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1 Introduction 
 As many researchers have noted [2, 3, 8, 9], 
robotic controllers often fail to perform well 
when transferred from a simulator to a situated 
domain.  Several explanations for this 
phenomenon have been proposed [7, 10].  The 
most prevalent and, we believe, significant of 
these is the fact that no simulator can currently 
match the complexity of the real world.  
Discrepancies between a simulator and the real-
world system which it is intended to model are 
therefore unavoidable.  Depending on the 
sensitivity of the controller, the nature of the 
desired task, and the number and severity of the 
discrepancies, observable effects of the 
simulator-to-real-world transfer may range from 
negligible to dramatically detrimental. 

Factors such as time, expense, and potential 
risk to robotic hardware make situated design 
and testing infeasible for a large percentage of  
applications. Simulations are therefore 
indispensable in many areas of research and 
development, and effective methods of dealing 
with simulator/environment discrepancies must 
be developed.   

Traditional approaches to this problem 
attempt to reduce the number and severity of 
simulator/environment discrepancies in order to 
obtain better results when the controller is 
transferred to a situated domain. These 
approaches, although often effective, are limited 
in that they require the designer to successfully 
anticipate the types of discrepancies the 
controller is likely to encounter.  

In this paper we present a different 
approach which focuses on overcoming 
discrepancies by designing a controller which is 
robust to unexpected changes in its environment.  
This approach is not intended as a replacement 
for previously developed techniques, but rather 
as a supplement to them.  This combination of 
discrepancy reduction techniques and 
discrepancy-robust controllers is shown to be 
effective at overcoming artificially introduced 
discrepancies in several simulator-to-simulator 
transfers, as well as in an actual transfer from a 
Nomad simulator to a Nomad Scout robot. 
 

2 Reducing Discrepancies 
 A common approach to simulator/ 
environment discrepancies is to alter simulator 
designs in order to create a model from which 
policies are more easily transferable to the real 
world.  This could be accomplished through the 
use of high-precision simulations intended to 
model the real world more accurately, through 
minimized simulations intended to emphasize 
only those aspects of the real world which are 
useful to the agent, or through noisy simulations 
intended to force the agent to be robust to 
variation in its environment.  Techniques such as 
calibration, sensor feedback, and stipulations on 
the environment itself have also been used to 
address this problem. 
 
2.1 Specialized Simulations 
 Specialized simulations are simulations 
which attempt to create a simulator model as 
consistent with the real world as possible.  This 
naturally increases the complexity of the 
simulator, but is often rewarded by increased 
accuracy in simulations. 
 One way to improve simulation accuracy is 
to use sensor input from a robot to build its own 
simulator model. Lee et. Al. [8] successfully 
used sensor data from a Nomad 200 autonomous 
mobile robot to train a neural network which 
modeled the robot’s interactions with its 
environment. Lund and Miglino [9] demonstrate 
da similarly successful process with a Khepera 
miniature robot.   

Specialized simulations are a valid 
approach for projects which require repeated 
trials using the same robot design over a long 
period of time.  However, this type of increased-
accuracy simulation assumes consistent 
functioning of the robot’s sensors and actuators 
over time once the controller has been 
transferred to the real world, an assumption 
which does not apply in many situations. 

Additionally, the amount of time required 
to build such a simulator is extensive, and the 
simulator, once built, is customized to the 
specific robot design (and perhaps even the 
individual robot) whose sensor data was used to 
create the model.  If the robot design itself is 
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being changed as part of the development 
process, this approach is entirely infeasible.   

 
2.2 Minimal Simulations 
 An alternate approach is to simplify the 
simulation rather than make it more specific.  
Minimal simulationists assert that the majority of 
real-world data is irrelevant to the controller’s 
ability to make appropriate decisions, and that it 
is therefore unnecessary to model that data 
accurately. 

Nick Jakobi’s Radical Envelope of Noise 
Hypothesis [7] is an excellent example of this 
approach. Jakobi defines a group of input 
features, called the base set aspects of a 
simulation, which can be safely relied upon by 
the controller to be an accurate model of reality.  
All other features of the simulation are referred 
to as implementation aspects, and are modeled 
incompletely and noisily to prevent the 
controller’s reliance on irrelevant data.  Random 
variation is also introduced into the base set 
aspects of the environment to encourage 
robustness in the controller.  

Jakobi’s methodology was successfully 
used by Perkins and Hayes [12] in the creation of 
a simulator for a genetic algorithm learning a 
visual tracking task.  

Minimal simulations are an encouraging 
area for further exploration in reducing 
simulator/environment discrepancies, but they 
also have drawbacks. Perhaps the most 
significant of these is that the designer is 
performing half of the controller’s work for it by 
creating a simulator which provides nothing but 
relevant data.  This is acceptable for some 
applications, but may not be appropriate for 
situations where the designer himself does not 
know which input parameters are most relevant 
to the desired task. In addition, the controller’s 
robustness is limited only to those discrepancies 
which the designer was able to foresee and 
incorporate into the simulation.   

This approach is also not applicable to 
situations in which the agent is required to 
perform multiple tasks, each of which relies 
more heavily on different inputs. Whereas 
specialized simulations are specific to the robot 
design used, minimal simulations are specific to 
the task which is to be accomplished.  Ideally, a 
simulation should be applicable across several 
robot implementations and task specifications. 

 
2.3  Calibration and Controlled Environments 
 Two other methods which have been used 
frequently in the manufacturing world are 

calibration and controlled environments [6]. 
These methods differ from the techniques 
discussed above in that they attempt to constrain 
the real world to more closely approximate the 
simulator, rather than the other way around.  

Calibration is a modification to the agent 
which attempts to reduce simulator/environment 
discrepancies by scaling the agent’s inputs and 
outputs so that the real world appears more like 
the simulator to the agent. This approach has 
obvious benefits, but the agent’s capacity to 
adapt to its environment is again limited by the 
foresight of the designer. In addition, calibration 
requires either the assistance of a human, 
specialized machinery, or a reliable baseline 
measurement in order to establish correct scaling 
values. These factors may not always be 
available. Also, non-static environments would 
require constant re-calibration, which would be 
time-consuming detrimental the agent’s 
performance in some tasks. 

In a controlled environment the robot’s 
surroundings are constrained to match certain 
predefined standards so that the controller will 
never be faced with certain types of 
discrepancies.  A robot soccer tournament, for 
example, constrains the environment of the 
playing field to guarantee specific conditions:  
the size and shape of the field, occasionally its 
color, and the fact that the only objects on the 
field are the robots and the balls. Obviously, this 
approach can be applied only to certain 
applications.  It is neither possible nor practical 
to attempt to control complex interactive 
environments such as office building hallways.  
 
 We wish to emphasize that each of the 
methods discussed in this section is sufficient 
and effective for certain applications.  But no 
single approach is sufficient for all applications, 
and for certain applications, none of them is 
sufficient.  All of the methods of dealing with 
simulator/environment discrepancies discussed 
so far require the designer to possesses specific 
information about the quantity and type of 
discrepancies an agent will be subject to in a 
situated domain.  Such information is often, but 
not always, available. 

It is in the areas where the approaches 
described in this section fail that an additional 
aid to overcoming simulator/environment 
discrepancies would be helpful.  

 
3 Overcoming Discrepancies 
 The concept of a robust controller is not 
new.  In addition to creating simulations with 
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enough random variation to ensure robustness, 
many designers have focused on designing 
inherently robust controllers.  A notable example 
is FeatureBoost, a meta algorithm designed by 
O’Sullivan et. al. [11].  FeatureBoost 
deliberately exploits redundancy of the input 
features in order to create hypotheses which are 
robust to the failure, occlusion, or corruption of 
one or more inputs. FeatureBoost was successful 
in several test situations, and seems promising as 
an approach to designing more robust agents.  
However, the success of the algorithm relies on 
the discovery of an optimal schedule for biasing 
feature use, which is dependent on the specific 
algorithm and target function. This makes 
general application of FeatureBoost more 
difficult than some other algorithms. 
 We have chosen to explore a different 
approach. We opted to use a reinforcement 
learning controller which uses temporal 
differences to learn a control policy adapted to 
its environment.  Such an agent is capable of 
adapting its behavior to respond appropriately to 
environmental changes. 

Specifically, we use a Q-learning agent 
with a CMAC [1] function approximator as our 
controller.  Q-learning [14] is a type of 
reinforcement learning in which the agent 
maintains a utility value, or Q-value, for each 
state-action pair.  When the agent selects an 
action a from state s, it receives a reward R, 
which is used to update the Q-value for that 
action in that state according to the update 
function: 

 
∆Q(st, at) = α (R(st, at) + γmaxaQ(st+1, a)) 
 
 where α is the learning rate, γ is the 

discount factor, and R(s, a) is the reward 
obtained by executing action a in state s.  

Because the input spaces of real-world 
environments are often continuous, function 
approximators are used to group similar input 
combinations into collective states, thus allowing 
limited generalization to infrequently visited 
areas of the input space.  Unfortunately, even 
with function approximation, standard Q-
learning methods require a significant amount of 
time to adapt to changes in the environment or 
reward structure of the agent.  If simulator/ 
environment transfers are to be effective and 
useful, the agent must be able to overcome 
discrepancies in a reasonable amount of time.   

Simulator/environment discrepancies can 
be viewed as a jump from a source task (the 
simulator) to a similar but distinct target task (the 

situated domain). This means that task transfer 
algorithms may be used to reduce the amount of 
learning time required by the controller as it 
adapts to inconsistencies in its environment.   
 Task transfer and knowledge transfer 
algorithms have previously been studied in 
relation to  reinforcement learning [4, 5, 13].  We 
have chosen three algorithms to focus on for the 
scope of this research.  Each is discussed in turn. 
 
3.1 Memory-Guided Exploration 
 The problem with directly transferring Q-
values from a source task to a target task are 
twofold: First, portions of the source policy 
which are inapplicable to the target task may 
require more time to unlearn than it would have 
taken to learn those policies from scratch. This 
effect was noted by Bowling and Veloso in [2]. 
Second, during the unlearning phase, correct 
knowledge of a portion of the policy may be lost 
due to the back-propagation of information 
before states have been fully explored.  (For a 
more detailed analysis of these problems see [4]) 
 Memory-guided exploration [13] attempts 
to overcome these difficulties by initializing the 
Q-values for the target task to default 
initialization values, then using information from 
the source task’s Q-value set to guide the agent’s 
exploration towards those areas of the state space 
which were known to be most fruitful in the past. 
This has the effect of reducing unlearning time 
and preserving previous knowledge even as the 
Q-values are updated.  
 The exploration function is 
  

at = maxa[W x Qold(st, a) + (1-W)Qnew(st, a)] 
 

 where W is the time-decayed weighting on 
the old Q-values. 
 
3.2 Soft Transfer of Q-values 
 One drawback of the memory-guided 
exploration algorithm is that if the value for W 
and its decay rate are not set optimally, irrelevant 
portions of the previous task continue to have an 
effect on the agent’s behavior even after the Q-
values reflect a more efficient policy.  The 
related Soft Transfer algorithm [4]  avoids this 
problem by using a weighted average of the 
source task’s Q-values and the default 
initialization values to initialize the Q-values for 
the target task. The initialization function is: 
 

Q0
new(s, a) = (1- W)I + W(QF

old(s,a)) 
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 where Q0 is the initial Q-value, QF is the 
final Q-value, and I is the standard tabula rasa 
initialization value.  

This solves the problem of over-reliance on 
past experience, but reintroduces the knowledge-
loss problem discussed in the previous sub-
section. 
 Memory-guided Exploration and Soft 
Transfer are both highly sensitive to the 
relationship between W, W’s decay rate, and the 
mean and variance of the optimal Q-values of the 
source and target tasks. In order to maintain 
consistency in our data, we have chosen to use 
the same initial weighting W = 0.3 and a  linear 
decay rate of 0.0006 every 100 iterations for all 
experimental runs in this paper. 
  
3.3 KNN-based Q-value Prediction 
 Memory-guided Exploration and Soft 
Transfer provide an adequate means for 
transferring information across similar states in 
related tasks, but simulator/environment 
discrepancies also frequently introduce 
completely new states which the agent has never 
visited before.  We use a K-Nearest Neighbor 
approach to generalize to these previously 
unvisited states.  In the interest of calculation 
time our algorithm is highly simplified, 
averaging only Q-values with a distance of 1 
away from the unvisited state in the state space.  
 
4 Experimental Results 

 
4.1 Simulator-to-Simulator Transfer 

We used a Nomad Simulator to compare 
the effectiveness of these algorithms in several 
artificial cases of simulator/environment 
discrepancies. The Q-learning controller was 
initially trained on a simple wall-following task 
in a rectangular room and was then required to 
perform the same task in the face of various 
environment discrepancies which were 
artificially introduced into the simulation. We 
compare the performance of our baseline 
algorithm, Direct Transfer of Q-values, with the 
Memory-guided Exploration, Soft Transfer, and 
KNN Prediction algorithms discussed in the 
previous section. 

The x-axis of the graphs indicates the 
number of time steps. The y-axis indicates the 
percentage of time which was spent within a pre-
specified distance from a wall (i.e. the number of 
steps spent fulfilling task criteria.) 
 

 
[Figure 1: “Malfunctioning sensor” scenario: The 
front-right sonar of the robot was hard-coded to return 
the maximum possible distance reading to the robot, 
regardless of the actual distance reading. Average of 
three runs.] 

 

 
[Figure 2: “New wall” scenario: An extra wall was 
added down the length of the rectangular room.  
Average of three runs.] 

 
4.2 Simulator-to-Real-World Transfer 

We then applied these methods to a case of 
true simulator/environment transfer in which a 
simulator-trained controller was transferred to an 
actual Nomad Scout robot.  The stipulations of 
using an actual real-world robot required some 
minor changes to the actuator implementation of 
the controller, as well as to the task 
specifications.   

The controller was initially trained to 
perform a wall-avoidance task in a rectangular 
hallway, with a reward structure which 
encouraged forward motion while heavily 
discouraging collisions. The controller was then 
transferred to a real hallway with dimensions 
equivalent to those of the simulated map, and 
was required to perform the same wall-avoidance 
task.   

Again, the x-axis of the graphs indicates the 
number of time steps.  The y-axis indicates the 
percentage of actions which resulted in 
collisions.  Results are shown below. 
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[Figure 3: Pure simulator to environment transfer: No 
artificially introduced discrepancies. A single 
experimental run.] 

 
 In this case, all algorithms appear to be 
functioning with approximately the same 
efficiency.  This is probably because the 
discrepancies between the simulator and the real 
world were relatively small.  In cases of small 
discrepancies, direct transfer is likely to adapt to 
the new environment as rapidly as the other 
knowledge transfer mechanisms. 
 In order to test this theory, we made the 
transfer more difficult by introducing an artificial 
sensor malfunction identical to that which 
produced Figure 1.  The results reveal that, when 
the severity of the discrepancy was increased in 
this manner, Soft Transfer adapted more quickly 
than the other algorithms.  
 
 

 
[Figure 4: Simulator to environment transfer using the 
“Malfunctioning sensor” scenario. The front right 
sensor always returns maximum distance possible. A 
single experimental run.] 

 
5 Discussion 
 As one can discern by analyzing the graphs, 
Memory-Guided Exploration and Soft Transfer 
tend to out-perform the other methods.  This is 

not surprising, since in both the “malfunctioning 
sensor” and the “new wall” scenarios, the 
optimal action in a given state has changed in 
some areas of the state space. 
 More surprising is the behavior of the 
KNN-based Q-value Prediction algorithm.  It 
performed well in the “malfunctioning sensor” 
scenario, which is to be expected because 
approximately 50% of the newly perceived states 
in this scenario are a distance of exactly 1 unit 
away from a state with an appropriate Q-value 
set for the unvisited state. The KNN Prediction 
algorithm’s behavior in the “new wall” task is a 
little more surprising.  We hypothesize that the 
algorithm failed to improve the agent’s 
performance because each newly perceived state 
was exactly one unit away from two previously 
experienced states which required opposite 
behaviors.  It is possible that these opposing 
states cancelled each other out during the KNN 
averaging process, leaving the agent with no 
useful generalization information. Further 
investigation into this matter is warranted. 

The knowledge transfer methods studied in 
this paper appear to perform best when 
discrepancies are fairly large.  When 
discrepancies are small, the transfer algorithms 
result in performance comparable or even 
inferior to that of the Direct Transfer baseline.  
One may therefore conclude that these 
knowledge transfer algorithms are extremely 
useful in overcoming significant discrepancies 
not anticipated by the designer, but are less 
effective in overcoming small discrepancies 
which cannot feasibly be removed through 
discrepancy-reduction techniques like those 
discussed in section 2.  

It could be argued that function 
approximation and reinforcement learning alone 
are capable of overcoming small discrepancies, 
and that the use of knowledge transfer algorithms 
is therefore unnecessary.  This may be true, but 
as the severity of a discrepancy increases, the 
time required to overcome it will also increase.  
Once the severity of the discrepancy increases 
beyond a certain point, knowledge transfer 
techniques will be required to make the 
reinforcement learning approach feasible. 
 
6 Conclusions and Future Work 
 In this paper have demonstrated that 
reinforcement learning agents applying task 
transfer algorithms can successfully overcome 
some types of simulator/environment 
discrepancies in a reasonable amount of time.  
The task transfer algorithms appear to be most 
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successful in cases where the discrepancies are 
more pronounced.  This implies that such 
algorithms could be used to make the controller 
robust to any discrepancies which were not 
anticipated by the designer and minimized 
during the simulation phase. 
 We believe that further refinements to these 
algorithms may enable them to successfully 
overcome less severe discrepancies as well 
dramatic ones, making them even more effective 
as a supplement to traditional approaches.  
 One possible refinement would be to 
expand the Memory-Guided Exploration and 
Soft Transfer algorithms to automatically select 
an appropriate W and decay rate based on the 
statistical distribution of the Q-values of the 
source and target tasks.  This could potentially 
expand the range of situations to which these 
knowledge transfer algorithms can successfully 
be applied. 
 A second potential refinement to the 
knowledge transfer algorithms would be to 
expand the KNN-based Q-value Prediction 
algorithm to use a double-weighted KNN 
calculation with arbitrarily  large K, using both 
distance in the state space and a confidence 
factor (based on the number of updates received 
by a state) as distance metrics.  This would 
enable more accurate prediction of the Q-values 
of unvisited states, as well as allowing the 
algorithm to predict Q-values for large, isolated 
areas of the state space which have never been 
visited. 

The Q-value Prediction algorithm could 
also be used as a generalization technique in the 
initial learning of a task.  In this case, the first 
time a state is visited by the agent, its Q-value 
would be initialized using the Q-value Prediction 
algorithm.  This might dramatically increase 
learning rates for some types of tasks. 
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