that a single best action (relative to many different types of 
criteria) will be identified, thereby overcoming to the extent possible 
what may be viewed as the “imperfection,” relative to the given 
decision problem, of the available data [14]. 

A simple algebra of probability over finite product spaces is 
presented in Section 11. 

11. NOTATION AND ALGEBRA 

A set of variables I.’ = { V I . .  . . . v k }  over which a probability 
distribution p is defined is referred to as the scheme for p .  

A collection P = { p l  , . . . , p,} of probability distributions over 
schemes of finite variables will be referred to as a (probabilistic) 
database [2]. The database P = { p  .p,} has the strucfure 
X = {VI, . . . , IT,,,}, where V, is the scheme for distribution p , .  Let 
dom(X) = dom(V1 U . . . U V,). (As in relational database theory, 
some arbitrary but fixed linear ordering on the variables is assumed.) 
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