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Many real world problems require multi-label classification, in which each training instance is associated with
a set of labels. There are many existing learning algorithms for multi-label classification; however, these algorithms
assume implicit negativity, where missing labels in the training data are automatically assumed to be negative.
Additionally, many of the existing algorithms do not handle incremental learning in which new labels could be
encountered later in the learning process. A novel multi-label adaptation of the backpropagation algorithm is
proposed that does not assume implicit negativity. In addition, this algorithm can, using a naı̈ve Bayesian approach,
infer missing labels in the training data. This algorithm can also be trained incrementally as it dynamically considers
new labels. This solution is compared with existing multi-label algorithms using data sets from multiple domains
and the performance is measured with standard multi-label evaluation metrics. It is shown that our algorithm
improves classification performance for all metrics by an overall average of 7.4% when at least 40% of the labels
are missing from the training data, and improves by 18.4% when at least 90% of the labels are missing.
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1. INTRODUCTION
Traditionally, many classification problems have dealt with single-label classification,

meaning each training instance is associated with only one class or label. In single-label
classification, the task is to learn some target function f : X → L that predicts the correct
label for each new instance. However, in multi-label classification, each training instance can
be associated with more than one label. The task is to learn some target function f : X → 2L

that predicts the correct set of labels (of unknown size) for each new instance.
There are many interesting problems that require multi-label classification. For example,

in gene classification, genes can perform more than one function (Zhang and Zhou, 2006).
In text categorization, a document can contain multiple topics such as outdoors, sports, and
recreation (Schapire and Singer, 2000). Images can be labeled by the multiple objects they
may contain Boutell et al. (2004). Web sites can be given several labels for the different
topics they represent (Tsoumakas et al., 2008). Music and movies can belong to more than
one genre (Trohidis et al., 2008). The list of multi-label classification problems continues
to grow and it is imperative that we have good multi-label classification solutions for these
various problems.

The existing methods for multi-label classification follow two main strategies: prob-
lem transformational methods and algorithm adaptation methods (Tsoumakas and Katakis,
2007). Problem transformational methods involve transforming a multi-label classification
problem into one or more single-label classification problems. Algorithm adaptation meth-
ods involve modifying specific learning algorithms to directly handle multi-label problems.
Much research has been done to show that many of these methods are successful in solving
various multi-label problems.

However, all these multi-label learning algorithms assume that each training instance
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will have all the correct positive labels provided and that any label not listed is negative.
We call this assumption implicit negativity. We will define our set of multi-label data to be
{(xi, Yi)|i = 1, 2, . . . ,m}, where Yi ⊆ L is the set of all correct positive labels for xi and
L = {λj |j = 1, 2, . . . , q} is the set of all possible labels. Let Y ′

i be the provided set of
positive labels for a training instance xi. Existing multi-label learning algorithms assume
that Y ′

i = Yi, or that the provided set of positive labels is always equal to the true set of
all positive labels for a training instance xi. In reality, this is not always the case. Gathering
training data is constantly an issue in machine learning and getting training data with all the
correct positive labels listed can be very difficult in many domains. Often Y ′

i is only a subset
of Yi and is therefore missing positive labels. Algorithms that assume implicit negativity
struggle with these incomplete positive label sets because it is automatically implied that
those missing positive labels are negative and the model is trained incorrectly. It should be
noted that there is also the case involving noise, where λj ∈ Y ′

i but λj /∈ Yi. However,
dealing with noise is beyond the scope of this thesis.

Removing the assumption of implicit negativity helps to avoid training the model in-
correctly when positive labels are missing. However, eliminating this assumption requires
negative labels, in addition to the positive labels. This can potentially create a class imbalance
problem between the positive and negative examples of each label because negative labels
are generally even harder to acquire than positive labels. One approach to dealing with this
is to have the learning algorithm take advantage of label correlations in the data to infer what
the missing positive and negative labels are for each training instance. Let Ȳi be the true set of
all negative labels for a training instance xi and let Ȳ ′

i be the provided set of negative labels
for a training instance xi. When the learning algorithm encounters a new training instance
xi with positive labels Y ′

i and negative labels Ȳ ′
i , it should be able to infer Yi and Ȳi.

Another issue to consider in multi-label learning is that during incremental training,
often the complete set of all possible labels L may not be known a priori. In these situations,
the learning algorithm must be able to dynamically account for new labels as they are
encountered. Let L′ be the set of all possible labels that are known at the start of training.
When the learning algorithm encounters a new label λ /∈ L′, it should be able to dynamically
add λ to L′ and start learning this new label without disrupting what has previously been
learned.

We propose a novel variation of the backpropagation algorithm called the BAIN (Back-
propagation for Avoiding Implicit Negativity) algorithm that does not assume implicit neg-
ativity. The BAIN algorithm only trains the output nodes explicitly labeled (as positive or
negative) in the training data, while ignoring the labels not mentioned. The BAIN algorithm
can also dynamically add new output nodes for previously unseen labels during incremental
training. Since the BAIN algorithm does not assume implicit negativity, it is now reliant on
explicitly given negative and positive labels. The BAIN algorithm uses a naı̈ve Bayes method
to infer missing positive and negative labels in the training data.

BAIN is compared to popular multi-label learning algorithms, including BP-MLL (Zhang
and Zhou, 2006), Binary Relevance (Tsoumakas and Katakis, 2007) and ML-kNN (Zhang
and Zhou, 2005). Four experiments with two different types of data sets are outlined. Stan-
dard multi-label evaluation metrics such as Hamming loss, accuracy, precision, recall, one-
error, coverage, and ranking loss (Schapire and Singer, 2000; Zhang and Zhou, 2006) are
used to evaluate the effectiveness of our new BAIN algorithm compared to existing multi-
label algorithms. It is shown that the BAIN algorithm is robust to missing labels in the
training data and outperforms existing multi-label learning methods as the amount of missing
data increases.

Section 2 provides a simple review of multi-label classification methods as well as a re-
view of related research. Section 3 explains in detail the BAIN algorithm. Section 4 provides
a description of the data sets, evaluation metrics, and algorithms used in the experiments.
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Section 5 describes the four experiments designed to evaluate the BAIN algorithm and
presents the results. Finally, Section 6 outlines our conclusions and future work.

2. RELATED WORK
Problem transformational methods and algorithm adaptation methods are the two main

strategies for handling multi-label classification. Here we review a few of the most popular
methods. For a more comprehensive review of problem transformational and algorithm adap-
tation methods, there are several excellent surveys on multi-label classification (Tsoumakas
et al., 2010; Tsoumakas and Katakis, 2007; de Carvalho and Freitas, 2009). In addition,
we will consider other work that has been done to solve the specific problems of implicit
negativity, inferring missing labels, and incremental learning.

2.1. Problem Transformational Methods
Problem transformational methods involve transforming a multi-label classification prob-

lem into one or more single-label classification problems. One approach is to treat each
unique non-singleton set of labels in the training data as an additional label in the set of
all possible labels L (Tsoumakas and Katakis, 2007; de Carvalho and Freitas, 2009). For
example, given a data set with the possible labels L = {A,B,C,D} and training set:

x1 → A
x2 → A,B
x3 → A,C,D
x4 → D

The set of possible labels becomes L = {A,B,C,D, {A,B}, {A,C,D}} and the problem
is now a single-label classification problem and any standard learning algorithm can be used.
This method is called Label Powerset and does not work well when there are a large number
of possible labels because it is difficult to get enough data to support every combination of
labels that might be encountered.

Another strategy is to split this problem into several binary classification problems, one
for each label (Tsoumakas and Katakis, 2007; de Carvalho and Freitas, 2009). So the data
set mentioned previously becomes four new data sets:

LA = {A, Ā}
x1 → A
x2 → A
x3 → A
x4 → Ā

LC = {C, C̄}
x1 → C̄
x2 → C̄
x3 → C
x4 → C̄

LB = {B, B̄}
x1 → B̄
x2 → B
x3 → B̄
x4 → B̄

LD = {D, D̄}
x1 → D̄
x2 → D̄
x3 → D
x4 → D

This method is called Binary Relevance and any standard binary classifier can now be used
for each label. A common criticism of this method is that, rather than a single model,
multiple learning models are needed. This can be inefficient for problems with large label
sets. Another common criticism is that as labels are separated, correlations between labels are
not considered which can weaken the system’s expressive power (Zhang and Zhou, 2006).

Classifier Chains (CC) is a more sophisticated problem transformational method that
extends the binary relevance method (Read et al., 2011). The idea is to chain the individual
binary models together such that the output of the first model is input to the next model
and so on. It is claimed that this chaining method helps to preserve the correlations between
labels but determining optimal chain order is an important consideration. Dual Layer Voting
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is another problem transformational method that combines binary relevance with a pairwise
method (Madjarov et al., 2011). A layered network of classifiers is built where the first layer
is composed of binary classifiers, and the second layer is composed of pairwise classifiers.
When classifying a new instance, the model uses the result of the binary layer to determine if
the pairwise layer should be consulted based on some threshold. There has also been a study
that compares three different problem transformational approaches on hierarchical multi-
label problems using decision trees as the base algorithm (Vens et al., 2008), which found
that a label powerset method is the superior method for hierarchical multi-label problems.

2.2. Algorithm Adaptation Methods
Algorithm adaptation methods involve modifying specific learning algorithms to directly

handle multi-label problems. One of the first algorithms to be adapted to multi-label classi-
fication was the C4.5 algorithm (Clare and King, 2001). The C4.5 algorithm was modified
to allow multiple labels in the leaves of the tree and the entropy formula was changed to
consider both the class membership and non-class membership of each label. The AdaBoost
algorithm was extended for multi-label classification resulting in the Adaboost.MH and
the Adaboost.MR algorithms (Schapire and Singer, 2000). Adaboost.MH focuses on label
classification, while Adaboost.MR focuses on label ranking.

ML-kNN is a multi-label classification algorithm adapted from the kNN algorithm
(Zhang and Zhou, 2005). This adaptation uses the kNN algorithm independently for each
label; so fundamentally it is a problem transformational method. However, it differs from
a normal problem transformational method because it makes use of prior and posterior
probabilities as it recombines the results. There also exists an SVM algorithm adapted for
multi-label classification that is also in reality a problem transformational method (Godbole
and Sarawagi, 2004). This SVM adaptation does, however, use a kind of meta-learning
strategy to consider the dependencies among the different labels.

BP-MLL (Backpropagation for Multi-Label Learning) is a modified version of the back-
propagation algorithm (Zhang and Zhou, 2006). The error function is modified to consider
label correlations where labels belonging to an instance should be ranked higher than those
not belonging to that instance. ML-RBF is an extension of the RBF neural network algorithm
that handles multi-label classification (Zhang, 2009). ML-RBF selects hidden nodes by con-
ducting a clustering analysis on instances of each possible label. Information encoded in the
hidden nodes corresponding to all classes is exploited to optimize the weights corresponding
to each label.

Multi-label classification can be thought of as a specific case of structured output learn-
ing. Structured output learning is a classification task in which the output space consists
of structured objects, such as trees, strings, sequences, or graphs. The goal is to learn the
entire structure of the output, where multiple instances are inter-related. There are several
structured learning algorithms that have been used for multi-label classification (Taskar
et al., 2003; Tsochantaridis et al., 2005; Bielza et al., 2011). These methods combine the
advantages of kernel-based and probabilistic classifiers. The kernel-based component can
deal with high dimensional feature spaces and provides strong generalization guarantees,
while the probabilistic component is able to represent label correlations and exploit problem
structure. Bakir et al. provide a comprehensive review of structured output learning (2007).

2.3. Implicit Negativity
Most of these multi-label classification methods work well for the specific tasks they

were developed for. However, each of these methods assumes implicit negativity, and will
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likely perform poorly when applied to tasks where not all the correct positive labels are
provided.

The Weakened Implicit Negatives (WIN) algorithm was proposed in order to deal with
the issue of implicit negativity for backpropagation (Whiting and Ventura, 2004). The WIN
algorithm uses a separate probabilistic neural network component that learns a target output
value for each output node in the network. When a label is missing for a given training
instance, the WIN algorithm uses the learned target output value during error calculation
instead of assuming it to be zero. Training time is alternated between learning the network
weights and learning the target output values. How often each component alternates must be
provided as a parameter. This method was shown to be effective at learning toy problems and
a few real world problems with incomplete data; however, the algorithm was not compared to
any of the standard multi-label algorithms nor with any of the standard multi-label evaluation
metrics. Additionally, using a separate probabilistic neural network on top of backpropaga-
tion increases the computational complexity, which could be problematic for problems with
large numbers of labels. Finally, the WIN algorithm was designed for the specific case where
|Y ′
i | = 1 and |Ȳ ′

i | = 0. In other words, there is exactly one positive label provided for each
training instance and all other labels are unknown.

In the broader field of structured output learning, there exists several methods that deal
with missing labels for sequence labeling and part of speech tagging (Tsuboi et al., 2008;
Smola et al., 2005; Suzuki et al., 2007). Each method uses a probabilistic model for which the
parameters must be optimized to match the training data. These methods deal with missing
labels by marginalizing out the the unknown labels so as to maximize the likelihood of a set
of possible label structures which are consistent with the given data. These methods are only
applied to sequence labeling and part of speech tagging and it is unclear how they would
adapt to multi-label classification.

However, a multi-label active learning algorithm was proposed that is based on similar
probabilistic ideas (Qi et al., 2009). This method avoids the tedious process of labeling
thousands of images with possibly hundreds of labels by using a Bayesian error bound to
actively annotate only a subset of labels and then later deal with the missing labels. This
approach then uses the Maximum Entropy Method to learn a function that can classify
new instances (Zhu et al., 2005). This method handles missing labels by integrating out
the unlabeled part yielding the marginal distribution of the labeled part. This technique
was shown to be effective with small data sets. However, this algorithm is computationally
inefficient for problems with large sets of possible labels.

2.4. Inferring Missing Labels
Removing the assumption of implicit negativity helps to avoid training the model incor-

rectly when positive labels are missing. However, to compensate, negative labels are needed
in addition to the positive labels. Inferring those missing positive and negative labels is
needed to help fill in the gaps in the training data. That is to say, when the learning algorithm
encounters a new training instance xi with a set of incomplete positive labels Y ′

i and negative
labels Ȳ ′

i , it should be able to infer the true set of positive labels Yi and negative labels Ȳi.
This is similar to the class imbalance problem because there will likely be fewer negative
examples of each label compared to positive examples of each label.

A common solution to class imbalance is to either oversample the minority class or
under-sample the majority class (Guo et al., 2008). This solution is not the most effective
because over-fitting becomes a problem with oversampling and loss of crucial data is a
problem with under-sampling. Another method is to use data generation strategies where
new data instances for the minority class are generated by interpolating between the existing
data instances (Guo and Viktor, 2004; Han et al., 2005). In multi-label classification, class



6 COMPUTATIONAL INTELLIGENCE

imbalance has been studied (Chen and Lu, 2006). However, the research does not deal with
class imbalance between positive and negative examples caused by missing data. Rather, the
research deals with class imbalance between different labels when one label is more rare
than another.

There is little research that deals with inferring missing labels for multi-label problems.
The active annotation algorithm mentioned in the previous section indirectly infers missing
labels as part of the training process (Qi et al., 2009). However, there is no algorithm that we
are aware of that explicitly tries to predict missing labels in the training data by considering
label correlations in the data that is provided.

2.5. Incremental Learning
Most of these multi-label learning algorithms are not incremental learners and specifi-

cally do not deal with the case of the complete set of all possible labels being unknown a
priori. There are learning algorithms that deal with incremental learning for neural networks
and handle the issue of new incoming labels (Bruzzone and Fernández Prieto, 1999; Polikar
et al., 2001). However, these incremental algorithms are not designed for multi-label classi-
fication. There is an active annotation algorithm that claims to be the first incremental multi-
label algorithm (Hua and Qi, 2008; Qi et al., 2009). This algorithm allows for introducing
new labels and is able to dynamically update the model to account for these new incoming
labels. This solution is similar to our approach, except our solution is a backpropagation
solution, while theirs is a Bayesian model.

3. METHODS
Multi-label learning is a complicated problem with many potential issues. We propose

a novel variation of the backpropagation algorithm called the BAIN (Backpropagation for
Avoiding Implicit Negativity) algorithm that addresses multi-label learning and deals with
the issues previously mentioned. Specifically, the BAIN algorithm:

• Does not assume implicit negativity
• Uses label correlations in the training data to infer missing labels
• Can learn incrementally and dynamically incorporate previously unseen labels

These issues are nontrivial when it is difficult to get data with all the correct labels for each
training instance or when new data is being gathered and additional labels could appear.
The BAIN algorithm is implemented by taking the initial set of training data and building a
standard feed-forward neural network with each output node representing a label. The neural
network is then trained using standard backpropagation with a few key differences.

3.1. Avoiding Implicit Negativity
When certain labels are encountered in the training data, only the weights of the outputs

nodes corresponding to those labels are trained, while the other output nodes are ignored. The
assumption of implicit negativity is simply not made. Negative examples must be explicitly
labeled as negative in the training data. For example, given a data set with the possible labels
L = {A,B,C,D} and training set:

x1 → A, C̄
x2 → A,B
x3 → A, B̄, C,D
x4 → B̄,D
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When training the neural network on x1, only the weights corresponding to output nodes A
and C are trained, while B and D are ignored. For x2, only the weights corresponding to
output nodes A and B are trained, while C and D are ignored.

This is done by changing how the error term is calculated for each network output node.
Let K and H be the set of output nodes and the set of hidden nodes, respectively, for the
neural network. Let ok, tk, and δk be the actual output value, target output value, and error
term, respectively, for an output node k ∈ K. In standard backpropagation, the error term δk
is calculated for each k as follows:

δk ← ok(1− ok)(tk − ok)
The error term δh for each hidden node h ∈ H can then be calculated:

δh ← oh(1− oh)
∑
k∈K

wkhδk

where oh is the output value for hidden node h and wkh is the weight between hidden node
h and output node k. The network weights are then updated as follows:

wji ← wji + ηδjxji

where η is the learning rate, xji is the input value to node j from unit i, and wji denotes the
corresponding weight.

In the BAIN algorithm, the assumption of implicit negativity is removed by changing
how the error term δk is calculated:

δk ←
{

0, if tk is unknown
ok(1− ok)(tk − ok), otherwise

When using standard backpropagation for multi-label classification, tk is automatically as-
sumed to be zero when its value is unknown. However, by setting δk to zero when tk is
unknown, the weights that connect each hidden node to the kth output node are prevented
from changing due to multiplication by zero. The kth output node is also prevented from
affecting the error term for each hidden node. In this way the kth output node is ignored
when there is no explicitly given label for that node.

It should be noted that the BAIN algorithm relies on having at least one explicit negative
label per training instance and could perform poorly when no negative labels are provided.
However, it may not be unreasonable to require that there be at least one negative label pro-
vided for each training instance when using the BAIN algorithm, because there are usually
far more negative labels per instance than positive labels.

3.2. Inferring Missing Labels
The goal is to take advantage of label correlations in the data to infer the missing positive

and negative labels for each training instance. To do this, a naı̈ve Bayes approach is used.
Naı̈ve Bayes is simple and fast, allowing us to avoid unreasonable computational overhead
in training the actual multi-label model. The naı̈ve Bayes classifier takes the form:

classify(w1, w2, ..., wn) = argmax
g

p(G = g)
n∏
j=1

p(Wj = wj |G = g)

We consider the problem of inferring missing labels as a classification problem. A
missing label can be classified as either positive or negative. The other known labels are used
as the input features. In our case, wj ranges over the set of labels Y ′

i ∪ Ȳ ′
i —all the provided

labels (both positive and negative) for a given training instance xi, n = |Y ′
i ∪ Ȳ ′

i | (number
of labels), and G is the missing label we are trying to infer, which can be either positive or
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negative. The missing label is inferred only when there is confidence in the prediction. This
means that the argmax is only taken when the difference is larger than a certain threshold
θ, otherwise the label is left unknown. Hence, our method to infer a missing label G can be
defined as follows:

G =

 1, if fG(1, Y ′
i , Ȳ

′
i )− fG(−1, Y ′

i , Ȳ
′
i ) > θ

−1, if fG(−1, Y ′
i , Ȳ

′
i )− fG(1, Y ′

i , Ȳ
′
i ) > θ

unknown, otherwise

where

fG(g, Y ′
i , Ȳ

′
i ) = p(G = g)

∏
λ∈Y ′

i

p(λ|G = g)
∏
λ∈Ȳ ′

i

p(λ̄|G = g)

To clarify, inferring that G = 1 means that the training instance should be considered a
positive example of labelG and inferringG = −1 means that the training instance should be
considered a negative example of label G. This method is applied iteratively to each missing
label G in each training instance xi. The probabilities can be estimated from the training
data based on the assumption that there exist other training instances that are not missing the
label G.

For example, given a data set with the possible labels L = {A,B,C,D} and training
set:

x1 → A,B, C̄, D̄
x2 → Ā, B̄, C,D
x3 → A, C̄, D̄
x4 → Ā, B̄, C,D
x5 → A,B,C, D̄

Information about B is missing from x3 and must be inferred. For training instance x3,
Y ′

3 = {A} and Ȳ ′
3 = {C,D}, hence fB(1, Y ′

3 , Ȳ
′

3) and fB(−1, Y ′
3 , Ȳ

′
3) can be estimated as

follows:

fB(1, Y ′
3 , Ȳ

′
3) = p(B)p(A|B)p(C̄|B)p(D̄|B)

fB(−1, Y ′
3 , Ȳ

′
3) = p(B̄)p(A|B̄)p(C̄|B̄)p(D̄|B̄)

where p(B) and p(B̄) are shorthand for p(B = 1) and p(B = −1), respectively. The
probability terms on the right hand side of each equation are estimated by counting the
occurrences of each label in the training set. For instance, p(B) = 0.5 because positive B
occurs twice out of the four total times B occurs. Here p(A|B) = 1.0 because every time B
is positive, so is A. By counting occurrences in this manner, the rest of the probability terms
are estimated: p(B̄) = 0.5, p(C̄|B) = 0.5, p(D̄|B) = 1.0, p(A|B̄) = 0.0, p(C̄|B̄) = 0.0,
and p(D̄|B̄) = 0.0. The equations can then be evaluated as follows:

fB(1, Y ′
3 , Ȳ

′
3) = 0.5 ∗ 1.0 ∗ 0.5 ∗ 1.0 = 0.25

fB(−1, Y ′
3 , Ȳ

′
3) = 0.5 ∗ 0.0 ∗ 0.0 ∗ 0.0 = 0.0

If (0.25− 0.0) > θ, then it can be safely inferred that the missing label B is positive.
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if λj /∈ L′ then
L′ ← L′ ∪ {λj}
oj = createOutputNode(λj)
outputNodes ← outputNodes ∪ {oj}
for all h ∈ hiddenNodes do
addWeight(h, oj)

end for
end if

FIGURE 1. Psuedocode for dynamically incorporating a new label into the neural network
during incremental training.

FIGURE 2. Dynamically adding a new label to the neural network during incremental
training.

3.3. Incremental Learning
In incremental learning, all the possible labels that might be encountered during training

are not always known a priori. Recall that L′ is the set of all possible labels that are known at
the start of training. If a previously unknown label λ is encountered where λ /∈ L′, then there
would be no output node in the network that corresponds to that label. To accommodate a
new incoming label, a new output node is simply added to the output layer that corresponds
to that label. The weights to the hidden layer are initialized randomly and the model can now
begin learning this new label. Pseudocode for accommodating new incoming labels is shown
in Figure 1.

As an example, if the initial training set had the possible labels L′ = {A,B,C,D}, then
the network would have four output nodes, one corresponding to each label. If a new label
E is encountered during incremental training, E would be added to L′ and a fifth output
node would be dynamically created in the network with randomly initialized weights as
shown in Figure 2. The BAIN algorithm can now train the network as if that output node
had been known from the start. In fact, the resulting solution will be identical to the solution
obtained if labelE was known from the beginning. This is because no assumption of implicit
negativity is made and that output node would have been ignored if the training instances did
not explicitly mention E.

4. EXPERIMENTAL SETUP
Four experiments are designed to validate our proposed solution. The first experiment

involves several well-known multi-label data sets that have been used in other studies and
are publicly available (Tsoumakas et al., 2011). These data sets do not have missing labels;
however, this enables us to artificially remove both positive and negative labels from the
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TABLE 1. Data sets that are used for experimentation.

Data Set Domain Instances Nominal Numeric Labels Label Density
Attributes Attributes Cardinality

corel5k text 5000 499 0 374 2.028 0.009

medical text 978 1449 0 45 1.245 0.028

emotions music 593 0 72 6 1.859 0.311

eron text 1702 1001 0 53 3.378 0.064

genbase biology 662 1186 0 27 1.252 0.046

mediamill video 43907 0 120 101 4.376 0.043

scene images 2407 0 294 6 1.074 0.179

yeast biology 2417 0 103 14 4.237 0.303

triclass artificial 1500 0 2 8 3.00 0.375

classoverlap artificial 1500 0 2 8 1.578 0.197

DARCI images 2101 0 102 211 3.535 0.017

Average 5706.09 375.91 63.18 77.55 2.506 0.143

data sets and then compare the results with the complete data sets. The percentage of labels
that are removed can be adjusted, which allows us to evaluate how the algorithm performs
with different numbers of missing labels. The second experiment involves the DARCI data
set (Norton et al., 2010), which is a real world data set with a large percentage of missing
labels. This second experiment shows how our solution performs with actual problems that
have missing labels. The third experiment involves the specific case where there is only
one positive label provided for each instance. This allows us to compare BAIN with the
WIN algorithm (Whiting and Ventura, 2004), which is a multi-label learning algorithm that
deals with that specific case. The fourth experiment tests how well our algorithm can learn
incrementally. Using the data sets from the first set of experiments, we explicitly leave out
labels and training instances from the training data and then later introduce them. The final
result is then compared to a model that is trained with all the training data from the start.

4.1. Data Sets
Eight of the ten data sets used in the experiments are publicly available as part of the

open source Mulan project (Tsoumakas et al., 2011). These data sets represent a variety
of domains and a range of statistical properties. The remaining two data sets (triclass and
classoverlap) are simple artificially generated toy problems (Whiting and Ventura, 2004).
The attributes of each data set can be seen in Table 1. The table introduces two potentially
unfamiliar terms used for quantifying properties of multi-label data sets. Label Cardinality
refers to the average number of labels per instance. Density, or label density, is equivalent to
the label cardinality divided by the number of possible labels. This metric gives an indication
of how often labels are used throughout the data set.

The DARCI data set consists of 2,101 images that are labeled with adjectives that de-
scribe each image. The DARCI data set has 102 numerical features and currently 211 possi-
ble labels with a label cardinality of 3.535 and density of 0.017. Each image has, on average,
only 4.7% of both positive and negative labels; the rest are unknown. Additionally, data is
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TABLE 2. Parameters used for the neural network based algorithms BAIN, BPMLL, WIN, and binary
relevance. The number of hidden nodes for binary relevance are shown as hidden nodes per model, where the
number of models is equal to the number of possible labels in the data set.

Number of Hidden Nodes

Epochs Learning BAIN, WIN, Binary
Data Set Rate BP-MLL Relevance

corel5k 100 .01 256 2

medical 100 .01 128 10

emotions 100 .01 96 10

eron 100 .01 128 10

genbase 100 .01 256 10

mediamill 100 .01 128 10

scene 100 .01 96 10

yeast 100 .05 96 10

triclass 100 .10 16 2

classoverlap 100 .10 16 2

DARCI 200 .01 128 10

continually being collected, and new labels (or adjectives) are continually being added. This
makes the DARCI data set ideal for testing our solution as it is a real world example of the
problems we are trying to solve.

4.2. Algorithms
For a baseline comparison in the first three experiments, popular multi-label algorithms

which include BP-MLL (Zhang and Zhou, 2006), Binary Relevance (Tsoumakas and Katakis,
2007) and ML-kNN (Zhang and Zhou, 2005) are used. Two versions of the BAIN algorithm
are also compared. The first is the full algorithm as described in Chapter 3. The second is a
version that does not infer missing labels and is referred to as BAIN nopred. This allows us to
evaluate how effective our method is at inferring missing labels, as opposed to only removing
the assumption of implicit negativity. Additionally, an untrained model that is random in its
label predictions will be used to provide an overall baseline for comparison.

The number of k-nearest neighbors for the ML-kNN algorithm is the same for each data
set at k = 5. The binary relevance method uses standard single-label backpropagation as
its base algorithm. The various parameters used by each neural network based algorithm for
each data set can be seen in Table 2. These parameters are not necessarily optimal for each
algorithm; reasonable parameters were chosen based on simple trial runs with each data set
in order to increase the overall score across all metrics. The neural network parameters were
calibrated with the BPMLL algorithm and then used for all neural network based algorithms.
The number of hidden nodes for binary relevance were chosen so that the total number of
connections from all the resulting neural networks are roughly the same as in the single
BPMLL network. Previous studies have shown that choosing hidden nodes this way for
binary relevance reduces training time while still allowing binary relevance to perform better
than BPMLL (Skabar et al., 2006; Heath et al., 2010).



12 COMPUTATIONAL INTELLIGENCE

4.3. Evaluation Metrics
Empirically evaluating multi-label problems is more complicated than evaluating single-

label problems, as there are different degrees of correctness. Multi-label evaluation metrics
fall into two main categories: prediction-based and ranking-based. Prediction-based metrics
evaluate how well the algorithm predicts the actual set of correct labels for each instance.
Ranking-based metrics evaluate how well the algorithm ranks the labels relative to one an-
other. The correct labels should be ranked higher than the incorrect labels. The same notation
as established in Chapter 1 will be used to formalize our evaluation metrics. In addition, given
an instance xi, the set of predicted labels is denoted as Zi, while the predicted rank of a
label λ is denoted as ri(λ). We will use the following standard multi-label prediction-based
evaluation metrics (Tsoumakas et al., 2010) with 10-fold cross validation as we compare
each algorithm:

Hamming Loss is the average percentage of correct labels not predicted and incorrect labels
predicted.

HammingLoss =
1

m

m∑
i=1

|Yi∆Zi|
q

where ∆ is the set symmetric difference operator and q is the total number of possible labels.

Accuracy is the average percentage of true positives out of the total true positives, false
positives, and false negatives.

Accuracy =
1

m

m∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

Precision is the average percentage of predicted labels that were correct.

Precision =
1

m

m∑
i=1

|Yi ∩ Zi|
|Zi|

Recall is the average percentage of correct labels that were predicted.

Recall =
1

m

m∑
i=1

|Yi ∩ Zi|
|Yi|

We will use the following standard multi-label ranking-based evaluation metrics (Schapire
and Singer, 2000; Zhang and Zhou, 2006) with 10-fold cross validation as we compare each
algorithm:

One-Error is the percentage of top ranked labels that are not in the set of correct labels.

OneError =
1

m

m∑
i=1

δi(argmin
λ∈L

ri(λ))

where

δi(λ) =

{
1, if λ /∈ Yi
0, otherwise

Coverage is how far, on average, we need to go down the list of predicted labels in order to
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cover all the correct labels. It is normalized between 0 and 1.

Coverage =
1

m

m∑
i=1

ωi − |Yi|
q − |Yi|

where

ωi = max
λ∈Yi

ri(λ)

Ranking Loss is the average percentage of incorrect labels that are ranked higher than correct
labels.

RankingLoss =
1

m

m∑
i=1

1

|Yi||Ȳi|
|{(λa, λb) : ri(λa) > ri(λb), (λa, λb) ∈ Yi × Ȳi}|

Each of these seven metrics tell us different things about the performance of the multi-
label algorithm. In order to provide a single metric that at least partially captures all these
different aspects, an additional metric is added that averages the previous seven together. For
the metrics that are to be minimized instead of maximized, one minus the value is done in
the averaging. This metric is called the Overall Average.

When comparing one learning model to another, it is important to have confidence that
one model truly outperforms the other. One way to do this is to measure how statistically
significant the difference is between their performance on each metric. This significant
difference can be measured using the paired permutation test. The paired permutation test
outputs a p-value between 0 and 1; the higher the p-value, the less statistically significant
the difference is between two models. It is common convention that a p-value less than 0.05
means that it can be said with confidence that one model outperforms the other. The paired
permutation test can only compare two models at a time; hence, for each metric, the paired
permutation test is only calculated between the BAIN algorithm and the next best performing
algorithm.

5. RESULTS
This chapter presents the results of the four experiments described in Chapter 4. The first

experiment involves artificially removing an incremental percentage of labels in the training
data. The second experiment uses the DARCI data set, which is a real world problem with
a high percentage of missing labels. The third experiment considers the case where each
training instance has exactly one positive label with all other labels unknown. The fourth
experiment evaluates how well the BAIN algorithm can learn incrementally. Finally, the
on-line multi-label Bayesian algorithm described in Section 2.3 is compared to the BAIN
algorithm.

5.1. Artificially Removing Labels
The first experiment involves the ten data sets described in Section 4.1. Each algorithm

is run on each data set using 10-fold cross validation. For each fold, a certain percentage
of the labels are artificially removed from the training data. The model is trained with this
modified training data and then evaluated using test data that still has all the labels present.
The percentage of labels that are removed changes in 10% increments from 0% to 90%.
An additional run at 95% is also performed because 95% is close to the percentage of
missing labels in the DARCI data set. The results from all ten data sets are averaged for each
algorithm and for each evaluation metric. The results for overall average, accuracy, precision
and recall can be seen in Figure 3. The results for Hamming loss, one-error, coverage, and
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ranking loss can be seen in Figure 4. The paired permutation test was performed for each of
these metrics between the best version of BAIN (BAIN nopred) and the best other algorithm
(non-BAIN). The paired permutation test results for each metric can be seen in Figures 5 and
6.

(a) Overall Average (b) Accuracy

(c) Precision (d) Recall

FIGURE 3. Average results of 10 different data sets as the percentage of missing labels
increases (higher is better for these metrics). As more labels are removed, the performance
of the other algorithms decreases rapidly, while the BAIN algorithm appears much more
robust to missing labels and its performance decreases much more slowly.

When all labels are present, the BAIN algorithm does well, but is not the best. However,
as labels are removed, the performance of the other algorithms decreases rapidly, while the
BAIN algorithm appears much more robust to missing labels and its performance decreases
much more slowly. In some cases, as with the MLkNN algorithm, when the percentage of
labels missing reaches a threshold it stops predicting any labels as evidenced by the precision
and recall dropping to zero. By the time 95% of the labels are missing, the BAIN algorithm
outperforms all other algorithms for almost every metric, and does so by a considerable
margin for accuracy, precision, and recall as shown in Figure 3. It should be mentioned
that for recall, the random baseline ends up performing the best. This is because recall only
measures the percentage of all the positive labels that are predicted. As more labels are
missing, each algorithm predicts fewer labels, while the random baseline will always predict
around 50% of the labels.

It is important to note that there is little difference in performance between the orig-
inal BAIN algorithm and the BAIN algorithm without the naı̈ve Bayes label prediction
(BAIN nopred). However, at the 95% missing labels threshold BAIN nopred actually per-
forms better and hence is the version of BAIN used in the paired permutation tests. These
results show that our naı̈ve Bayes method for inferring missing labels yields little benefit and
even hurts our performance when the amount of missing labels exceeds 95%. In practice,
it would therefore be better to not include the naı̈ve Bayes approach as it requires more
processing time, without any benefit.
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(a) Hamming Loss (b) One-Error

(c) Coverage (d) Ranking Loss

FIGURE 4. Average results of 10 different data sets as the percentage of missing labels
increases (lower is better for these metrics). The BAIN algorithm outperforms almost all
other algorithms by the time 95% of the labels are missing.

The paired permutation test results (Figures 5 and 6) show BAIN nopred compared to
the best non-BAIN algorithm. It should be noted that the best non-BAIN algorithm at each
interval is used in the permutation test. For example, with precision, MLkNN is used at 0%
missing labels and BPMLL is used at 95% missing labels. This puts BAIN at a disadvantage
for the paired permutation test, which makes the results more significant when BAIN per-
forms better. The red line indicates that the other algorithm is performing better than BAIN
on average across all datasets, while the blue line indicates that BAIN is performing better
on average across all datasets. When all labels are present, the p-value is below 0.05 and red
for all metrics, which means that the BAIN algorithm starts off performing worse than the
best other algorithm. However, as the percentage of missing labels increases, the p-values
also increase, which means there is less and less confidence in the difference between BAIN
and the best other algorithm. At some threshold the p-values change to blue, indicating that
BAIN is now the best performing algorithm. This transition can be seen in Figures 3 and 4
when the BAIN algorithm crosses with the best other algorithm.

By the time 95% of the labels are missing, the p-values are blue and less than 0.05
for accuracy, precision, and recall. This means that we can confidently say that the BAIN
algorithm outperforms the other algorithms for those metrics. For the ranking-based metrics
and Hamming loss, however, the p-values are still quite high. This means that, even though
the BAIN algorithm is performing better on those metrics, there is still uncertainty in how
significant that difference is. This uncertainty can be expected for ranking-based metrics
because a complete ranking is much more challenging to get correct than the binary predic-
tion of labels. With coverage and ranking loss, that uncertainty is more prominent, which is
why their p-values take longer to change to blue. With Hamming loss and one-error, the p-
values drop close to 0.05 at around 50% - 60% missing labels with BAIN performing better;
however, the p-values then go back up. This indicates that, for Hamming loss and one-error,
there is a certain range of missing labels that BAIN confidently performs better at. At this
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(a) Overall Average (b) Accuracy

(c) Precision (d) Recall

FIGURE 5. Paired permutation test results between BAIN nopred and the best other algo-
rithm corresponding to the metrics in Figure 3. The green line at 0.05 denotes statistical
significance. When 95% of the labels are missing, the p-value is below 0.05 for accuracy,
precision and recall, which means that there is high confidence that the difference between
BAIN and the best other algorithm is statistically significant for those metrics.

point, it is not clear why that particular range of missing labels (50% - 60%) is better for
BAIN on Hamming loss and one-error.

5.2. The DARCI Data Set
The second experiment involves the DARCI data set, which is a real world problem that

has missing labels. As mentioned before, approximately 95.3% of the labels are missing in
the DARCI data set. This makes evaluation more challenging because the test sets used at
each fold are also missing labels. The evaluation metrics can only be applied to labels that are
actually known. While this limitation does not give us a complete measure of performance, it
stills gives us general insight into how well each algorithm performs relative to one another.
The results for overall average, accuracy, precision, and recall can be seen in Figure 7. The
results for Hamming loss, one-error, coverage, and ranking loss can be seen in Figure 8. The
paired permutation test was performed between the best BAIN (BAIN nopred) and the best
non-BAIN algorithm and the results for each metric can be seen in Table 3.

The results show that BAIN without label prediction is the clear winner in every metric.
Normal BAIN and BPMLL are the next best and perform equally well overall, with BPMLL
doing better on Hamming loss and one-error and BAIN doing better on accuracy and recall.
MLkNN and binary relevance, however, perform no better than random overall. All algo-
rithms do better than random with Hamming loss and all the ranking based metrics. The
paired permutation test results show p-values less than 0.05 for all metrics, which means
that the difference in performance between BAIN without label prediction and the best other
algorithm is statistically significant.

With the DARCI data set, it appears that inferring missing labels hurts the performance
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(a) Hamming Loss (b) One-Error

(c) Coverage (d) Ranking Loss

FIGURE 6. Paired permutation test results between BAIN nopred and the best other algo-
rithm corresponding to the metrics in Figure 4. The green line at 0.05 denotes statistical
significance. The p-value is never below 0.05 when BAIN is better, which means that there
is little confidence in how significant the difference is between BAIN and the best other
algorithm for these metrics.

FIGURE 7. Results of the DARCI data set for overall average, accuracy, precision, and recall
(higher is better for these metrics). BAIN without label prediction performs better on every
metric than all the other algorithms.

of the BAIN algorithm, whereas in the previous experiment it didn’t seem to affect the
performance. A reason for this could be due to the previously mentioned limitation of not
having a test set without missing labels. A full test set may reveal that label prediction makes
no difference for the DARCI data set. A more likely explanation, however, could be the fact
that our naı̈ve Bayes method for inferring missing labels relies on at least some of the labels
being present in order to make any kind of accurate inference on the labels that are missing.
Having only 5% of the labels present in the data simply may not be enough for an accurate
prediction and hence many of the predictions are inaccurate and the resulting performance
is worse. There is evidence from the previous experiment to support this. If we refer back to
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FIGURE 8. Results of the DARCI data set for Hamming loss, one-error, coverage, and recall
(lower is better for these metrics). BAIN without label prediction performs better on every
metric than all the other algorithms.

TABLE 3. Paired permutation test results between BAIN nopred and the best non-BAIN algorithm for
the DARCI data set corresponding to Figures 7 and 8. The best non-BAIN method for Hamming loss is binary
relevance, while BPMLL is the best non-BAIN method for all other metrics. The p-values are below 0.05 for all
metrics, which means that there is high confidence that the difference between BAIN and the best other algorithm
is statistically significant.

Overall Average Accuracy Precision Recall

p-value 0.00098 0.00098 0.00098 0.00098

Hamming Loss One-Error Coverage Ranking Loss

p-value 0.00293 0.00098 0.00098 0.00098

Figure 3 and Figure 4, we can see that the performance of BAIN at 95% missing labels is
worse than BAIN without label prediction for every metric except recall.

5.3. Only One Positive Label
The third experiment involves the specific case where each training instance has exactly

one positive label with all other labels being unknown. This allows us to compare the BAIN
algorithm to the WIN algorithm, which was designed for this specific case, in addition to
the other algorithms previously used. Using the same ten data sets from Section 4.1 and
10-fold cross validation, we artificially remove all labels except for one randomly chosen
positive label from each instance of the training data. The algorithms are then evaluated
using the fully labeled test set. This experiment will only use the version of BAIN without
label prediction (BAIN nopred) as it was shown in the previous two experiments to perform
better than BAIN with label prediction. To further demonstrate BAIN’s reliance on at least
some explicitly given negative labels, the BAIN algorithm will also be run on the ten data
sets where a randomly chosen negative label is provided for each instance in addition to the
positive label. The results from all ten data sets are averaged over each algorithm and for
each metric. The results for overall average, accuracy, precision, and recall can been seen in
Figure 9. The results for Hamming loss, one-error, coverage, and ranking loss can be seen in
Figure 10. The paired permutation test results between BAIN with one positive label and the
best non-BAIN algorithm can be seen in Table 4. The paired permutation test results between
the best non-BAIN algorithm and BAIN with one positive and one negative label can be seen
in Table 5.
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FIGURE 9. Results for overall average, accuracy, precision, and recall when there is only
one positive label for each training instance (higher is better for these metrics). With the
exception of recall, BAIN performs worse than the other algorithms. However, when BAIN
is given at least one negative label per training instance, it performs comparable to the WIN
algorithm.

FIGURE 10. Results of Hamming loss, one-error, coverage and ranking loss when there is
only one positive label for each training instance (lower is better for these metrics). BAIN
performs worse than the other algorithms. However, when at least one additional negative
label per training instance is given to BAIN, its performance increases to be competitive with
the other algorithms.

The results show that the BAIN algorithm, although better than random, performs worse
than the other algorithms for all metrics except recall. This experiment exposes BAIN’s main
weakness of relying on at least some explicitly given negative labels being present in the
training data. The other algorithms do not suffer from this weakness as they automatically
assume any missing label to be negative. However, if at least one negative label per training
instance is present, then the performance of BAIN improves considerably and is comparable
to the WIN algorithm. The paired permutation test results in Table 5 show no significant
difference between BAIN with a single negative label and the best non-BAIN algorithm for
all metrics except recall, where BAIN is superior. Adding an explicit negative label makes
no difference to the other algorithms because that label is already assumed to be negative. In
general, explicit negative labels are harder to acquire than positive labels. However, it may
not be unreasonable to require that there be at least one negative label provided for each
training instance when using the BAIN algorithm. This is because there are usually far more
negative labels per instance than positive labels. Table 1 shows that the average density of all
the data sets we have used is 0.143, which means that only 14.3% of the possible labels are
positive, while the remaining 85.7% are negative.
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TABLE 4. Paired permutation test results between BAIN with only one positive label and the best non-
BAIN algorithm corresponding to Figures 9 and 10. BPMLL is the best non-BAIN algorithm for recall, MLkNN
is the best non-BAIN algorithm for coverage and ranking loss, while WIN is the best non-BAIN algorithm for all
other metrics. All the p-values are less than 0.05, which means that there is high confidence that the difference
between BAIN and the best non-BAIN algorithm is statistically significant, with BAIN performing worse.

Overall Average Accuracy Precision Recall

p-value 0.00098 0.00684 0.00293 0.00293

Hamming Loss One-Error Coverage Ranking Loss

p-value 0.00098 0.00684 0.00293 0.00293

TABLE 5. Paired permutation test results between BAIN with a negative label and the best non-BAIN
algorithm corresponding to Figures 9 and 10. BPMLL is the best non-BAIN algorithm for recall, MLkNN is
the best non-BAIN algorithm for coverage and ranking loss, while WIN is the best non-BAIN algorithm for all
other metrics. With the exception of recall, none of the p-values are less than 0.05, which means that there is
little confidence that the difference between BAIN with a negative label and the best non-BAIN algorithm is
statistically significant.

Overall Average Accuracy Precision Recall

p-value 0.49902 0.70996 0.21973 0.01660

Hamming Loss One-Error Coverage Ranking Loss

p-value 0.15723 0.10645 0.13184 0.06934

5.4. Incremental Learning
The fourth experiment is designed to evaluate the incremental learning capabilities of the

BAIN algorithm and again involves 10-fold cross validation and the ten data sets described in
Section 4.1. The incrementally trained model is compared with a model that was trained with
the entire data set from the start. Due to the iterative nature of backpropagation, labels that
are introduced later in the training process have less influence on the resulting model. Hence,
in order for the performance of the two models to be comparable, we do the incremental
training in a specific way that allows new labels just as much influence as the labels known
from the beginning.

To illustrate this, consider an example with the possible labels L = {A,B,C,D} and
training set:

T =


x1 → A, B̄, C̄, D̄
x2 → Ā, B̄, C,D
x3 → A,B, C̄, D̄
x4 → Ā, B̄, C, D̄

First, the training data is shuffled and split in half.

T1 =

{
x2 → Ā, B̄, C,D
x3 → A,B, C̄, D̄

T2 =

{
x1 → A, B̄, C̄, D̄
x4 → Ā, B̄, C, D̄
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FIGURE 11. Results of incremental training versus non-incremental for overall average,
accuracy, precision, and recall (higher is better for these metrics). The BAIN that has been
trained incrementally performs comparable to the BAIN that has been trained with all the
data from the start.

Some labels are randomly chosen and removed from each instance of the first half of the
training data (the same labels are chosen for each fold). (In the actual experiment, we
removed 5 labels).

T1 =

{
x2 → Ā, B̄
x3 → A,B

T2 =

{
x1 → A, B̄, C̄, D̄
x4 → Ā, B̄, C, D̄

Each instance of the first half of the training data is then added to the second half with only
the removed labels provided. This is to ensure that the model will eventually see the labels
that were removed.

T1 =

{
x2 → Ā, B̄
x3 → A,B

T2 =


x1 → A, B̄, C̄, D̄
x4 → Ā, B̄, C, D̄
x2 → C,D
x3 → C̄, D̄

The BAIN algorithm is trained using T1 and is unaware that the removed labels exist. After
initial training, the model is then trained with T2. The removed labels are introduced to the
model at the same time and the model must learn incrementally as described in Section 3.3.

This incrementally trained model is then compared with a model that was trained with
the entire data set from the start. A version of BAIN that does not learn incrementally is also
used as a baseline comparison. Most multi-label learning algorithms that do not handle new
incoming labels will either crash, or ignore the new label. This version of BAIN just ignores
any new labels during training. During evaluation, the removed labels are never predicted
and are always ranked at the bottom. The results from all ten data sets are averaged for
each model. The results for overall average, accuracy, precision and recall can be seen in
Figure 11. The results for Hamming loss, one-error, coverage, and ranking loss can be seen
in Figure 12. The paired permutation test results between the incrementally trained BAIN
and the BAIN trained with all the data from the start can be seen in Table 6. The paired
permutation test results between the incrementally trained BAIN and the non-incremental
baseline BAIN can be seen in Table 7.
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FIGURE 12. Results of incremental training versus non-incremental for Hamming loss, one-
error, coverage, and recall (lower is better for these metrics). The BAIN that has been trained
incrementally performs comparable to the BAIN that has been trained with all the data from
the start.

TABLE 6. Paired permutation test results between the BAIN that has been trained incrementally and the
BAIN that has been trained with all the data from the start corresponding to Figures 11 and 12. All the p-values
are high, indicating that there is no significant difference between their performances.

Overall Average Accuracy Precision Recall

p-value 0.55176 0.72363 0.50293 0.31348

Hamming Loss One-Error Coverage Ranking Loss

p-value 0.62402 0.26465 0.55567 0.09277

TABLE 7. Paired permutation test results, corresponding to Figures 11 and 12, between the BAIN that has
been trained incrementally and the baseline BAIN that cannot handle new incoming labels. With the exception
of one-error and ranking loss, the p-values are low, which means there is high confidence that the difference
between these two models is statistically significant.

Overall Average Accuracy Precision Recall

p-value 0.03613 0.03223 0.10254 0.08691

Hamming Loss One-Error Coverage Ranking Loss

p-value 0.07324 0.89941 0.00488 0.24707

As expected, the results show little significant difference in performance between the
model that was trained incrementally and the model that was trained with all the data from the
start. The BAIN algorithm can handle new incoming labels during incremental training, and
the resulting model achieves similar performance to a model trained with the new labels from
the beginning. The non-incremental baseline model performs worse than the incremental
model for every metric except one-error. The paired permutation test results for these two
models in Table 7 show a significant difference for all metrics except for one-error, ranking
loss, recall, precision, and Hamming loss, although Hamming loss, precision, and recall
are close to 0.05. The reason one-error actually performs slightly better is because one-error
only measures when the top ranked label is a false positive. The five removed labels are never
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given the chance to be false positives and are never ranked at the top and hence never count
against one-error. With the exception of one-error, the results clearly show that accounting
for new incoming labels during incremental training significantly improves the performance.

5.5. Comparing with the Bayesian Model
The on-line Bayesian multi-label learning algorithm (Qi et al., 2009) discussed in Sec-

tion 2.3 was not included in the previous experiments because it is strictly an on-line learning
method and its inefficiency on problems with a large number of possible labels. However,
in their paper, the authors use the yeast and scene data sets, which are two of the data sets
used in our experiments (see Table 1). We can, therefore, compare our results on those data
sets with the results achieved in their paper. The authors use the F1 score to evaluate their
algorithm, which is defined as:

F1 =
2pr

p+ r

where p and r are precision and recall respectively.
Using their Bayesian active learning approach on the yeast data set, they were able to

achieve an F1 score of 0.58. The BAIN algorithm, using ten-fold cross validation with all the
labels provided, achieved an F1 score of 0.64. However, on the scene data set, they had an
F1 score of 0.91, while the BAIN algorithm only achieved 0.70. Clearly there are trade-offs
between the two algorithms. The results indicate that the Bayesian algorithm may be better
for data sets with a small number of possible labels, while the BAIN algorithm can better
handle problems with a large number of possible labels. The Bayesian algorithm is strictly
an on-line learner, so if the training has to be restarted, it can become intractable to retrain
the model with the whole training set. The BAIN algorithm is more flexible as it can learn
incrementally or with all the data at once.

6. CONCLUSIONS AND FUTURE WORK
The BAIN algorithm is successful at improving multi-label classification performance

for problems where the labeling is incomplete. We have shown that, compared to other multi-
label algorithms, the BAIN algorithm is more robust in performance as the percentage of
missing labels increases. On the DARCI data set, which is a real world problem that has
missing labels, we have shown that the BAIN algorithm successfully performs better than
other multi-label learning algorithms. We have also shown that the BAIN algorithm can learn
incrementally and handle new labels that were previously unknown with hardly any loss of
performance.

The naı̈ve Bayes method to infer missing labels was shown to be ineffective and even
detrimental in the case of the DARCI data set. Either the labels that are inferred are redundant
and make little difference, or there are not enough provided labels to accurately infer the
missing labels. In either case, it is clear that the BAIN algorithm without this label inference
method is the better choice. Further research would be useful in discovering other methods
that could be more effective than the naı̈ve Bayes approach.

The BAIN algorithm was shown to perform poorly when there are no explicitly given
negative labels in the training data. However, one negative label provided per training in-
stance is enough to significantly increase BAIN’s performance to be competitive with the
WIN algorithm. This requirement may not be unreasonable as there are far more possible
negative labels than positive labels for each training instance. Additional research needs to
be done on multiple real-world data sets with missing labels to better determine how plau-
sible that requirement is. The WIN algorithm performed well when only one positive label
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was provided per training instance. Additional research could extend the WIN algorithm to
handle data sets with any number of provided labels, both positive and negative. The BAIN
algorithm could be extended to overcome its weakness of requiring at least some explicitly
given negative labels. However, there would likely be a trade-off because the point of the
BAIN algorithm is to avoid assumptions about missing data.

The BAIN algorithm was shown to have trade-offs compared to the on-line multi-label
Bayesian model (Qi et al., 2009). The BAIN algorithm can handle problems with a large
number of possible labels, while the Bayesian model is inefficient on these problems. This
is likely because the Bayesian algorithm explicitly attempts to model the higher order re-
lationships between labels. While this is a significant advantage on problems with a small
number of possible labels (such as the scene data set), it is too slow for large sets of possible
labels. Additional research needs to be done to see how the BAIN algorithm could benefit
from trying to model these higher order relationships.

Removing the assumption of implicit negativity is effective in improving multi-label
classification performance for the backpropagation algorithm. Other multi-label algorithms,
such as MLkNN, could be modified to remove that assumption, or adapted in other ways to
handle missing labels. Instead of trying to infer the missing labels for each training instance,
active learning approaches could be used to provide additional training instances for the
labels not adequately represented in the current data set. Additional research could be done
to find other applications where BAIN could be useful. For example, the BAIN algorithm
might be applicable to the frequent itemset mining problem (Bodon, 2006; S. and Vyas,
2010). There are many opportunities for future research in this area; the BAIN algorithm
provides a stepping stone as a simple yet effective solution to problems with missing labels.
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TASKAR, and S. V. N. VISHWANATHAN. 2007. Predicting Structured Data. The MIT Press.
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