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Abstract
In visual art, the communication of meaning or intent is
an important part of eliciting an aesthetic experience in the
viewer. We present a computer system, called DARCI, that
is designed to automatically create original images that con-
vey meaning. Building on previous work, we present three
new components of DARCI that enhances its ability to com-
municate concepts through the images it creates. The first
component is a model of semantic memory based on word
associations that helps to provide meaning to concepts. The
second component composes universal icons into a single im-
age and then renders the image to match an associated adjec-
tive. The third component is a similarity metric that keeps the
icons recognizable, but still allows for artistic elements to be
discovered during the adjective rendering phase. We use an
online survey to show that the system is successful at creating
images that communicate concepts to human viewers.

Introduction
DARCI, Digital ARtist Communicating Intention, is a sys-
tem we have built to generate original images that convey
meaning. The system is part of ongoing research in the sub-
field of computational creativity, and is inspired by other
artistic image generating systems such as Harold Cohen’s
AARON (McCorduck 1991) and Simon Colton’s Painting
Fool (Colton 2011).

Central to the design philosophy of DARCI is the no-
tion that the communication of meaning in art is a nec-
essary part of eliciting an aesthetic experience in the
viewer (Csı́kzentmihályi and Robinson 1990). DARCI is
unique from other computationally creative systems in that
DARCI creates images that explicitly express a given con-
cept. Prior to this work, DARCI has been confined to only
expressing adjectives through the use of global image fil-
ters (Norton, Heath, and Ventura 2010; 2011). DARCI uses
a genetic algorithm to learn the image filters and parameters
necessary to render a pre-existing source image so that it will
convey specified adjectives in an interesting way. Often, due
to excessive filtering and extreme parameters, this leaves the
source image unrecognizable.

In this paper we introduce new capabilities to DARCI; pri-
marily, the ability to produce original source images rather
than relying upon human provided source images. DARCI
composes these original source images from existing ele-
ments in order to express a wide range of concepts beyond

Figure 1: A diagram outlining the components of DARCI.
Neural networks are trained to annotate images with adjec-
tives. A genetic algorithm, governed by adjective annota-
tion, is used to evolve renderings of a source image to con-
vey specified adjectives.

strictly adjectives. Furthermore, in order to preserve the con-
tent of source images after applying image filters, we intro-
duce a variation on the system’s traditional image rendering
technique. By polling online volunteers, we show that with
these additions, DARCI is capable of creating images that
convey selected concepts while maintaining the aesthetics
achieved with filters.

Background
DARCI can be divided into two major components, the im-
age analysis component, and the image generation compo-
nent. The image analysis component learns how to anno-
tate images with adjectives by training a series of neural net-
works with example images. The image generation compo-
nent renders a source image so that it will visually convey an
adjective using a genetic algorithm governed by the analy-
sis component. Figure 1 outlines these two components and
their interaction. In this paper, we will introduce an element
of the generation component that composes a source image
to match any concept (adjective or otherwise) prior to ren-
dering it.

Image Analysis
The image analysis component uses global image features
to identify general characteristics of images such as various



aesthetic qualities, style, emotional impact, medium, etc. A
broad range of such global features have been proven in
the works of Gever, Li, Datta, Wang, and Zujovic (Gevers
and Smeulders 2000; Li and Chen 2009; Datta et al. 2006;
Wang, Yu, and Jiang 2006; Zujovic, Gandy, and Friedman
2007). King et al. have developed a library of these features
for public use called DISCOVIR (King 2002). We use this
library and one additional feature that we have designed for
counting the number of highly representative hues (quan-
tized) present in the image. In total, we use 102 features for
image analysis.

To annotate images with adjectives, we train a machine
learner using human labeled training data. To facilitate the
acquisition of this data, we have published a website where
anonymous users can label data (http://darci.cs.byu.edu).
Since words can have multiple senses or meanings, we use
WordNet synsets to disambiguate labels. WordNet is an on-
tology of words and their semantic relationships commonly
used in language research (Fellbaum 1998). A synset is a
synonym set, or a set of words that share the same meaning.
A word can belong to many synsets and each synset can have
many word forms. In this paper, when we refer to adjectives,
we are actually referring to unambiguous WordNet synsets.

Learning to annotate images with adjectives is a multi-
label classification problem (Tsoumakas and Katakis 2007),
meaning each image can be associated with more than one
adjective. To handle multi-label classification, we use a col-
lection of artificial neural networks (ANNs) that take stan-
dardized versions of the 102 global image features as input.
In reference to Colton’s model of creativity (Colton 2008),
we call these neural networks appreciation networks. There
is an appreciation network for each adjective that has a suf-
ficient amount of training data. As the system incrementally
accumulates more data, new neural networks can be dynam-
ically added to the collection to accommodate the new adjec-
tives. The appreciation networks are trained using standard
backpropagation and output a single real value, between 0
and 1, indicating the degree to which a given image can be
described by the networks’ corresponding adjective.

Because a large amount of training data is needed to effec-
tively train neural networks, and because there is a scarcity
of adjective-labeled images available, we employ various
strategies to augment the training data we collect. Nega-
tive training data, in particular, is difficult to come by since
it is not natural for people to label images with what is not
associated with the image, and we can’t assume implicit neg-
ativity. Unfortunately, negative data is also very important
for effectively training neural nets. To obtain negative data
from positive data, we use the WordNet antonymy relation-
ship. For example, if an image is labeled “hot”, we assume
that the image is not “cold”. Another strategy we employ to
increase both positive and negative data points, is to predict
additional labels using correlation data that we collect (Nor-
ton, Heath, and Ventura 2010).

Image Generation
DARCI uses an evolutionary mechanism, similar to a tradi-
tional genetic algorithm, to explore the space of image filters
that will render any source image according to specified ad-

Figure 2: Sample genotype (top) applied to a source image
(left) resulting in the phenotype (right). The genotype is a
list of image filters with parameters. “Ripple” and “Weave”
are the names of two (of ninety-two) possible filters.

jectives while preserving specified nouns in the source im-
age. To do this, we create a population of genotypes that
evolve over many generations. Each genotype is a list of
Photoshop-like filters (and their accompanying parameters)
for processing the source image. Each processed source im-
age is called a phenotype. Figure 2 gives an example of a
genotype and its phenotype.

Every generation, each phenotype is evaluated by analyz-
ing it with the appreciation networks corresponding to the
specific adjectives required. The appreciation networks pro-
vide a score indicating the strength of a match found in the
phenotype. The most fit, or highest scoring, phenotypes’
corresponding genotypes are preserved for the next gener-
ation of the algorithm. New genotypes are created, to re-
place low scoring genotypes, by combining filters between
the most fit genotypes in a process known as crossover. Fi-
nally, a small fraction of genotypes are mutated: filter set-
tings are slightly shifted.

This process is repeated until either a genotype emerges
with a score above some threshold, or a specified amount of
time elapses. The highest scoring phenotypes are returned
as successful artifacts. More details into this process can be
found in a previously published paper (Norton, Heath, and
Ventura 2011).

Methodology
In this section, we introduce several new advances to
DARCI that enhance the system’s capability to communi-
cate intended meaning in an aesthetic fashion: a semantic
memory model enables the system to express any concept
with associations that are relatable by a human audience, an
image composer allows the system to compose concrete rep-
resentations of the concepts learned by the semantic memory
model into source images for DARCI to render, and finally
a new metric governing the evolution of new images enables
the system to more effectively convey these concepts in final
renderings. We also describe an online survey that we use to
evaluate the success of these additions.

Semantic Memory Model
In cognitive psychology, the term semantic memory means
the memory of meaning and other concept-based knowl-



edge, and allows people to consciously recall general infor-
mation about the world. We argue that in order to be cre-
ative, there needs to be intent and purpose behind what is
being created. How can a system intentionally create an im-
age about ‘war’ if the system has no knowledge about what
‘war’ means? In order for DARCI to visually communicate
a more advanced concept, DARCI needs to have some in-
ternal knowledge (or understanding) of that concept (i.e, its
own semantic memory).

This question of what gives words (or concepts) mean-
ing has been debated for years; however, it is commonly
agreed that a word, at least in part, is given meaning by how
the word is used in conjunction with other words (i.e., its
context) (Erk 2010). Many computational models of seman-
tic memory consist of building associations between words
(Sun 2008; De Deyne and Storms 2008). These word associ-
ations essentially form a large graph that is typically referred
to as a semantic network. For example, if the system wanted
to communicate the concept ‘dog’, other words associated
with ‘dog’ are retrieved, words like ‘fur’, ‘bark’, ‘tail’, ‘poo-
dle’ ‘leash’, ‘pound’, etc. These words could be attributes
of ‘dogs’, things ‘dogs’ do, types of ‘dogs’, or other ob-
jects/places that commonly occur with ‘dogs’. These asso-
ciated words provide a level of meaning to the concept ‘dog’,
which will help the system to successfully convey the con-
cept to others.

Word associations are commonly acquired in one of two
ways: from people and automatically by inferring them from
a corpus. Here we describe a computational model of se-
mantic memory that combines human free association norms
with a simple corpus-based approach. The idea is to use the
human word associations to capture general knowledge and
then fill in the gaps using the corpus method.

Lemmatization and Stop Words In gathering word as-
sociations, we use the standard practice of removing stop
words (words like ‘the’ and ‘of’) and lemmatizing (combin-
ing different forms of the same word). WordNet maintains
a database of word forms and hence, we use WordNet to
perform the lemmatization (Fellbaum 1998). It should be
noted, however, that lemmatization with WordNet has its
limits. For example, we cannot lemmatize a word across
different parts of speech (noun, verb, adjective, etc). For ex-
ample, ‘jump’ and ‘jumping’ will remain separate words be-
cause ‘jumping’ could be the gerund form of the verb ‘jump’
or it could be a noun (i.e., the act of ‘jumping’). Since the
part of speech is not provided for individual words, we must
account for all parts of speech, hence words like ‘relax’, ‘re-
laxing’ and ‘relaxation’ remain separate words.

Free Association Norms One of the most common means
of gathering word associations from people is through Free
Association Norms (FANs), which is done by asking hun-
dreds of human volunteers to provide the first word that
comes to mind when given a cue word. This technique is
able to capture many different types of word associations in-
cluding word co-ordination (pepper, salt), collocation (trash,
can), super-ordination (insect, butterfly), synonymy (starv-
ing, hungry), and antonymy (good, bad). The association
strength between two words is simply a count of the number

of volunteers that said the second word given the first word.
FANs are considered to be one of the best methods for un-
derstanding how people, in general, associate words in their
own minds (Nelson, McEvoy, and Schreiber 1998). In our
model we use two preexisting databases of FANs: The Edin-
burgh Associative Thesaurus (Kiss et al. 1973) and Univer-
sity of Florida’s Word Association Norms (Nelson, McEvoy,
and Schreiber 1998).

It should be noted that in this model we consider word as-
sociations to be undirected. In other words, if word A is as-
sociated with word B, then word B is associated with word
A. Hence, when we encounter data in which wordA is a cue
for wordB and wordB is also a cue for wordA, we combine
them into a single association pair by adding their respective
association strengths. Between these two databases, there
are a total of 19,327 unique words and 288,069 unique asso-
ciations. From now on, we will refer to these associations as
human data.

Corpus Inferred Associations Discovering word associ-
ations from a corpus is typically accomplished using meth-
ods from a family of techniques called Vector Space Models
(Turney and Pantel 2010), which uses a matrix for keeping
track of word counts either co-occurring with other words
(term× term matrix) or within each document (term× doc-
ument matrix).

One of the most popular vector space models is Latent
Semantic Analysis (LSA) (Deerwester et al. 1990). LSA is
based on the idea that similar words will appear in similar
documents (or contexts). LSA builds a term × document
matrix from a corpus and then performs a technique called
Singular Value Decomposition (SVD), which essentially re-
duces the large sparse matrix to a low-rank approximation
of that matrix along with a set of vectors, each represent-
ing a word (as well as a set of vectors for each document).
These vectors also represent points in semantic space, and
the closer words are to each other in this space, the closer
they are in meaning (and the stronger the association be-
tween words).

Another popular method is the Hyperspace Analog to
Language (HAL) model (Lund and Burgess 1996). This
model is based on the same idea as LSA, except the notion
of context is reduced more locally to a word co-occurrence
window of ±10 words instead of an entire document. Thus,
the HAL model builds a term × term matrix of word co-
occurrence counts from a corpus. HAL then uses the co-
occurrence counts directly as vectors representing each word
in semantic space. The term × term matrix is advantageous
because the size of the matrix is invariant to the size of the
corpus, it is also argued by some that it is more congruent to
human cognition than the term × document matrix used in
LSA (Wandmacher, Ovchinnikova, and Alexandrov 2008;
Burgess 1998).

The corpus component of our model is constructed simi-
larly to HAL but with some important differences. We re-
strict the model to the same number of unique words as
the human-generated free associations, building a 19,327 ×
19,327 (term × term) co-occurrence matrix M using a co-
occurrence window of ±50. To account for the fact that



common words will have generally higher co-occurrence
counts, we scale these counts by weighting each element
of the matrix by the inverse of the total frequency of both
words at each element. This is done by considering each
element Mi,j , then adding the total number of occurrences
of each word (i and j), subtracting out the value at Mi,j (to
avoid counting it twice), then dividing Mi,j by this com-
puted number, as follows:

Mi,j ←
Mi,j

(
∑
i

Mi,j +
∑
j

Mi,j −Mi,j)
(1)

The result could be a very small number and hence, we then
also normalize the values between 0 and 1.

For our corpus we use Wikipedia, as it is large, easily
accessible, and covers a wide range of human knowledge
(Denoyer and Gallinari 2006). Once the co-occurrence ma-
trix is built from the entire text of Wikipedia, we use the
weighted/normalized co-occurrence values themselves as
association strengths between words. This approach works,
since we only care about the strongest associations between
words, and it allows us to reduce the number of irrelevant as-
sociations by ignoring any word pairs with a co-occurrence
count less than some threshold. We chose a threshold of
100 (before weighting), which provides a good balance of
producing a sufficient number of associations, while reduc-
ing the number of irrelevant associations. When looking
up a particular word, we return the top n other words with
the highest weighted/normalized co-occurrence values. This
method, which we will call corpus data from now on, gives
a total of 4,908,352 unique associations.

Combining Word Associations Since each source (hu-
man and corpus) provide different types of word associa-
tions, a combination of these methods into a single model
has the potential to take advantage of the strengths of each
method. The hypothesis is that the combined model will bet-
ter communicate meaning to a person than either model in-
dividually because it presents a wider range of associations.

Our method merges the two separate databases into a
single database before querying it for associations. This
method assumes that the human data contains more valuable
word associations than the corpus data because the human
data is typically used as the gold standard in the literature.
However, the corpus data does contain some valuable asso-
ciations not present in the human data. The idea is to add
the top n associations for each word from the corpus data to
the human data but to weight the association strength low.
This is beneficial for two reasons. First, if there are any as-
sociations that overlap, adding them again will strengthen
the association in the combined database. Second, new as-
sociations not present in the human data will be added to
the combined database and provide a greater variety of word
associations. We keep the association strength low because
we want the corpus data to reinforce, but not dominate, the
human data.

To do this, we first copy all word associations from the
human data to the combined database. Next, let W be the
set of all 19,327 unique words, let Ai,n ⊆ W be the set of

the top nwords associated with word i ∈W from the corpus
data, let scorei,j be the association strength between words
i and j from the corpus data, let maxi be the maximum
association score present in the human data for word i, and
let θ be a weight parameter. Now for each i ∈ W and for
each j ∈ Ai,n, the new association score between words i
and j is computed as follows:

scorei,j ← (maxi · θ) · scorei,j (2)

This equation scales scorei,j (which is already normal-
ized) to lie between 0 and a certain percentage (θ) of maxi.
The n associated words from the corpus are then added to
the combined database with the updated scores. If the word
pair is already in the database, then the updated score is
added to the score already present. For the results presented
in this paper we use n = 20 and θ = 0.2, which were deter-
mined based on preliminary experiments. After the merge,
the combined database contains 443,609 associations.

Image Composer
The semantic memory model effectively uses word associa-
tions to break down a concept into simpler concepts that to-
gether represent the whole. If a concept is simple enough, it
can be represented visually with a single icon. For example,
the concept ‘rock’ can be visually represented with a picture
of a ‘rock’. The idea is to gather a set of icons that together
represent the overall concept and compose those icons into
a single image. The image is then given to the adjective
rendering component of DARCI which renders the image to
match some adjective associated with the concept.

We use a collection of icons provided by The Noun
Project, whose goal is to build a repository of symbols/icons
that can be used as a visual language (nou 2013). The icons
are intended to be simple visual representations of any noun
and are published by various artists under the Creative Com-
mons license. Currently, The Noun Project provides 6,334
icons (each 420 × 420 pixels) representing 2,535 unique
nouns and is constantly growing.

When given a concept, DARCI first uses the semantic
memory model to retrieve all words associated with the
given concept including itself. These word associations are
filtered by returning only nouns that DARCI has icons for
and adjectives that DARCI has appreciation networks for.
The nouns are sorted by association strength and no more
than the top 15 are kept. For each noun, multiple icons are
usually available and one or two of these icons are are cho-
sen at random to create a set of icons for use in composing
the image.

The icons in the set are scaled to between 25% and 100%
of their original size according to their association strength
rank. Let I be the set of icons, and let r : I → [0, |I| − 1]
be the rank of icon i ∈ I , where the icon with rank 0 cor-
responds to the noun with the highest association strength.
Finally, let φi be the scaling factor for icon i, which is com-
puted as follows:

φi ← 1− 0.75

|I|
· r(i) (3)



An initial blank white image of size 2000 × 2000 pix-
els is created and the set of scaled icons are drawn onto the
blank image at random locations. The only constraints be-
ing that no icons are allowed to overlap and no icons are al-
lowed to go off the edge of the image. The result is a collage
of icons that represents the original concept. DARCI then
randomly selects an adjective from the set returned by the
semantic memory model weighted by each adjective’s asso-
ciation strength. DARCI uses its adjective rendering com-
ponent to render the collage image, now a source image, ac-
cording to the selected adjective. The final image will both
be artistic and in some way communicate the concept to the
viewer.

Similarity Metric
In previous papers, the fitness function DARCI used to eval-
uate artifacts included two components, the adjective metric
and the interest metric. The adjective metric is simply the
output of the neural network trained on the adjective of in-
terest. Using this metric alone, the source image is usually
completely obliterated after only a few generations of evolu-
tion. This is because the neural networks are trained entirely
on the global features of a variety of images. A high out-
put from these networks indicates an artifact that has strong
association with these generalized features without any con-
sideration given to the source image.

The interest metric is a measure of how “interesting” the
image is with respect to the source image. Is is based on the
subjective assumption that an interesting artifact would be
one that is different from the source while still maintaining
some semblance of it. The metric is a function of the num-
ber of global features that are similar (within some thresh-
old) between the source image and the artifact, and attributes
a high score to those images that fall within some middle
range of similar features (Norton, Heath, and Ventura 2011).
The interest metric was introduced in order to attempt to al-
leviate the problem of completely loosing the source image,
while simultaneously not rewarding an artifact that looks too
similar to the source. In previous research, we have normal-
ized these two metrics to have an equal weight on the fit-
ness function. While an improvement, features of the source
image are still often eliminated after many generations of
evolution using this combined metric. We hypothesize that
this is because the interest metric is only based on global
features that are not specific enough to encapsulate much of
what defines an image.

In this paper we use a similarity metric that borrows from
the growing research of bag-of-visual-word models (Csurka
et al. 2004; Sivic et al. 2005; Kandasamy and Rodrigo 2010)
to analyze local features, rather than global ones. Visual
words are quantized local image features that takes their cue
from natural language processing. A dictionary of visual
words are defined for any given scope by extracting local in-
terest points from a large number of representative images,
and then clustering them (typically with k-means) by their
features into n clusters, where n is the desired dictionary
size. With this dictionary, visual words can be extracted
from images by determining which clusters the images’ lo-
cal interest points belong to. A bag-of-visual-words can be

created by organizing the visual word counts for a given im-
age into a fixed vector. This model is analogous to the bag-
of-words for documents in natural language processing.

For our similarity metric, which we call the local simi-
larity metric, we first create a bag-of-visual-words for the
source image and the artifact, and then calculate the eu-
clidean distance between these two vectors. This metric has
the effect of measuring the quantity of interest points that co-
incide between the two images. We hypothesize that using
this locally-based metric in the fitness function will allow
DARCI to produce images that better maintain the source
images’ structure.

In this paper, we use the standard SURF detector and de-
scriptor to extract interest points and their features from im-
ages (Herbert Bay 2008). We build the visual word dictio-
nary by extracting SURF interest points from a database of
universal icons obtained at The Noun Project (nou 2013). At
the time of this paper we have extracted 6334 icons, which
results in more than two hundred thousand interest points.
These are then clustered into 1000 visual words using Elkan
k-means (Elkan 2003). Once the euclidean distance, d, be-
tween the source image’s and the artifact’s bags-of-visual-
words is calculated, the metric, S, is calculated to provide
a value between 0 and 1 as follows: S = MAX( d

100 , 1),
where the constant 100 was chosen through preliminary ob-
servation.

Online Survey
With DARCI, we are interested in a system that can create
images that both communicate meaning and are aesthetically
interesting. For this paper, we have developed a survey to
test our most recent attempts at conveying concepts while
rendering images that are perceived as creative.

The survey asks users to evaluate collages generated for
ten concepts across three rendering techniques. The ten con-
cepts were chosen to cover a variety of topics including
abstract ideas and concrete objects. The abstract concepts
selected were ‘adventure’, ‘love’, ‘music’, ‘religion’, and
‘war’. The concrete concepts were ‘bear’, ‘cheese’, ‘com-
puter’, ‘fire’, and ‘garden’.

We refer to the three rendering techniques as unrendered,
traditional, and advanced. For unrendered, no rendering
is applied—these are the plain collages. For the other two
techniques, the images are rendered as described above us-
ing one of two fitness functions to govern the evolution-
ary mechanism. With traditional, the fitness function is the
same as we have used in previous research, the adjective
and interest metrics are each given a weight of 0.5. With ad-
vanced on the other hand, we introduce the new local simi-
larity metric. Here the adjective metric is given a weight of
0.5, while the interest and local similarity metrics are each
given a weight of 0.25. For each rendering technique and
image, DARCI returned the 40 highest ranking images dis-
covered over the period of around 90 generations. We then
selected from each concept and technique, the image that
we felt best conveyed the intended concept while appearing
aesthetically interesting. An example image that we selected
from each rendering technique can be seen in Figure 3.



(a) unrendered (b) traditional (c) advanced

Figure 3: Example images for the three rendering techniques
representing the concept ‘garden’. The original icons used in
these particular images are from various artists at The Noun
Project (Zubin et al. 2013).

To query the users about each image, we follow the survey
template that we developed previously to study the perceived
creativity of images rendered with different adjectives (Nor-
ton, Heath, and Ventura 2013). In this study, we presented
users with six five-point Likert items (Likert 1932) per im-
age; volunteers were asked how strongly they agreed or dis-
agreed (on a five point scale) with each statement as it per-
tained to one of DARCI’s images. The six statements we
used were (abbreviation of item in parentheses):

I like the image. (like)

I think the image is novel. (novel)

I would use the image as a desktop wallpaper. (wallpaper)

Prior to this survey, I have never seen an image like this one. (never seen)

I think the image would be difficult to create. (difficult)

I think the image is creative. (creative)

In (Norton, Heath, and Ventura 2013) we showed that
the first five statements correlated strongly with the sixth,
“I think the image is creative”, justifying this test as an ac-
curate evaluation of an image’s subjective creativity. In this
paper, we use the same six Likert items and add a seventh
to determine how effective the images are at conveying their
intended concept. The seventh statement we include is:

I think the image represents the concept of “ .” (concept)

where the blank space contains the intended concept. Fig-
ure 4 shows the Likert items with an accompanying image
as they appear in the survey.

To avoid fatigue, volunteers were only presented with im-
ages from one of the three rendering techniques mentioned
previously. The technique was chosen randomly and then
the images were presented to the user in a random order.
To help gauge the results, three dummy images were intro-
duced into the survey for each technique. These dummy
images were selected from the results of preliminary exper-
imentation and assigned an arbitrary concept for the survey.
Unfiltered dummy collages were added to the unrendered set
of images, while rendered versions were added to the tradi-
tional and advanced sets of images. The three dummy con-
cepts were: ‘restaurant’, ‘water’, and ‘freedom’. An exam-
ple unrendered dummy image for the concept of ‘freedom’
is shown in Figure 5. In total, each volunteer was presented
with 13 images.

Figure 4: A sample image from the survey, in this case the
image is the concept ‘war’ rendered with the ‘advanced’
technique. Below the image, the seven five-point Likert
items are presented.

Figure 5: An example of one dummy image presented to
users to gauge survey results. This image is the unrendered
image for the concept of ‘freedom’.

Results
A total of 119 anonymous individuals participated in the on-
line survey. Each person evaluated an average of 9 images
and each image was evaluated by an average of 27 people
for a total of 1069 data points.

The three dummy images for each rendering technique
are used as a baseline for the concept statement. The results
of the dummy images versus the valid images are show in
Figure 6. The average concept rating for the valid images
is significantly better than the dummy images, which shows
that the intended meaning is successfully conveyed to hu-
man viewers more reliably than an arbitrary image. These
results confirm that the intelligent use of icons is beneficial
for the visual communication of meaning. The ratings for
the other statements are also generally lower for the dummy
images than for the valid images. It seems as though the
ability of a visual artist to express meaning to a viewer is
an important factor in attributing creativity to the artist. The
primary difference between the rendering of the dummy im-
ages versus the valid images is that the dummy images were
created for a different concept than the one they were at-
tributed to in the survey. Having the concept not match the
image seems to negatively influence how the users rate the
other statements in the survey. This provides some level of



Figure 6: The average rating from the online survey for
all seven statements comparing the dummy images with the
valid images. The valid images were more successful at con-
veying the intended concept than the dummy images by a
significant margin. Results marked with an asterix (*) indi-
cate statistical significance using the two tailed independent
t-test. The lines at the top of each bar show the 95% confi-
dence interval for each value.

evidence to support the notion that the perceived purpose (or
intent) behind creating artifacts is a factor in attributing cre-
ativity to a system.

The results of the three rendering techniques (unrendered,
traditional, and advanced) for all seven statements are shown
in Figure 7. The unrendered images are generally the most
successful at communicating the intended concepts. This is
likely because the objects/icons in the unrendered images
are left undisturbed and are therefore more clear and dis-
cernible. The rendered images (traditional and advanced)
often distort the icons in a way that makes them less cohe-
sive and less discernible and can thus take away from the
intended meaning. However, the trade-off is that the un-
rendered images are generally considered less likable, less
novel, and less creative than the rendered images. The ad-
vanced images are generally considered more novel and cre-
ative than the traditional images, but the traditional images
are liked slightly more. The advanced images also convey
the intended meaning more reliably than the traditional im-
ages, which indicates that the similarity metric is success-
fully finding a better balance between adding artistic ele-
ments and allowing the icons/objects to still be recognizable.

The results comparing the abstract concepts with the con-
crete concepts are show in Figure 8. For all seven state-
ments, the abstract concepts are, on average, rated higher
than the concrete concepts. One possible reason for this is
that concrete concepts are not easily broken down to a col-
lection of other concrete objects because they can already be
represented as a single icon. The nouns returned by the se-
mantic memory model are usually other related objects, but
it then becomes difficult to tell which object is the concept in
question. For example, the concept ‘bear’ returns nouns like
‘cave’, ‘lion’, ‘forest’, and ‘wolf’, which are all related, but
don’t provide much indication that the intended concept is

Figure 7: The average rating from the online survey for all
seven statements comparing the three rendering techniques.
The unrendered technique is most successful at representing
the concept, while the advanced technique is generally con-
sidered more novel and creative. Statistical significance was
calculated using the two tailed independent t-test. The lines
at the top of each bar show the 95% confidence interval for
each value.

‘bear’. A person might be more inclined to think the concept
is more general, such as ‘wildlife’. Another possible reason
why abstract concepts perform better than concrete concepts
is because abstract concepts allow a wider range of interpre-
tation and are generally more interesting. For example, the
concept ‘cheese’ would seem to be pretty straightforward
to most people, while the concept ‘love’ could have vari-
able meaning to different people in different circumstances.
Hence, the resulting images are generally considered more
likable, more novel, and more creative than the concrete im-
ages.

Conclusions and Future Work
We have presented three new components of a computer sys-
tem, DARCI, capable of communicating specified concepts
through the images it creates. The first new component is
a model of semantic memory that provides the system with
a level of meaning for concepts through word associations.
The second component uses the word associations from the
semantic memory model to retrieve universal icons and com-
pose them into a single image, which is then rendered in the
manner of an associated adjective. The third component is
a new similarity metric used during the adjective rendering
phase that preserves the discernibility of the icons, but still
allows for artistic elements to be discovered.

We used an online survey to evaluate the system and show
that DARCI is significantly better at expressing the mean-
ing of concepts through the images it creates than an arbi-
trary image. We show that the new similarity metric allows
DARCI to find a better balance between adding interesting
artistic qualities and keeping the icons/objects recognizable.
We show that using word associations and universal icons in
an intelligent way is beneficial for conveying meaning to hu-
man viewers. Finally, we show that there is some degree of



Figure 8: The average rating from the online survey for all
seven statements comparing the abstract concepts with the
concrete concepts. The abstract concepts generally received
higher ratings for all seven statements. Results marked with
an asterix (*) indicate statistical significance using the two
tailed independent t-test. The lines at the top of each bar
show the 95% confidence interval for each value.

correlation between how well an image communicates the
intended concept and how well liked, how novel, and now
creative the image is considered to be.

The semantic memory model provides DARCI with some
conceptual knowledge that is necessary for determining how
to compose and render an image that is unique and mean-
ingful for each concept. We hypothesize that this is a sig-
nificant component of a creative system because it could al-
low the system to make decisions and reason about com-
mon world knowledge. In future research we plan to do a
more direct comparison of the images created by DARCI
with images created by human artists and look closely at
how semantic memory contributes to the creative process.
We plan to improve the semantic memory model by going
beyond word-to-word associations and building associations
between words and other objects (such as images). This
would require expanding DARCI’s image analysis capabil-
ity to be able to automatically detect and annotate objects
present in an arbitrary image. The similarity metric pre-
sented in this paper is a step in that direction. An improved
semantic memory model could also help provide DARCI
the ability to discover its own topics (i.e., find its own in-
spiration) and learn how to compose icons together in more
meaningful ways.
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Csı́kzentmihályi, M., and Robinson, R. E. 1990. The Art of
Seeing. The J. Paul Getty Trust Office of Publications.
Csurka, G.; Dance, C. R.; Fan, L.; Willamowski, J.; and
Bray, C. 2004. Visual categorization with bags of keypoints.
In Proceedings of Workshop on Statistical Learning in Com-
puter Vision, ECCV, 1–22.
Datta, R.; Joshi, D.; Li, J.; and Wang, J. Z. 2006. Studying
aesthetics in photographic images using a computational ap-
proach. Lecture Notes in Computer Science 3953:288–301.
De Deyne, S., and Storms, G. 2008. Word associations:
Norms for 1,424 Dutch words in a continuous task. Behavior
Research Methods 40(1):198–205.
Deerwester, S.; Dumais, S. T.; Furnas, G. W.; Landauer,
T. K.; and Harshman, R. 1990. Indexing by latent semantic
analysis. Journal of the American Society for Information
Science 41(6):391–407.
Denoyer, L., and Gallinari, P. 2006. The Wikipedia XML
corpus. In INEX Workshop Pre-Proceedings, 367–372.
Elkan, C. 2003. Using the triangle inequality to acceler-
ate k-means. In Proceedings of the Twentieth International
Conference on Machine Learning.
Erk, K. 2010. What is word meaning, really?: (and how can
distributional models help us describe it?). In Proceedings
of the 2010 Workshop on GEometrical Models of Natural
Language Semantics, 17–26. Stroudsburg, PA, USA: Asso-
ciation for Computational Linguistics.
Fellbaum, C., ed. 1998. WordNet: An Electronic Lexical
Database. The MIT Press.
Gevers, T., and Smeulders, A. 2000. Combining color and
shape invariant features for image retrieval. IEEE Transac-
tions on Image Processing 9:102–119.
Herbert Bay, Andreas Ess, T. T. L. V. G. 2008. Speeded-up
robust features (surf). Computer Vision and Image Under-
standing 110:346–359.
Kandasamy, K., and Rodrigo, R. 2010. Use of a visual word
dictionary for topic discovery in images. In Proceedings of
5th International Conference on Information and Automa-
tion for Sustainability, 510–515.
King, I. 2002. Distributed content-based visual in-
formation retrieval system on peer-to-pear(p2p) network.
http://appsrv.cse.cuhk.edu.hk/~miplab/discovir/.
Kiss, G. R.; Armstrong, C.; Milroy, R.; and Piper, J. 1973.
An associative thesaurus of English and its computer analy-
sis. In Aitkin, A. J.; Bailey, R. W.; and Hamilton-Smith, N.,
eds., The Computer and Literary Studies. Edinburgh, UK:
University Press.
Li, C., and Chen, T. 2009. Aesthetic visual quality assess-
ment of paintings. IEEE Journal of Selected Topics in Signal
Processing 3:236–252.
Likert, R. 1932. A technique for the measurement of atti-
tudes. Archives of Psychology 22(140):1–55.
Lund, K., and Burgess, C. 1996. Producing high-
dimensional semantic spaces from lexical co-occurrence.



Behavior Research Methods, Instruments, & Computers
28:203–208.
McCorduck, P. 1991. AARON’s Code: Meta-Art, Artificial
Intelligence, and the Work of Harold Cohen. W. H. Freeman
& Co.
Nelson, D. L.; McEvoy, C. L.; and Schreiber,
T. A. 1998. The University of South Florida
word association, rhyme, and word fragment norms.
http://www.usf.edu/FreeAssociation/.
Norton, D.; Heath, D.; and Ventura, D. 2010. Establishing
appreciation in a creative system. Proceedings of the 1st In-
ternational Conference on Computational Creativity 26–35.
Norton, D.; Heath, D.; and Ventura, D. 2011. Autonomously
creating quality images. Proceedings of the 2nd International
Conference on Computational Creativity 10–15.
Norton, D.; Heath, D.; and Ventura, D. 2013. Finding cre-
ativity in an artificial artist. Journal of Creative Behavior, to
appear.
2013. The noun project. http://thenounproject.
com.
Sivic, J.; Russell, B. C.; Efros, A. A.; Zisserman, A.; and
Freeman, W. T. 2005. Discovering objects and their location
in images. International Journal of Computer Vision 1:370–
377.
Sun, R. 2008. The Cambridge Handbook of Computational
Psychology. New York, NY, USA: Cambridge University
Press, 1st edition.
Tsoumakas, G., and Katakis, I. 2007. Multi-label classifi-
cation: An overview. International Journal of Data Ware-
housing and Mining 3(3):1–13.
Turney, P. D., and Pantel, P. 2010. From frequency to mean-
ing: Vector space models of semantics. Journal of Artificial
Intelligence Research (JAIR) 37:141–188.
Wandmacher, T.; Ovchinnikova, E.; and Alexandrov, T.
2008. Does latent semantic analysis reflect human associ-
ations? In Proceedings of the ESSLLI Workshop on Distri-
butional Lexical Semantics, 63–70.
Wang, W.-N.; Yu, Y.-L.; and Jiang, S.-M. 2006. Image re-
trieval by emotional semantics: A study of emotional space
and feature extraction. IEEE International Conference on
Systems, Man, and Cybernetics 4:3534–3539.
Zubin, A.; Brain, B.; Caughey, E.; Fisher, R.; Patel, P.; Bar-
riga, R.; dsathiyaraj; Bristol, J.; Fortnum, A.; Koltringer,
M.; MacKenzie, B.; Schlosman, H.; Pedrazzoli, M.; Endale,
M.; Agpoon, G.; and Eckert, J. 2013. The noun project.
http://thenounproject.com.
Zujovic, J.; Gandy, L.; and Friedman, S. 2007. Identifying
painting genre using neural networks. miscellaneous.


