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Abstract

The life-long learning architecture attempts to create
an adaptive agent through the incorporation of prior
knowledge over the lifetime of a learning agent. Our
paper focuses on task transfer in reinforcement learn-
ing and specifically in Q-learning. There are three main
model free methods for performing task transfer in Q-
learning: direct transfer, soft transfer and memory-
guided exploration. In direct transfer Q-values from a
previous task are used to initialize the Q-values of the
next task. Soft transfer initializes the @Q-values of the
new task with a weighted average of the standard ini-
tialization value and the Q-values of the previous task.
In memory-guided exploration the Q-values of previous
tasks are used as a guide in the initial exploration of
the agent. The weight that the agent gives to its past
experience decreases over time. We explore stability is-
sues related to the off-policy nature of memory-guided
exploration and compare memory-guided exploration to
soft transfer and direct transfer in three different envi-
ronments.

1 Introduction

There are several major problems that have been en-
countered by researchers as they have attempted to cre-
ate intelligent agents. These problems mostly center on
the availability of good data, training time, and over-
fitting.

[12] has identified the following four major machine
learning bottlenecks: knowledge (a need for accu-
rate information and models), engineering (informa-
tion must be made computer accessible), tractability
(complexity of robot domains), and precision (impre-
cise sensors and actuators cause differences between the
real world and models, simulators, or plans).

1.1 Proposed solution

One approach to overcoming these problems is with
the “life-long learning” paradigm for machine learn-
ing [12][2][11][5]. In the life-long learning approach an
agent encounters many different tasks over its lifetime.
These tasks are often related to each other. Through
the appropriate transfer of knowledge it is possible for
an agent to learn each new task with greater efficiency.
Less training examples would be required because the
agent could use past experience to fill in the holes in its
training set. Accurate models would be learned, and
transferred. Such knowledge would be computer acces-
sible because it would be learned, and the need to hard
code such information would be reduced. By transfer-
ring information from simpler problems to more com-
plex problems the tractability issues would be signifi-
cantly reduced. Learning tends to adapt automatically
to precision problems in the sensors and actuators. In
short many of the problems in machine learning could
be solved or simplified through the life-long learning
paradigm.

For any life-long learning system to succeed it will be
important for an agent to be able to transfer informa-
tion successfully between tasks. Task transfer requires
the agent to automatically determine which features
from previous tasks are significant to the new task to
be learned, and which are not. Appropriate task trans-
fer is a complex problem and it lies at the very heart of
life-long learning. This paper focuses on task transfer
in reinforcement learning, specifically in Q-learning.

2 Current Transfer Methods

If the agent’s actuators and sensors remain constant,
there are two situations that could be encountered
when attempting task transfer. FEither the environ-
ment will have changed, or the reward structure will
have changed [12]. If the environment has changed,
the state transition probabilities will no longer be the
same. Alternately if the reward structure has changed,



the state transition probabilities will be the same but
the reward received for taking those transitions will
have changed. Combinations of these two situations
can also be encountered. If the agent itself changes,
then the actual state space can grow or contract (if
preceptors are added or removed), or the agent’s ac-
tion space can grow or contract (if actuators are added
or removed).

Task transfer mechanisms can be thought of as algo-
rithms that 1) attempt to determine invariants among
all tasks, 2) generalize invariant information among
various groups of tasks, 3) determine group member-
ship of new tasks, 4) determine task specific informa-
tion, and 5) allow specialization in those areas where
the tasks differ. In general such algorithms should allow
the agent to learn a new task with greater speed than
learning that task from scratch. When encountering
a task unlike any the agent has encountered before we
should allow the agent to take slightly longer than when
learning from scratch. This is understandable because
we would expect the agent to explore areas of similarity
between the current and past tasks first. However we
believe that any appropriate task transfer mechanism
should be guaranteed to eventually learn any learnable
task, regardless of the amount of incorrect or irrelevant
prior information given to the agent.

2.1 Q-learning

Q-learning is a reinforcement learning method where
the agent stores the expected discounted reward for
performing action a in state s Q(s¢, a) updated by

AQ(st,ar) = a(R(st, ar) + ymax,Q(st41,a)),

where R is the reward and ¢ is the time step, « is the
learning rate and +y is the discount factor. Q-values are
typically initialized to some constant value Q(s,a) = I.

Some methods of incorporating prior knowledge in Q-
learning have involved building a model of the envi-
ronment [7], biasing the inputs [9] or changing other
aspects of a function approximator [4]. [8] suggested
that transfer of information from one task to another in
Q-learning can be accomplished by stringing together
solutions to elemental sequential sub tasks. Unfortu-
nately this requires design intervention.! to determine
each elemental task.

A common model free task transfer method in Q-
learning is to use the Q-values from the first task to
initialize the Q-values of the second task. This method
is called direct transfer of Q-values. Other model free

Imanual intervention by the designer of the system

methods for task transfer in Q-learning that we devel-
oped include memory-guided exploration [6] and what
we call “soft transfer.” We discuss these three methods
and their applications in three different environments.

2.1.1 Direct Transfer. One simple way to transfer
information from one Q-learning task to another is by
using the Q-values from the first task to initialize the Q-
values of the second task, then allowing normal updates
to adjust to any differences between the two tasks.

If the problems are too dissimilar the agent will spend
too much time unlearning the incorrect portion of the
policy causing the agent to learn the new task slower
than learning it from scratch [6][1]. Also as the agent
unlearns this incorrect information it often unlearns
correct information as well. This usually happens as ~
discounts Q-values along the path to the goal and be-
fore the reward from the new goal has back-propagated
sufficiently to overcome this situation. We call this the
unlearning problem. For direct transfer to function well
the two tasks must be sufficiently similar, which limits
the applicability of the method.

2.1.2 Soft Transfer. One way to make direct trans-
fer more robust to differences in the past task is through
soft transfer. Soft transfer preserves the current pol-
icy while softening the Q-values making them easier
to change. This is a similar idea to that of avoiding
overfitting in many other machine learning problems.
This is accomplished by initializing the Q-values using
a weighted average between the old Q-values and the
standard tabula rasa I thus:

67 (s,a) = (1= W)I + W(Q%%(s,a)),

where @) is the initial Q-value, and Qg is the final Q-
value. If W =1 this is the same as direct transfer and
if W = 0 then agent learns from scratch. By picking
0 < W < 1 the agent can unlearn the incorrect por-
tions of its policy easier. Care needs to be taken to
set this parameter appropriately. If W is too high the
agent will spend too much time unlearning the incor-
rect information in the past task, if it is too low the
agent will loose useful information.

2.1.3 Memory-guided Exploration. Memory-
guided exploration stores two or more sets of Q-values
Q% (s,a) and Q" (s,a). One set of Q-values rep-
resents the agent’s current experience in the new
task. The other set of Q-values represents the stored
memory of a past task. The old Q-values are never
changed, preventing the accidental loss of pertinent



information. The new Q-values are updated normally
as the agent explores its environment, reducing the
time necessary to “unlearn” the incorrect portions of
the policy [6].

A process similar to memory-guided exploration was
independently developed by [3]. They used a switching
mechanism to choose between the agents prior task and
the current task. In our version actions are chosen
based on a weighted sum of random noise, with the
prior and current Q-values

ar = maze[W x Q% (sy,a) + (1 — W)Q™"(s4,a) + 7,

where W (the weights of the old Q-values) and 7 (the
random exploration noise) decay over time. Thus the
old Q-values are used only to guide the agent’s ini-
tial exploration. Memory-guided exploration is an off-
policy controller [10], and this raises convergence issues.
These issues can be overcome, and we will discuss them
in greater detail later. However once W decays suffi-
ciently all the standard convergence proofs hold, thus
this method is guaranteed to eventually converge.

3 Methodology

We tested these task transfer methods on three differ-
ent Markov decision tasks. These tasks illustrate differ-
ent properties of various transfer mechanisms. For each
task we will discuss the issues of unlearning, stability
and convergence.

3.1 Tree-structured Decision Task
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Figure 1: Simple analysis task. Agent starts task at node
0 and terminates at one of the nodes at the
bottom of the tree.

Figure 1 shows a simple decision task. In this world
the agent starts at node 0 and terminates at one of the
leaf nodes of the tree. The goal is placed in one of the

leaf nodes, and the agent’s task is to find it. The agent
receives a reward of +1 if it finds the goal and a reward
of 0 if the agent terminates in a non-goal state. Once
the agent reaches a leaf node the task begins over, and
the agent is placed at the top of the tree. The transi-
tions are deterministic. The tasks varied in depth d and
branching factor b and can thus be made of arbitrary
complexity.

In the first phase of training the agent is trained with
the goal in a random location. Once the agent has
learned this task the task is changed slightly by mov-
ing the reward a small distance. In this second phase
the agent’s task is to adapt to this new situation. The
closer the new goal is to the old goal the more the poli-
cies of the two tasks will overlap and the more “similar”
the two problems will be.

This task is important because of the theoretical frame-
work it provides for analyzing various transfer mecha-
nisms. This type of task is similar to problems like
chess, where similar states have vastly different utili-
ties, and the agent is not allowed to return to prior
states. States near the old goal often have relatively low
Q-values even though there is a substantial overlap in
the policy necessary to reach those states. This makes
task transfer extremely difficult, and many task trans-
fer algorithms perform differently in this environment
than they would in environments where the Q-values
near the old goal are comparatively high. For this rea-
son we believed that directly transferring the Q-values
from the first phase to this second phase would cause
the agent to perform poorly in this environment while
memory-guided exploration would perform well [6].

Because of the unidirectional nature of this task, con-
vergence was not an issue in this world like it was in
some of the other worlds we investigated.

3.2 Simple Grid Task

We also tested the agent in a simple accessible maze
world (see Figure 2). This world has very different
properties than the decision task. States near the old
goal tend to have relatively high Q-values, and there-
fore we would expect direct transfer to perform better
in this world than it does in the decision world.

The agent’s task was to navigate from the bottom left
to the goal, while avoiding the walls. A reward of a —1
was given when the agent hit a wall, and a reward of
a +1 was given when the agent found the goal. Both
a stochastic and a deterministic version of this world
were tested.

To test task transfer the agent initially learned this



Figure 2: Grid world. Versions of this world were tested
with obstacles, without obstacles, and of vary-
ing widths.

task with the goal in the upper left then the new goal
was moved various distances to the right. This allowed
us to test transfer mechanisms on problems of varying
similarity. The further to the left the new goal is the
more similar the two problems will be. As the goal is
moved to the right, the problems become increasingly
dissimilar until the goal is in the upper right (as shown
in Figure 2).

The ability of the agent to return to previously visited
states created divergence problems with some off-policy
controllers that were not present in the decision world.
This allowed us to test the stability of various algo-
rithms generally, and memory-based exploration specif-
ically. These problems will be discussed in greater de-
tail in section 4.

3.3 Nomad II Robots

In order to test transfer mechanisms in a more real-
istic setting, the agent was trained in a simulator for
Nomad IT Robots on a wall avoidance task. This task
was then transferred to a wall following task. The envi-
ronment was simply a large empty room. The agent’s
sensors consisted of eight sonars. This environment is
approximately continuous, and the state space is large,
therefore the agent used a CMAC as a function approxi-
mator. The memory-guided convergence issues encoun-
tered in the grid were not manifest in this environment.

4 Convergence Issues

The off-policy nature of memory-guided exploration
caused three specific problems: 1) required exploration
bias 2) unvisited transitions and 3) local exploration
vs. global exploitation. These issues needed to be dealt
with before results could be obtained in the grid world
for memory-guided exploration.

4.1 Required exploration bias

Memory-guided exploration requires an additional bias
towards unexplored areas. W decays asymptotically
toward 0. The purpose of decaying W is to allow the
agent to explore additional areas of the state space.
However the agent will still have some bias towards
the previous policy because W will not fall all the way
to zero. In order to insure sufficient exploration as W
decays, some additional weaker bias toward the unex-
plored areas of the state space must dominate, oth-
erwise the agent will never leave the location of the
previous goal.

This problem is best illustrated when I = 0, and can be
easily solved by choosing I > 0. This biases the agent’s
exploration away from areas where he has already been
because the Q-values will be discounted each time they
are visited. If I is chosen to be 0 this can not happen
because 0 x v = 0. Alternately, any other type of ex-
ploration bias could be employed, such as recency or
counter-based exploration [13]. Care needs to be taken
to ensure that this additional bias is initially smaller
than the bias towards the prior policy.

4.2 Unvisited transitions

Off-policy controllers can diverge from the true Q-
values, unless the controller is a random Monte Carlo
controller [10]. This happens because the prior knowl-
edge bias causes the agent to visit the states according
to a different distribution than would the policy that
maximizes the current reward function [3]. Effectively
certain transitions never get updated.

As an example, the memory biases the agent away from
obstacles (especially when 7 is low or 0). This behav-
ior is one of the major advantages of this method. We
wanted the agent’s memory to be strong enough to in-
sure that the agent wouldn’t explore transitions that
used to map to obstacles until it had first explored all
other options. The Q-values mapping to obstacles will
remain at ¢ and the Q-values surrounding obstacles will
therefore not drop below I x v% where d is the dis-
tance from the obstacle. This means that when these
un-updated Q-values are the maximum for that state,
they cause the Q-values of all neighboring states to be
inflated. This effect remains until W drops sufficiently
to allow these states to be visited. Effectively this cre-
ates an artificial bias towards states next to obstacles
because transitions into those obstacles are never up-
dated.

It was not immediately clear whether these issues would
effect memory-guided exploration because the agent’s
memory of old tasks only effects the agent’s initial ex-



ploration. Convergence is assured once W decays to
insignificance [3]. However we found that the agent’s
behavior was often divergent until the decay of W, at
which time the agent would behave like an agent learn-
ing from scratch. Although the agent eventually con-
verged, the advantages of the transfer were nullified.

There are two solutions to this problem. The first is to
allow the old Q-values to bias the update of the new Q-
values by the same amount that the old Q-values affect
exploration. The update equation becomes:

AQ(st,ar) = a(R(st,ar) + ymaz,(QF (541, a)).

Where Q¥ = W Q% (sy11,a) + (1=W)Q™" (s141, a).
In effect this creates a new “composite” on-policy con-
troller.

The other option is to keep local values for W. This
is effective because divergent behavior manifests itself
as repeated visits to the same few states in an infinite
loop. Because W decays each time the agent visits a
state, the local values of W can be decayed in areas
of divergence while remaining high for the rest of the
state space. This allows the agent to behave like an on-
policy controller in areas of divergence, while allowing
the agent the exploration advantages of behaving as an
off-policy controller in areas where divergence is not an
issue.

4.3 Local Exploration vs. Global Exploitation
There is another reason to keep W local. The true
max old Q-values are approximately v¢ where d is the
shortest path to the old goal. This means that in areas
of the state space that are far from the old goal, the
difference between the Q-values of the best choice and
the second best choice is often very small, whereas these
differences are comparatively high near the old goal.
Therefore the agent’s memory bias is stronger near the
old goal than it is in states further away.

If W is not local the agent will stay near the old goal un-
til the global W has decayed sufficiently for the agent’s
exploration bias to overcome the agent’s strong mem-
ory bias at the old goal location. Because the agent’s
memory bias is weaker near the start, when the agent
is moved to the start it will begin learning tabula rasa.
Thus the agent has lost any exploratory advantage that
could have been drawn from its memory bias in the rest
of the state space.

Keeping W local to each state solves this problem.
When W is local the agent moves to the old goal,
and stays there until the local W decays sufficiently
at which time the agent begins exploration, while W

remains high and allows the agent to exploit the old
policy in other areas of the state space.

5 Results

5.1 Decision World Results

As noted in [6] memory-guided exploration performed
substantially better than direct transfer in this world.
This occurred because the actual Q-values of all tran-
sitions that did not terminate in a goal state were O.
With direct transfer the agent often lost all information
along the path to the old goal. This is the unlearn-
ing problem discussed in [6]. This means that even
when the tasks are very similar direct transfer performs
slightly worse than learning from scratch. Memory-
guided exploration on the other hand performs an or-
der of magnitude better, and only performed slightly
worse than tabula rasa learning when the new task was
completely dissimilar to the old task.

5.2 Grid World Results
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Figure 3: Steps to find goal 150 times over distance goal
was moved for all 3 transfer versions and learn-
ing from scratch in the deterministic version of
the grid world.

Local values of W were used with memory-guided ex-
ploration, and for soft transfer we chose a value .5 for
W. 1In the deterministic version of the world, with-
out any obstacles all three methods of task transfer
were superior to learning the task from scratch until
the tasks became sufficiently dissimilar (see Figure 3).
This is in contrast to the results in the decision world,
where direct transfer was worse even when the tasks
were similar. In the grid world with the increasing dis-
similarity of the tasks, direct transfer performed poorly,
memory-guided exploration performed better, and soft
transfer performed best. We also tested this world with




obstacles and with stochastic transitions with similar
results.

5.3 Nomad IT Robot Results
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Figure 4: Average of 3 runs each, for learning from
scratch, direct transfer, soft transfer and mem-
ory guided exploration on the Nomad II simu-
lator transferring wall avoidance to wall follow-
ing.

In the Nomad II simulator we found that memory-
guided exploration performed better than learning the
task from scratch (see Figure 4). Interestingly enough
soft transfer and direct transfer were worse than learn-
ing the task from scratch in this environment. These
results can vary somewhat from run to run. We believe
that this was due to differences in the wall avoidance
policy learned in the previous task. There are many ef-
fective policies for wall avoidance that could be learned.
One policy for wall avoidance might transfer to wall fol-
lowing better than another, and different mechanisms
for task transfer may transfer one policy better than
another.

6 Conclusions and future work

Memory guided exploration performed better than tab-
ula rasa learning in almost every situation tested, where
the more similar the situation the greater the effect.
Memory guided exploration was also superior to the
direct transfer of Q-values. More research is needed
to determine when soft transfer performs better. This
paper has focused on model free methods, model based
methods should work well with task transfer and should
be explored further.

Additional methods for soft transfer and memory-
guided exploration could be explored such as initializ-
ing W such that the values of W closer to the old goal

are low, while values of W closer to the start are high.
Also, it may not be necessary to keep a unique value for
W in each state, a local function approximator may be
sufficient. Memory-guided exploration could also serve
as a method for creating an advice taking agent, where
the agent’s initial exploration is handled through direct
control. Methods that use multiple past tasks should
be explored, and memory-guided exploration should be
expanded to handle multiple past tasks.
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