
0-7803-7087-2/01/$10.00 © 2001 IEEE

Using a Reinforcement Learning Controller to Overcome
Simulator/Environment Discrepancies

Nancy Owens and Todd Peterson

Machine Intelligence, Learning, and Decisions Laboratory
Brigham Young University, Provo, UT, 84602

1 Introduction
 As many researchers have noted [2, 3, 8, 9],
robotic controllers often fail to perform well
when transferred from a simulator to a situated
domain. Several explanations for this
phenomenon have been proposed [7, 10]. The
most prevalent and, we believe, significant of
these is the fact that no simulator can currently
match the complexity of the real world.
Discrepancies between a simulator and the real-
world system which it is intended to model are
therefore unavoidable. Depending on the
sensitivity of the controller, the nature of the
desired task, and the number and severity of the
discrepancies, observable effects of the
simulator-to-real-world transfer may range from
negligible to dramatically detrimental.

Factors such as time, expense, and potential
risk to robotic hardware make situated design
and testing infeasible for a large percentage of
applications. Simulations are therefore
indispensable in many areas of research and
development, and effective methods of dealing
with simulator/environment discrepancies must
be developed.

Traditional approaches to this problem
attempt to reduce the number and severity of
simulator/environment discrepancies in order to
obtain better results when the controller is
transferred to a situated domain. These
approaches, although often effective, are limited
in that they require the designer to successfully
anticipate the types of discrepancies the
controller is likely to encounter.

In this paper we present a different
approach which focuses on overcoming
discrepancies by designing a controller which is
robust to unexpected changes in its environment.
This approach is not intended as a replacement
for previously developed techniques, but rather
as a supplement to them. This combination of
discrepancy reduction techniques and
discrepancy-robust controllers is shown to be
effective at overcoming artificially introduced
discrepancies in several simulator-to-simulator
transfers, as well as in an actual transfer from a
Nomad simulator to a Nomad Scout robot.

2 Reducing Discrepancies
 A common approach to simulator/
environment discrepancies is to alter simulator
designs in order to create a model from which
policies are more easily transferable to the real
world. This could be accomplished through the
use of high-precision simulations intended to
model the real world more accurately, through
minimized simulations intended to emphasize
only those aspects of the real world which are
useful to the agent, or through noisy simulations
intended to force the agent to be robust to
variation in its environment. Techniques such as
calibration, sensor feedback, and stipulations on
the environment itself have also been used to
address this problem.

2.1 Specialized Simulations
 Specialized simulations are simulations
which attempt to create a simulator model as
consistent with the real world as possible. This
naturally increases the complexity of the
simulator, but is often rewarded by increased
accuracy in simulations.
 One way to improve simulation accuracy is
to use sensor input from a robot to build its own
simulator model. Lee et. Al. [8] successfully
used sensor data from a Nomad 200 autonomous
mobile robot to train a neural network which
modeled the robot’s interactions with its
environment. Lund and Miglino [9] demonstrate
da similarly successful process with a Khepera
miniature robot.

Specialized simulations are a valid
approach for projects which require repeated
trials using the same robot design over a long
period of time. However, this type of increased-
accuracy simulation assumes consistent
functioning of the robot’s sensors and actuators
over time once the controller has been
transferred to the real world, an assumption
which does not apply in many situations.

Additionally, the amount of time required
to build such a simulator is extensive, and the
simulator, once built, is customized to the
specific robot design (and perhaps even the
individual robot) whose sensor data was used to
create the model. If the robot design itself is

xuwei
1424

being changed as part of the development
process, this approach is entirely infeasible.

2.2 Minimal Simulations
 An alternate approach is to simplify the
simulation rather than make it more specific.
Minimal simulationists assert that the majority of
real-world data is irrelevant to the controller’s
ability to make appropriate decisions, and that it
is therefore unnecessary to model that data
accurately.

Nick Jakobi’s Radical Envelope of Noise
Hypothesis [7] is an excellent example of this
approach. Jakobi defines a group of input
features, called the base set aspects of a
simulation, which can be safely relied upon by
the controller to be an accurate model of reality.
All other features of the simulation are referred
to as implementation aspects, and are modeled
incompletely and noisily to prevent the
controller’s reliance on irrelevant data. Random
variation is also introduced into the base set
aspects of the environment to encourage
robustness in the controller.

Jakobi’s methodology was successfully
used by Perkins and Hayes [12] in the creation of
a simulator for a genetic algorithm learning a
visual tracking task.

Minimal simulations are an encouraging
area for further exploration in reducing
simulator/environment discrepancies, but they
also have drawbacks. Perhaps the most
significant of these is that the designer is
performing half of the controller’s work for it by
creating a simulator which provides nothing but
relevant data. This is acceptable for some
applications, but may not be appropriate for
situations where the designer himself does not
know which input parameters are most relevant
to the desired task. In addition, the controller’s
robustness is limited only to those discrepancies
which the designer was able to foresee and
incorporate into the simulation.

This approach is also not applicable to
situations in which the agent is required to
perform multiple tasks, each of which relies
more heavily on different inputs. Whereas
specialized simulations are specific to the robot
design used, minimal simulations are specific to
the task which is to be accomplished. Ideally, a
simulation should be applicable across several
robot implementations and task specifications.

2.3 Calibration and Controlled Environments
 Two other methods which have been used
frequently in the manufacturing world are

calibration and controlled environments [6].
These methods differ from the techniques
discussed above in that they attempt to constrain
the real world to more closely approximate the
simulator, rather than the other way around.

Calibration is a modification to the agent
which attempts to reduce simulator/environment
discrepancies by scaling the agent’s inputs and
outputs so that the real world appears more like
the simulator to the agent. This approach has
obvious benefits, but the agent’s capacity to
adapt to its environment is again limited by the
foresight of the designer. In addition, calibration
requires either the assistance of a human,
specialized machinery, or a reliable baseline
measurement in order to establish correct scaling
values. These factors may not always be
available. Also, non-static environments would
require constant re-calibration, which would be
time-consuming detrimental the agent’s
performance in some tasks.

In a controlled environment the robot’s
surroundings are constrained to match certain
predefined standards so that the controller will
never be faced with certain types of
discrepancies. A robot soccer tournament, for
example, constrains the environment of the
playing field to guarantee specific conditions:
the size and shape of the field, occasionally its
color, and the fact that the only objects on the
field are the robots and the balls. Obviously, this
approach can be applied only to certain
applications. It is neither possible nor practical
to attempt to control complex interactive
environments such as office building hallways.

 We wish to emphasize that each of the
methods discussed in this section is sufficient
and effective for certain applications. But no
single approach is sufficient for all applications,
and for certain applications, none of them is
sufficient. All of the methods of dealing with
simulator/environment discrepancies discussed
so far require the designer to possesses specific
information about the quantity and type of
discrepancies an agent will be subject to in a
situated domain. Such information is often, but
not always, available.

It is in the areas where the approaches
described in this section fail that an additional
aid to overcoming simulator/environment
discrepancies would be helpful.

3 Overcoming Discrepancies
 The concept of a robust controller is not
new. In addition to creating simulations with

xuwei
1425

enough random variation to ensure robustness,
many designers have focused on designing
inherently robust controllers. A notable example
is FeatureBoost, a meta algorithm designed by
O’Sullivan et. al. [11]. FeatureBoost
deliberately exploits redundancy of the input
features in order to create hypotheses which are
robust to the failure, occlusion, or corruption of
one or more inputs. FeatureBoost was successful
in several test situations, and seems promising as
an approach to designing more robust agents.
However, the success of the algorithm relies on
the discovery of an optimal schedule for biasing
feature use, which is dependent on the specific
algorithm and target function. This makes
general application of FeatureBoost more
difficult than some other algorithms.
 We have chosen to explore a different
approach. We opted to use a reinforcement
learning controller which uses temporal
differences to learn a control policy adapted to
its environment. Such an agent is capable of
adapting its behavior to respond appropriately to
environmental changes.

Specifically, we use a Q-learning agent
with a CMAC [1] function approximator as our
controller. Q-learning [14] is a type of
reinforcement learning in which the agent
maintains a utility value, or Q-value, for each
state-action pair. When the agent selects an
action a from state s, it receives a reward R,
which is used to update the Q-value for that
action in that state according to the update
function:

∆Q(st, at) = α (R(st, at) + γmaxaQ(st+1, a))

 where α is the learning rate, γ is the

discount factor, and R(s, a) is the reward
obtained by executing action a in state s.

Because the input spaces of real-world
environments are often continuous, function
approximators are used to group similar input
combinations into collective states, thus allowing
limited generalization to infrequently visited
areas of the input space. Unfortunately, even
with function approximation, standard Q-
learning methods require a significant amount of
time to adapt to changes in the environment or
reward structure of the agent. If simulator/
environment transfers are to be effective and
useful, the agent must be able to overcome
discrepancies in a reasonable amount of time.

Simulator/environment discrepancies can
be viewed as a jump from a source task (the
simulator) to a similar but distinct target task (the

situated domain). This means that task transfer
algorithms may be used to reduce the amount of
learning time required by the controller as it
adapts to inconsistencies in its environment.
 Task transfer and knowledge transfer
algorithms have previously been studied in
relation to reinforcement learning [4, 5, 13]. We
have chosen three algorithms to focus on for the
scope of this research. Each is discussed in turn.

3.1 Memory-Guided Exploration
 The problem with directly transferring Q-
values from a source task to a target task are
twofold: First, portions of the source policy
which are inapplicable to the target task may
require more time to unlearn than it would have
taken to learn those policies from scratch. This
effect was noted by Bowling and Veloso in [2].
Second, during the unlearning phase, correct
knowledge of a portion of the policy may be lost
due to the back-propagation of information
before states have been fully explored. (For a
more detailed analysis of these problems see [4])
 Memory-guided exploration [13] attempts
to overcome these difficulties by initializing the
Q-values for the target task to default
initialization values, then using information from
the source task’s Q-value set to guide the agent’s
exploration towards those areas of the state space
which were known to be most fruitful in the past.
This has the effect of reducing unlearning time
and preserving previous knowledge even as the
Q-values are updated.
 The exploration function is

at = maxa[W x Qold(st, a) + (1-W)Qnew(st, a)]

 where W is the time-decayed weighting on
the old Q-values.

3.2 Soft Transfer of Q-values
 One drawback of the memory-guided
exploration algorithm is that if the value for W
and its decay rate are not set optimally, irrelevant
portions of the previous task continue to have an
effect on the agent’s behavior even after the Q-
values reflect a more efficient policy. The
related Soft Transfer algorithm [4] avoids this
problem by using a weighted average of the
source task’s Q-values and the default
initialization values to initialize the Q-values for
the target task. The initialization function is:

Q0
new(s, a) = (1- W)I + W(QF

old(s,a))

xuwei
1426

 where Q0 is the initial Q-value, QF is the
final Q-value, and I is the standard tabula rasa
initialization value.

This solves the problem of over-reliance on
past experience, but reintroduces the knowledge-
loss problem discussed in the previous sub-
section.
 Memory-guided Exploration and Soft
Transfer are both highly sensitive to the
relationship between W, W’s decay rate, and the
mean and variance of the optimal Q-values of the
source and target tasks. In order to maintain
consistency in our data, we have chosen to use
the same initial weighting W = 0.3 and a linear
decay rate of 0.0006 every 100 iterations for all
experimental runs in this paper.

3.3 KNN-based Q-value Prediction
 Memory-guided Exploration and Soft
Transfer provide an adequate means for
transferring information across similar states in
related tasks, but simulator/environment
discrepancies also frequently introduce
completely new states which the agent has never
visited before. We use a K-Nearest Neighbor
approach to generalize to these previously
unvisited states. In the interest of calculation
time our algorithm is highly simplified,
averaging only Q-values with a distance of 1
away from the unvisited state in the state space.

4 Experimental Results

4.1 Simulator-to-Simulator Transfer

We used a Nomad Simulator to compare
the effectiveness of these algorithms in several
artificial cases of simulator/environment
discrepancies. The Q-learning controller was
initially trained on a simple wall-following task
in a rectangular room and was then required to
perform the same task in the face of various
environment discrepancies which were
artificially introduced into the simulation. We
compare the performance of our baseline
algorithm, Direct Transfer of Q-values, with the
Memory-guided Exploration, Soft Transfer, and
KNN Prediction algorithms discussed in the
previous section.

The x-axis of the graphs indicates the
number of time steps. The y-axis indicates the
percentage of time which was spent within a pre-
specified distance from a wall (i.e. the number of
steps spent fulfilling task criteria.)

[Figure 1: “Malfunctioning sensor” scenario: The
front-right sonar of the robot was hard-coded to return
the maximum possible distance reading to the robot,
regardless of the actual distance reading. Average of
three runs.]

[Figure 2: “New wall” scenario: An extra wall was
added down the length of the rectangular room.
Average of three runs.]

4.2 Simulator-to-Real-World Transfer

We then applied these methods to a case of
true simulator/environment transfer in which a
simulator-trained controller was transferred to an
actual Nomad Scout robot. The stipulations of
using an actual real-world robot required some
minor changes to the actuator implementation of
the controller, as well as to the task
specifications.

The controller was initially trained to
perform a wall-avoidance task in a rectangular
hallway, with a reward structure which
encouraged forward motion while heavily
discouraging collisions. The controller was then
transferred to a real hallway with dimensions
equivalent to those of the simulated map, and
was required to perform the same wall-avoidance
task.

Again, the x-axis of the graphs indicates the
number of time steps. The y-axis indicates the
percentage of actions which resulted in
collisions. Results are shown below.

xuwei
1427

[Figure 3: Pure simulator to environment transfer: No
artificially introduced discrepancies. A single
experimental run.]

 In this case, all algorithms appear to be
functioning with approximately the same
efficiency. This is probably because the
discrepancies between the simulator and the real
world were relatively small. In cases of small
discrepancies, direct transfer is likely to adapt to
the new environment as rapidly as the other
knowledge transfer mechanisms.
 In order to test this theory, we made the
transfer more difficult by introducing an artificial
sensor malfunction identical to that which
produced Figure 1. The results reveal that, when
the severity of the discrepancy was increased in
this manner, Soft Transfer adapted more quickly
than the other algorithms.

[Figure 4: Simulator to environment transfer using the
“Malfunctioning sensor” scenario. The front right
sensor always returns maximum distance possible. A
single experimental run.]

5 Discussion
 As one can discern by analyzing the graphs,
Memory-Guided Exploration and Soft Transfer
tend to out-perform the other methods. This is

not surprising, since in both the “malfunctioning
sensor” and the “new wall” scenarios, the
optimal action in a given state has changed in
some areas of the state space.
 More surprising is the behavior of the
KNN-based Q-value Prediction algorithm. It
performed well in the “malfunctioning sensor”
scenario, which is to be expected because
approximately 50% of the newly perceived states
in this scenario are a distance of exactly 1 unit
away from a state with an appropriate Q-value
set for the unvisited state. The KNN Prediction
algorithm’s behavior in the “new wall” task is a
little more surprising. We hypothesize that the
algorithm failed to improve the agent’s
performance because each newly perceived state
was exactly one unit away from two previously
experienced states which required opposite
behaviors. It is possible that these opposing
states cancelled each other out during the KNN
averaging process, leaving the agent with no
useful generalization information. Further
investigation into this matter is warranted.

The knowledge transfer methods studied in
this paper appear to perform best when
discrepancies are fairly large. When
discrepancies are small, the transfer algorithms
result in performance comparable or even
inferior to that of the Direct Transfer baseline.
One may therefore conclude that these
knowledge transfer algorithms are extremely
useful in overcoming significant discrepancies
not anticipated by the designer, but are less
effective in overcoming small discrepancies
which cannot feasibly be removed through
discrepancy-reduction techniques like those
discussed in section 2.

It could be argued that function
approximation and reinforcement learning alone
are capable of overcoming small discrepancies,
and that the use of knowledge transfer algorithms
is therefore unnecessary. This may be true, but
as the severity of a discrepancy increases, the
time required to overcome it will also increase.
Once the severity of the discrepancy increases
beyond a certain point, knowledge transfer
techniques will be required to make the
reinforcement learning approach feasible.

6 Conclusions and Future Work
 In this paper have demonstrated that
reinforcement learning agents applying task
transfer algorithms can successfully overcome
some types of simulator/environment
discrepancies in a reasonable amount of time.
The task transfer algorithms appear to be most

xuwei
1428

successful in cases where the discrepancies are
more pronounced. This implies that such
algorithms could be used to make the controller
robust to any discrepancies which were not
anticipated by the designer and minimized
during the simulation phase.
 We believe that further refinements to these
algorithms may enable them to successfully
overcome less severe discrepancies as well
dramatic ones, making them even more effective
as a supplement to traditional approaches.
 One possible refinement would be to
expand the Memory-Guided Exploration and
Soft Transfer algorithms to automatically select
an appropriate W and decay rate based on the
statistical distribution of the Q-values of the
source and target tasks. This could potentially
expand the range of situations to which these
knowledge transfer algorithms can successfully
be applied.
 A second potential refinement to the
knowledge transfer algorithms would be to
expand the KNN-based Q-value Prediction
algorithm to use a double-weighted KNN
calculation with arbitrarily large K, using both
distance in the state space and a confidence
factor (based on the number of updates received
by a state) as distance metrics. This would
enable more accurate prediction of the Q-values
of unvisited states, as well as allowing the
algorithm to predict Q-values for large, isolated
areas of the state space which have never been
visited.

The Q-value Prediction algorithm could
also be used as a generalization technique in the
initial learning of a task. In this case, the first
time a state is visited by the agent, its Q-value
would be initialized using the Q-value Prediction
algorithm. This might dramatically increase
learning rates for some types of tasks.

References
[1] J.S. Albus. A new approach to manipulator
control: The cerebellar model articulator
controller (cmac). Trans. ASME, J. Dynamic Sys.
Meas., Contr., 97:220-227, 1975.

[2] M. Bowling and M. Veloso. Reusing
learned policies between similar problems. In
Proceedings of the AI*IA-98 Workshop on New
Trends in Robotics, Padua, Italy, 1998.

[3] B. Brunner, K. Arbter, and H. Hirzinger.
Task directed programming of sensor based
robots. In IEEE/RSJ Int. Conf. On Intelligent
Robots and Systems, Munich, Germany, 1994.

[4] J.L. Carroll, T. Peterson, and N. Owens.
Memory-guided exploration in reinforcement
learning. In IJCNN2001, Korea, 2001. In Press.

[5] K. Dixon, R. Malak, and P. Khosla.
Incorperating prior knowledge and previously
learned information into reinforcement learning
agents. Technical Report, Institute for Complex
Engineered Systems, Carnegie Mellon, 2000.

[6] J. Gowdy and Z. Butler. An integrated
interface tool for the architechture for agile
assembly. In IEEE International Conf. On
Robotics and Automation, 1999.

[7] N. Jakobi. Evolutionary robotics and the
radical envelope of noise hypothesis. Journal of
Adaptive Behaviour, 6(2):325—368, 2000.

[8] T. Lee, U. Nehmzow, and R. Hubbold.
Computer Simulation of Learning Experiments
with Autonomous Mobile Robots. Proc. TIMR
99, “Towards Intelligent Mobile Robots”,
Bristol, 1999.

[9] H. Lund, and O. Miglino. From simulated
to real robots. In Proceedings of IEEE 3rd
International Conference on Evolutionary
Computation. 1996.

[10] M. Mataric. Reward functions for
accelerated learning. In Proceedings of the
International Machine Learning Conference,
pages 181-189, 1994.

[11] J. O’Sullivan, J. Langford, R. Caruna, and
A. Blum. FeatureBoost: A meta-learning
algorithm that improves model robustness. ICML
’00, pages 703—710. 2000.

[12] S. Perkins and G. Hayes. (1998) Evolving
complex visual behaviors using genetic
programming and shaping. Presented at the 7th
European Workshop on Learning Robots,
Edinburgh.

[13] T. Peterson, N. Owens, and J.L. Carroll.
Automated shaping as applied to robot
navigation. In ICRA2001, San Diego, CA, 2001.
In Press.

[14] C. J. C. H. Watkins. Learning from delayed
rewards. PhD thesis, University of Cambridge,
1989.

xuwei
1429

	1	Introduction
	2	Reducing Discrepancies
	3	Overcoming Discrepancies
	3.1	Memory-Guided Exploration
	3.2	Soft Transfer of Q-values
	3.3	KNN-based Q-value Prediction
	4	Experimental Results
	5	Discussion
	6	Conclusions and Future Work
	In this paper have demonstrated that reinforcement learning agents applying task transfer algorithms can successfully overcome some types of simulator/environment discrepancies in a reasonable amount of time. The task transfer algorithms appear to be mo
	References

