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Abstract—We present an equilibrium selection algorithm for by its counterparts) and (2) they all make assumptions about
reinforcement leaming agents that incrementally adjusts the the motives of the other agents. These two characteristics
probability of executing each action based on the desirability of correspond to Wang and Sandholm’s taxonomy: Perception
the outcome obtained in the last time step. The algorithm assumes , .
that at least one coordination equilibrium exists and requires that ,Of ot.h.er age.nts actlon§ allows the game structur.e to be
the agents have a heuristic for determining whether or not the identified, while assumptions about other agents’ motives help
equilibrium was obtained. In deterministic environments with one  in determining which potential equilibria the other agent is
or more strict coordination equilibria, the algorithm will learn to willing to play.
play an optimal equilibrium as long as the heuristic is accurate. Incremental Policy Learning (IPL) is a novel approach
Empirical data demonstrate that the algorithm is also effective . . L N .
in stochastic environments and is able to learn good joint policies 10 Selecting between multiple coordination equilibria. This
when the heuristic's parameters are estimated during learning, approach uses a weakened form of condition (1) above: The
rather than known in advance. agents do not need to know the entire structure of the joint
action space. Instead, they require a heuristic (for example,
the reward associated with a coordination equilibrium) that

Learning to play an optimal equilibrium is a non-trivial taskindicates whether the desired equilibrium was obtained. The
Non-communicating agents must both determine the locatifBuristic information can be inferred from the joint action
of equilibria in the joint action space and learn which equilibrigable if it is available, may be provided by an external
are enabled by the other agents’ strategies. Wang and Sat@cle, or can be estimated based on known characteristics
holm describe this task in terms of two interrelated learningoout the environment and observed individual rewards. One
problems: identifying the game and learning to play [9].  of IPL's greatest advantages is that, depending on how the

We use the phrasggents with common interedts describe heuristic information is obtained, optimal solutions may be
agents whose preferences coincide in at least one pointféaind without learning the complete game structure.
the joint action space; that is, there is at least one joint|n jts most basic form, Incremental Policy Learning relies
action that maximizes expected reward for all agents. We cghi condition (2) by assuming that a coordination equilibrium
such a joint action @oordination equilibriumA coordination  exists and by using the reward associated with this equilibrium
equilibrium isstrict if the system contains no joint actions thags g parameter for the heuristic. We show in Section IV-C
maximize expected reward for one agent without maximizingat this basic form can be augmented through the use of
it for all other players. Coordination equilibria are a speci@ther heuristics so that the algorithm can play optimally un-
case ofoptimal equilibrig which are defined as pareto-efficientier other assumptions about opponent motivations, including
Nash equilibria. An optimal equilibrium does not necessarilyash-seekers and Minimax players.
maximize payoff for all players. A coordination equilibrium

I. INTRODUCTION

does. _ o o Il. RELATED WORK
Recent algorithms that address equilibrium selection in

multiagent reinforcement learning systems include Claus andOne of the simplest reinforcement learning techniques for
Boutilier’s Joint Action Learners [1], Hu and Wellman’s Nastselecting between multiple equilibria is to use a pre-arranged
Q-learning algorithm [3], Michael Littman’s Friend-or-Foe Q-coordination mechanism such as that employed by Lauer and
learning [6], and Wang and Sandholm’s Optimal AdaptivRiedmiller, in which the agents retain as their optimal policy
Learning [9]. the first action that successfully maximized reward [5]. This

The algorithms described above share two characteristicsaipproach is effective in deterministic environments, but ceases
common. (1) They all rely on global perception of the jointo be effective when nondeterministic rewards are introduced
action space (i.e. each agent can perceive the actions execotedthen the environment is unpredictable.



The equilibrium selection problem can also be addressidormation vector (¢), the agent’s utilities (if it is maintaining
through on-policy learning. The underlying principle is thathem), or any other information accessible to the agent.
each agent’s individual utilities shift to reflect the frequency One of the simplest heuristics a reinforcement learning
with which the agent has achieved a desirable reward, causaggent can use returrisif and only if the reward received by
the agents to settle towards complementary policies in whitie agent matches or exceeds the expected reward associated
both agents benefit [1]. Unfortunately, agents using this techith a coordination equilibrium, that is, if(t) > rmnae.
nigue do not always settle to an optimal equilibrium. Somé&n inequality is used in addition to the equality because
environments particularly those resembling penalty gamdbe maximum expected reward may be exceeded due noisy
camoflauge desired equilibria so that the weighted sum dyoffs. This heuristic is used for the basic form of IPL
received rewards still appears less desirable than some othecause of its simple nature and because of the potential for
action. inferring r,,,.. from observations or froma priori information
Biased exploration techniques have been utilized to eabout the environment.
courage convergence to an optimal equilibrium. For exampE,
Kapetanakis and Kudenko’'s FQM heuristic biases exploratiori
based on the maximum reward received for a given action The basic principle of IPL is that, if the heuristic indicates
and the frequency with which that reward has been obsen/é@t the agent's objectives were successfully obtained, then
[4]. This approach increases the likelihood of convergence ¢ agent increases the probability of repeating the action just
an optimal equilibrium in cooperative games, but does ngkecuted while slightly decreasing the probability of executing
guarantee it. any other action. This algorithm is purely policy-based; the
Another option is to allow the agents to percieve the actio@gent’s utilities have no influence on the agent's behavior
selected by all other agents. However, this augmentatifless they are used by the heuristic function.
destroys the power of on-policy learning as an equilibrium The basic form Incremental Policy Learning Algorithm
selection technique. Unlike typical reinforcement learnerfinctions as follows:
whose utility estimates change in response to the biased
exploration of their counterparts, agents who perceive the jointe Initialization
action space learn the same joint utilities regardless of the Vi,p(a;) = wv;, where v is an arbitrarily chosen
behavior of the other agents. The frequency with which each initialization vector that satisfie$" jv; = 1 and
joint utility is updated is affected, but not the value to which  Vi,v; > 0.
the utilities converge. To remedy this problem, researchers
have again resorted to biased-exploration techniques such as Action Selection
Fictitious Play and Optimistic Boltzmann [1]. This results in  In each time step, the agent selects an actioft) € A
improved performance but does not guarantee convergence to such thatprob(a(t) = a;) = p(a;). The agent executes
an optimal solution. this action, receives an information vectdft), and
Incremental Policy Learning resembles the biased explo- updatesP as described below.
ration techniques described above, with the critical distinction
that IPL uses information about the optimal equilibrium to « Probability Updates
guide the search. This results in guaranteed convergence to Let H(t) = 1 if r(t) > rmaz, 0 Otherwise.
an optimal joint policy if at least one strict coordination Let0 < a <1.
equilibrium exists. If H(t) =1 thenVi:

if (a(t) = a;) thenp'(a;) = p(a;) + (1 — p(a;))
[1l. I NCREMENTAL POLICY LEARNING it (a(t) % a;) thenp'(a)) = play) — ap(as)

Algorithm

A. Terminology

Let A = {ay,...,an} be the action selections available to The update rule used preserves the probability distribution
an agent, and le®> = {p(ai),..,p(an)} be a probability p HenceY.p/(a;) =1 and for allp/(a;), 0 < p'(a;) < 1.
distribution over those actions Theh < p(a;) < 1 and  The general form of the algorithm differs from the basic
>iplai) =1. form in that the heuristidd (¢) is not specified. It is intended

We assume that the agents are repeatedly playing a singigqt the general algorithm can be adapted to suit varied

stage game in which the (external) state of the agent new@jations by selecting an appropriate heuristic.
changes. In any time stépeach reinforcement learning agent

executes an action(t) € A and receives an information vectorC- Convergence

1(t) back from the environment. This information includes the Figure 1 shows a generalized payoff matrix for a deter-

agent’s reward-(t) and may also include the action selectionminstic two player game. We will assume that the game is

of other agents, the payoffs received by other agents, or otleenstrained such that it contains at least one coordination

information about the environment. equilibrium and that all coordination equilibria are strict. This
The IPL algorithm uses a binary heurisfit(t) that returns means that there exist value$ andy* such thatvi, j, «* >

a value of0 or 1. This heuristic may use as parameters the;;, y* > v;;, andx;; = «* iff y;; = y*.



by b b other is decreasing. Without loss of generality, assyie

ar | (z11,y11)  (T21,921) o (Tm1s Yma) k,j # z). Thenp'(a;) = p(a;) + (1 — p(a;)) andp’(b;) =
az | (z12,y12)  (T22,922) o (Tm2,Ym2) p(b;) — ap(b;).
Substituting into equation (3) we get
Qp (mlruyln) (m2n7y2n) (xmnvymn)
Fig. 1. Generalized payoff matrix for a two-player game (pa;) + (1 —pl(a:)))(p(b;) — ap(b;)) — plai)p(b;) <0 (4)

which resolves to

Suppose that we have two IPL agenisand b, repeatedly
playing a single-stage game with this payoff matrix using plai)(a—2) < (a—1) ®)
z* and y* as their respectiver,,q, values. Under these pjiding by o — 2, a negative quantity, we find that
conditions, the agents’ heuristics will always be positivelAp(%bj) < 0 wheneverp(a;) > 2=L. The right side of the
correlated. Hence, ifa;,b;) is a coordination equilibrium, equation is maximized whem = 0.so as long ag(a;) > 0.5,
thenz,; = z*, y;; = y* andH(¢) = 1 for both agents. A(a;,b;) < 0.
If (a;,b;) is not a coordination equilibrium, then; < z*, n
yi; <y, andH(t) = 0 for both agents. The above proof demonstrates that the system can never
We wish to determine whether the agents will leamn tgonverge to a solution that is not a coordination equilibrium:
play an optimal equilibrium. We begin by noting that th§yhenever the probability of a suboptimal joint action is greater
combination of the agents’ IPL probability distributions creatagan 0.5, it will decrease on the next update. We also notice an
a probability distribution over the joint action space such thﬁ{teresting phenomenon. In equation 4, the val(le) exists
in all multiplicative terms and factors out of the calculation.
plai, bj) = p(ai)p(b;) (1) Thus, if a suboptimal joint actiofu;, b,) shares a column with

Each time a coordination equilibrium is played, the heuristf coordination equilibrium, the sign af\p(a;, b;) depends

of both agents is satisfied and each joint action takes on a n&Q On the value op(a;). . o
probability Let us now consider the case whéue, b;) is a coordination

equilibrium. In this case we find that there is some critical
P (ai,b;) = plas, b;) + Ap(as, by) (2) Value ofp(a;, bj). beyond whichAp(a;, b;) is always positive.
_ _ _ Theorem 3.2:If a system contains at least one strict coor-
The value to whichp(a;, b;) can increase is bounded for alldination equilibrium and at least one joint action that is not a
joint actions that are not coordination equilibria, as shown #bordination equilibrium, thedp* such that ifp(a;, b;) > p*

Theorem 3.1. then p(a;, b;) is more likely to increase over time than to
Theorem 3.1:If (a;,b;) is not a coordination equilibrium decrease.
and if p(a;, b;) > 0.5, then Ap(a;, b;) < 0. Proof: We wish to determine under what conditions

Proof: We wish to establish the conditions under whict\p(a;, ;) > 0. In order to do so, we examine two types of
Ap(ai, bj) < 0. Using equation (2) to derivép(a;, b;) and  update situations. Sin@;, b;) is a coordination equilibrium,
substituting, we obtain’(a;, b;) — p(a;,b;) < 0, which by p(a;) andp(b;) will increase each time it is executed. When

equation (1) is equivalent to some other coordination equilibriuta,.;, b.;) is executed,
p(a;) andp(b;) both decrease. To reflect these situations, we
p'(ai)p'(bj) — plai)p(b;) <0 (3) define

The values ofp’(a;) andp’(b;) depend on the nature of the
_a(?tion e_xecuted by th_e system at t_imel__et (ak,_b_z)_be this pF(ai,b;) = (pla;)+a(1—p(a;)))(p(b;)+a(1—p(b;))) (6)
joint action. If (ax, b.) is not a coordination equilibrium, then

the IPL probabilities are not adjusted. In this cagéqa;) =

plai), p'(b;) = plb;) andAla;, b;) = 0. S P~ (ai. b)) = (p(a) — ap(a) (p(b;) — ap(b;)) (V)

If (ax,b,) is a coordination equilibrium then joint action - .
(a;,b;) can be related to it in three ways: They can share Let p(c) represent the probability that the executed action
arow(i = k,j # z), share a columr(i # k,j = z), or IS Some coordination equilibrium oth'er.tha(ni,bj). Then
be completely disjoint(i # k,j # z). They cannot share the v_alue ofp’(a;, b;) can be probablllgtl_c_glly des_crlbed as
both a row and a column becauée, b.) is a coordination & Weighted average of the above possibilities, ugifg, b;)
equilibrium and(a;, b;) is not. andp(c) as weighting factors. Whepl (a;, b;) —p(ai, bj_).> 0,

If the two actions are disjoint thepf (a;) = p(a;) — ap(a;) Ap_(ai,bj) is positive. We therefore seek the conditions that
and p/(b;) = p(b;) — ap(b;). This means thap (a;,b;) < Satisfy
p(ai,bj), SO Ap(ai,bj) < 0.

If the actions share a row or a column the situation is lessp(ai, b;)p™ (a;, b;) + p(c)p~ (a;, b))
clear because one term pf(a;)p’(b;) is increasing while the p(ai,b;) + plc)

— p(ai)p(b;) >0 (8)



We note that the ternp(c)p~ (a;,b;) iS somewhat pes-
simistic, since the executed coordination equilibrium might =
share a row or column with(a;,b;). In this case, either
p(a;) or p(b;) would increase, rather than decrease. However,
these cases only improve the chance that the inequality ir
equation (8) will be satisfied. We therefore assume the worst- § »
case scenario that the executed coordination equilibrium share
neither a row nor a column witfu;, b;).

After substituting from equations (6) and (7), equation (8)
can be reduced to g

ed Equilibrium

Expected Reward of L

a+ (1 —a)(p(ai) +p(b;)) : p p . :

7 b; 9 s

p(ai)p(b;) + p(c) < o 9)

In the worst-case scenarip(c) = 1 — p(a;)p(b;). In this

case, equation (9) can be simplifiedpt;) + p(b;) > 2; an Fig. 2. IPL performance as a function of noise

impossible condition. Howevep(c) = 1 — p(a;)p(b;) only if

all joint actions are coordination equilibria, which defies the .

premises of the theorem. We quickly see that for any value Bf NOiSy Rewards

p(c) = 1—p(a;)p(b;) —e, where0 < e < 1—p(a;)p(b;), then Figure 2 shows algorithm performance as a function of

equation (9) resolves to noise. Two IPL agents, each having five actions, repeatedly
played a single-stage game until they executed the same joint

(10) action 50 times in succession. Each cell of the payoff matrix

l-a was randomly initialized to an integer between 0 and 24

which is not an impossible condition. There are values Q@ifferent random payoffs were assigned to each agent), with

p(a;) andp(b;) that will satisfy it, even though they may bethe exception of 5 randomly placed coordination equilibria

high. Thus there exist critical values fpfa;) andp(b;) (and whose payoff was 25 for both agents.

correspondingly, fop(a;, b;), beyond whichAp(a;, b;) tends  Gaussian noise was simulated using Peitgen et. al's equa-

plar) +p(by) > 2~ =)

to be positive. tion [2]:
|
We can now proceed to examine the overall system behavior. 1 /12 & —
By Theorem 3.2, there exists some critical vajebeyond D= A ;ZY?? —Vin (11)
=1

which p(a;, b;) tends to be continually increasing. The greater

the amount by whiclp(a;, b;) exceeds this threshhold, the lesgJsing valuesA = 100 and n = 50. The resultD was

likely it becomes thap(a;, b;) will decrease. The threshholdmultipled by a scaling factor of to provide different degrees

effectively represents the point at which a single coordinati®@f noise. The valueSD was added to the agents’ reward

equilibrium dominates all other possibilities and begins to tggnals.

executed with steadily increasing frequency. The agents used,,,, = 25 anda = 0.1, and the results
With continued positive updatep(a;) and p(b;) converge of 100 trials were averaged for each data point.

towards 1 (because the iterative serie$ = z + «o(1 — z2) We found that even for very large values ®fwith respect

converges tal for 0 < a < 1). Consequentlyp(a;,b;) also to the range of possible rewards, the IPL algorithm was able to

converges td. focus in on a near-optimal solution with reasonable frequency.
Getting the ball rolling on this convergence issue may take a .

while. If p* is relatively high, then it may take many iteration®: EStimation ofrq;

before the probability of one of the coordination equilibria A critical question for IPL is how the algorithm performs

happens to reach it. Fortunately, we have a guarantee frarthen the value of-,,, is not known in advance, but must

Theorem 3.1 that no suboptimal equilibrium can maintainiastead be inferred from known information.

probability greater than 0.5, so there is no risk of converging We implemented a set of Q-learning agents who were each

suboptimally while waiting for a coordination equilibrium toable to observe the action selections of the other agents. The

dominate. In the degenerate case where all joint actions agents used an initial utility value of 0, a learning rate 0.1,

optimal, the agents will, of course, also play optimally, eveand a simplified joint Q-value update equation

if their probabilities never converge.

IV. ALGORITHM BEHAVIOR Q'(ai by) = (L —m)Q(as, bj) +1(r) (12)
Most environments are not conveniently deterministic, andwhereQ(a;, b;) is the estimated utility of performing joint

most heuristics are not 100% accurate. How does the IRttion(a;,b;) andr is the reward received for executing joint
algorithm perform in the face of such uncertainties? action (a;, b;).



y whenever the criterion is satisfied. In this way, the agents could
select between multiple satisficing solutions.

20 4

V. CONCLUSIONS ANDFUTURE WORK

We have presented an equilibrium selection method for
agents that are able to determine with reasonable accuracy
whether or not an optimal equilibrium was obtained in the

Expected Reward of Leamed E quilibrium

104 last time step. When heuristic information is provided by
an external source, the algorithm is able to search through
5 policy space directly, without learning utilities or observing
the actions of other agents. When the heuristic information
. e must be inferred or approximated based on observed rewards,
o o1 02 e3 o405 08 07 08 08 1 then utilities and observation of the complete action space may

be useful tools for the acquisition of good heuristic data.
Fig. 3. IPL performance as a function afwith 7,4, estimation. Scaling 'ncremem‘?" P.o“Cy Lea.ml.ng. provably learns t.o play an
factor S = 0 was used for the deterministic environmest,= 5 for the Optimal solution if the heuristic is accurate, the environment is
stochastic environment. deterministic, and at least one coordination equilibrium exists.
Empirical studies indicate that IPL performs well in the
. ] presence of noise and when the heuristic information is
Ineach time step, each agent estimateghsroximated rather than precisely known. Future work should
Tmaz = mati; Q(a;b;) and exceuted the IPL updateconcentrate on theoretical bounds on the effectiveness of such
equation. Payoff matrix generation and noise generation W&fRthods, as well as on an analysis of the effect of the joint
carried out as described in the previous sub-section, and {i&ion space size on convergence speed.
results of 100 trials were averaged. Because IPL updates only when the heuristic’s requirements
The results are shown in Figure 3. As one might expegye satisfied, convergence may take a very long time in large
IPL performance was better with lower values @f This is joint action spaces with sparse equilibria. Compounding this
not surprising, since a high value far might cause the IPL proplem, if the environment is noisy and the joint action space
algorithm to converge before the joint Q-values accuratehss several near-optimal solutions, the agents may learn to play
reflected the relative magnitude of the expected rewards. one of these before a true optimum is discovered. Both of these
i . problems might be alleviated by adding a decay factor such
C. Extensions of the Algorithm that the probability of an action’s execution decreases each
The IPL algorithm lends itself naturally to several posskiime an optimal solution is not found. This would encourage
ble heuristics. Here, we discuss only a few of those whighore uniform exploration of the joint action space.
intuitively appear most useful and which seem to reflect Finally, other possible heuristics and methods for approx-
other results obtained in the field of multiagent reinforcemenating them should be developed so that the algorithm’s
learning. usefulness can be expanded to new situations.
If agents have access to the full payoff matrix of the game REFERENCES
being played (e|th¢r becagse I Was. prOVId&de‘IOI‘I or (#"I] Caroline Claus and Craig Boutilier. The dynamics of reinforcement
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H(t) = 0 otherwise, the agents can select between multiple Journal of Machine Learning Researdo appear, 2003.
Nash equilibria [4] S. Kapetanakis and D. Kudenko. Improving on the reinforcement learning
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ronments can learn to play a Minimax strategy bylettinfy] Martin Lauer and Martin Riedmiller. An algorithm for distributed rein-

— 1 ini ; ; i ; forcement learning in cooperative multi-agent systemd2roceedings of
H(t) 1 If the executed joint action is a Minimax solution the 17th International Conference on Machine Learnipgges 535-542,

and H (t) = 0 otherwise. Naturally, both of these approaches san Francisco, CA, 2000. Morgan Kaufman.
require that the agents be able to see the action selectiongbMichael Littman. Friend or foe g-learning in general-sum markov games.

; ; In Proceedings of the Eighteenth International Conference on Machine
their counterparts, and also rely on the assumption that all Learning pages 322-328, 2001,

agents in the system are using the same heuristic. [7] H. A. Simon. A behavioral model of rational choice.
One potentially interesting application of the IPL a|g0rithnff3] W. C. Stirling, M. A. Goodrich, and D. J. Packard. Satisficing equilibria:

_ o . i ofimi _ A non-classical approach to games and decisiohstonomous Agents
is in satisficing environments. In satisficing, agents seek ac- | Multi-Agent Systems Jourp@:305-328, 2002.

tions that are “good enough” rather than seeking actions théit x. wang and T. Sandholm. Reinforcement learning to play an optimal
are optimal [7], [8]. A satisficing criterion could be chosen nash equilibrium in team markov games. hdvances in Neural
(SUCh as a threshhold value an,am) such thatH(t) -1 Information Processing Systems 15 (NIPS-20@2hcouver, 2002.



