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Abstract— The ever-increasing density of computer storage
devices has allowed the average user to store enormous quanti-
ties of multimedia content, and a large amount of this content
is usually music. We present a query-by-content system which
searches the actual audio content of the music and supports
querying in several styles using a Self-Organizing Map as
its basis. Empirical results demonstrate the viability of this
approach for musical query-by-content.

I. INTRODUCTION

Many personal libraries contain thousands of songs which
the user needs to search through when looking for a particular
song. Current search techniques typically rely on meta-data
tags which describe artist, album, year, genre, or similar
information. These tags must be created by a human and
attached to each file—an error-prone process which is, at
best, inconvenient.

Much work has been done to create systems which try to
automatically tag a song with genre information [1]. Such
meta-data is helpful, but only if the user can remember the
information stored in the tags. Otherwise it is necessary to
search by content, and such systems, which rely on informa-
tion retrieved from audio files, are generally referred to as
Music Information Retrieval (MIR) systems. Unfortunately,
no system yet exists that searches audio by content and which
is accurate, fast, robust, and intuitive.

Any MIR system will require a method for determining the
similarity of songs. In fact, the system is heavily dependent
on this distance function. Many current systems first tran-
scribe the audio content to a text representation and then use
common string-matching techniques as the distance function
[2], [3], [4]. This process, however, is problematic because
it reduces the content-rich music to a simple text string.

Instead, one could in principle extract various acoustic
features from the audio using signal processing techniques
with the distance function dependent upon which musical
features are used. Determining which features to extract is a
difficult, context dependent problem [5], [6], [7], [8], [9].

Once a good feature set is found, it is still necessary
to determine a suitable distance function. The choice of
distance function has also been heavily studied, resulting in
varying levels of success [10], [11], [12]. However, instead of
explicitly constructing a distance function, another approach
would be to implicitly derive one. Self-Organizing Maps
(SOMs) produce an interpolated feature space and can easily
be visualized, and, as a result, naturally suggest themselves as
a way of doing this. In earlier work, we proposed the design
of a system that uses a SOM to reduce the dimensionality
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of the feature space, allowing the use of simple (Euclidean)
distance metrics [13]. Here we extend that work by fully
implementing the proposed system and evaluating it for a
variety of different query scenarios.

II. RELATED WORK

Our work combines two well-established concepts—Self-
Organizing Maps and Musical Query-by-Content Systems.
The Self-Organizing Map is an unsupervised learning algo-
rithm which uses data from a feature set of any dimen-
sionality to generate a two-dimensional grid (map) while
attempting to preserve as much of the intrinsic similarity
of the data as possible [14]. The learning of such a map (see
Algorithm 1) begins by initializing a grid of random feature
vectors (line 1). This grid may be considered to wrap around
both horizontally and vertically, creating a toroid, to prevent
unusual edge effects. For each training datum (line 3), the
grid location of the most similar map vector is found (line
4), and all vectors in a neighborhood around the matching
vector are updated to become more like that datum (lines
5-8). Over time the size of the neighborhood shrinks (line 9)
and the influence of the update decreases (line 10). In effect,
these neighborhood alterations create smooth interpolations
between data points across the map, a desirable property
which allows us to train on a subset of the available data
and still get a useful map.

SOMs have already been used successfully in MIR sys-
tems. One of the first such systems was presented by Feiten
and Günzel [15]. Harford [16] uses a SOM to perform
melody retrieval. Dittenbach, Merkl, and Rauber [17] intro-
duce a growing hierarchical SOM which Rauber, Pampalk,
and Merkl [18] use to create a musical archive based upon
sound similarity. As far as we have been able to determine,
no work has been done in applying SOMs to a musical query-
by-content system. However, an image query-by-content sys-
tem was created by Laaksonen, Koskela and Oja [19]. In this
system the user does not input a free-form query but rather
selects images from presented sets as the system locates the
area of the SOM the user is interested in.

The textual representation of the query is a considerable
constraint in all of the above systems. Music is a very rich
medium—songs often contain concurrent parts and a user
may remember any single part while forgetting the others.
Having a strong, unique bass with a vocal track accompanied
by instrumentals is not uncommon, but by reducing the song
to a single text representation much of that information is
lost. Perhaps a user can remember how the bass sounded,
but not the vocal or instrumentals. Current systems would be
unable to help them find the correct song. One system does
allow more comprehensive searching by extracting features



Algorithm 1 SOM algorithm pseudocode. X is the training
set of real-valued vectors of length n. m is the size of the
SOM (square m × m). ρ ∈ [1,m] is the radius used in
determining neighborhoods. α ∈ (0, 1) is the weight given
to the training datum when updating the vectors on the grid.
cρ, cα ∈ (0, 1) are linear decay multipliers for ρ, α. The
vector and grid distance functions can be any metric—here,
Euclidean distance is used for both. Typical parameter values:
α = 0.1, ρ = m

2 , cρ = 0.999, cα = 0.999.
Train(X,m, ρ, α, cρ, cα)

1: M ← m × m grid of random real-valued vectors of
length n

2: while NOT DONE do
3: for x̄ ∈ X do
4: v̄ ← argminv̄∈M vector distance (v̄, x̄)
5: vi ← αxi + (1− α) vi
6: for ū in neighborhood(v̄, ρ) do
7: αu ← α× ρ−grid distance(v̄,ū)

ρ

8: ui ← αuxi + (1− αu)ui
9: ρ← cρρ

10: α← cαα
11: return(M )

directly from the MP3 encoding format which are segmented
into a set of “phases” to which queries are matched [20].
This work, however, is limited to only songs in MP3 format.
Cui et al. create a hybrid system combining metadata and
query-by-content to produce a single result set [21]. This
is a compelling approach; however it could be applied with
any underlying systems and does not eliminate the need to
develop better standalone query-by-content systems.

We use a SOM to power a musical query-by-content
system, thereby allowing us to retain as much of the original
audio content as possible. By retaining more content in the
target songs, the system is amenable to search using a broader
range of query types: humming, whistling, singing, etc.

III. SYSTEM DESIGN

The system design incorporates a unique path-descriptor-
based approach to music processing that incorporates a SOM
built to organize audio signals. Figure 1 illustrates the pro-
cess. Algorithm 2 gives pseudocode for building a library of
song path-descriptors from a library L of songs. First, a SOM
is created from randomly sampled song segments (lines 1-3).
Before the SOM is trained, the audio is preprocessed (line
2) to extract feature vectors, using features and parameters
that are common in many MIR systems [22], [23], including
the power spectrum, strongest beat, beat sum, Mel-Frequency
Cepstral Coefficients, and Linear Predictive Coding.

Once the SOM is trained, each of the songs l in the
libraryL (line 5) is preprocessed in the same way as the
training segments, resulting in an ordered set X of feature
vectors that correspond to song subsegments of length δ
(line 6). For each of these feature vectors (line 7), the SOM
vector that is most similar is found (line 8) and the SOM

Fig. 1. High-level system design. During training, 9 consecutive feature
vectors (representing 25 seconds of audio) are taken from 176 (20%) of
the preprocessed songs (1584 unique feature vectors). The feature vectors
are used as the training data for the SOM algorithm. After training has
completed, each song’s complete set of feature vectors is mapped into the
SOM creating unique path-descriptors.

Algorithm 2 Path Library pseudocode. L is a library of
songs. k ∈ (0, 1) is the fraction of the library to use for
training. λ is the length of song samples. δ is the subsampling
window size. θ is the fraction of overlap for subsample win-
dows. Preprocessing can involve any audio signal processing
that produces real-values that can be composed as a vector—
here features used include the power spectrum, MFCCs and
Linear Predictive Coding. For the results reported here, L is
a library of 881 songs, k = 0.2, λ = 25 seconds, δ = 5
seconds and θ = 0.5.
Build Path Library(L, k, λ, δ, θ)

1: S ← kL random song segments of length λ from L
2: X ← Preprocess(S, δ, θ)
3: M ← Train(X,m, ρ, α, cρ, cα)
4: P ← ∅
5: for l ∈ L do
6: X ← Preprocess(l, δ, θ)
7: for i = 1 to |X| do
8: ai ← argmin(j,k) ||Mjk − xi||2
9: al ← (a1, . . . , a|X|)

10: P ← P ∪ {al}
11: return(P )

coordinates of this vector are recorded as a tuple, ai (line 8).
This ordered set of tuples, al = (a1, . . . , a|X|) is the path-
descriptor representation of song l (line 9) and is stored in
the descriptor library (line 10).

Figure 2 illustrates the path-descriptor concept. As usual
for SOMs, each data instance (vector of audio features)
will map to a single location within the SOM; but, because
each song/sample is represented by an ordered set of feature
vectors, the song/sample can be represented as the ordered set
of locations to which the individual vectors map. This allows
for cleanly handling the temporal nature of the problem
without the need to change the actual SOM algorithm in
any way. These paths now act as unique descriptors for each
song and are stored for later reference (line 11).

The distance between two songs, l1 and l2 is calculated as
the average Euclidean distance between the points composing
their unique path-descriptors, p1 and p2:

d(l1, l2) =
1
m

m∑
i

||p1i − p2i ||2 (1)



Fig. 2. Path-descriptor example. After the SOM has been trained, the fea-
ture vectors representing a song can be mapped into the SOM. Each feature
vector maps to a single location and the ordered set of locations produces a
unique path-descriptor describing that song. These path-descriptors are then
used to compute the distance between songs (see Figure 3).

Fig. 3. Song distance calculation example. The distance between two
songs is calculated as the average Euclidean distance between the points
composing their unique path-descriptors. If the path-descriptors have differ-
ent lengths, the extra points in the longer descriptor are ignored. This very
simple technique yields fairly good results.

where m = min(len(p1),len(p2)). When the descriptors
vary in length, the extra points in the longer descriptor are
simply ignored (see Figure 3).

A. Quasi-Supervised SOM Querying

Because we allow the user to query using their choice
of modality, the query is not likely to be similar to any
song based upon the musical content (other than the one
theme expressed in the query). For example, whistled queries
are unlikely to match musical content occurring from gui-
tars, singing, pianos, etc. As a result, whistled queries (for
example) are likely to sound more like each other (to the
naı̈vely trained SOM) than like their intended target songs.
The solution is a quasi-supervised approach to SOM training
that allows comparison of songs and queries using a single
SOM, while avoiding this problem.

Traditionally SOM training is unsupervised—the feature
vectors themselves determine the resulting map. In quasi-
supervised training, song segments are paired with match-
ing user queries to produce the vectors used to train the
SOM. Algorithm 3 shows how Algorithm 2 is modified to
accomplish this. The feature vectors of the song segments
are augmented with the feature vectors of matching sample
user queries (lines 1-4). The actual process of training the
SOM is no different than before—each training vector is
considered and the neighborhood around the closest matching
location is updated. That is, as far as the actual SOM is
concerned, nothing has changed (line 8). What has changed
is how the vectors that compose the SOM are viewed. While
the SOM is still presented with simple vectors for training,
half of the vector is interpreted as a representation of the
features extracted from the actual song and the other half is

Algorithm 3 Quasi-supervised Path Library pseudocode.
L is a library of songs. R = {(si, qi)} is a set of song
segment/query pairs. δ is the subsampling window size. θ
is the fraction of overlap for subsample windows. Since the
dimensionality of Mjk is twice that of xi, the superscript
indicates with which half of the vector Mjk the L2-norm
should be computed.
Build Quasi Path Library(L,R, δ, θ)

1: S ← {si|(si, qi) ∈ R}
2: Q← {qi|(si, qi) ∈ R}
3: Z ← Preprocess(S, δ, θ)
4: Y ← Preprocess(Q, δ, θ)
5: X ← ∅
6: for i = 1 to |R| do
7: X ← zi ◦ yi {concantenation}
8: M ← Train(X,m, ρ, α, cρ, cα)
9: P ← ∅

10: for l ∈ L do
11: X ← Preprocess(l, δ, θ)
12: for i = 1 to |X| do
13: ai ← argmin(j,k) ||M1

jk − xi||2
14: al ← (a1, . . . , a|X|)
15: P ← P ∪ {al}
16: return(P )

Fig. 4. Quasi-supervised SOM design. Sample queries are matched with
their target songs. These pairs are individually preprocessed and the resulting
pair of feature vectors are concatenated to create a single feature vector,
which is used to train the SOM. After training, the songs in the library are
mapped into the SOM using the first half of the stored feature vectors to
create path-descriptors. Queries are similarly mapped, using the second half
of the stored feature vectors. The path-descriptors of targets and queries are
thus directly comparable while still explicitly modeling the query style.

interpreted as a representation of the features extracted from
the sample query (line 7). For example, if the feature vectors
for the songs each contain 13 values and the feature vectors
for the queries each contain 13 values, then the vectors in the
SOM will each contain 26 values. This process will create a
single interpolated map linking queries and targets. Figure 4
illustrates the high-level idea.

Once the SOM is trained, path-descriptors are generated
for all the songs in the music library, just as was done
in Algorithm 2, with one small change: when the vectors
describing a song are compared to the SOM, they are only
compared to the first half of the vectors in the SOM (line
13, indicated with superscript 1).

Given a SOM trained using Algorithm 3 and the resulting
library P of song path-descriptors, one can now query the
song library, taking advantage of the augmented vectors in
the SOM. Algorithm 4 shows how this is accomplished.



Algorithm 4 Path Library Querying pseudocode. r is a user
query. P is a library of song path-descriptors. Since the
dimensionality of Mjk is twice that of xi, the superscript
indicates with which half of the vector Mjk the L2-norm
should be computed.
Query Path Library(r, P )

1: X ← Preprocess(r, δ, θ)
2: for i = 1 to |X| do
3: qi ← argmin(j,k) ||M2

jk − xi||2
4: q ← (q1, . . . , q|X|)
5: closest←∞
6: for p ∈ P do
7: dist ← argminw∈p d(w, q) {w is window the length

of q}
8: if dist < closest then
9: answer ← p

10: return(answer)

First, a path-descriptor for the query is generated (lines 1-
4) by comparing the vectors describing the query to only
the second half of the vectors in the SOM (indicated with a
superscript 2 in line 3). Once the path-descriptor for the query
is generated, it can be directly compared to the previously
computed path-descriptors for all the songs in the library
(lines 6-9). The distance between path-descriptors in line 7
is computed using Equation 1 and represents how similar a
query is to a song.

IV. EMPIRICAL RESULTS

The goal of any querying system is to return the specific
item a user is searching for as the number one result.
Therefore, the quality of the Query-by-Content system can
be evaluated using the position of the true target within
the ordering of the results—the closer to the first result the
better. Given a query q ε Q and an ordered list of results
for q, τ(q) returns the index of the correct target song
for q in the ordered results for q. Values for τ(q) range
from 0 (a correct match) to |T | − 1, where T is the set
of target songs. The percentage of targets occurring as the
first result are computed using Equation 2. Two additional
metrics are the percentage of targets occuring within the top
5 results (Equation 3) and top 10 results (Equation 4) [2].
These metrics are commonly used because, considering the
difficulty of the task, requiring the user to listen to five or ten
possible matches is not unreasonable when searching through
a database of possibly thousands of songs. The final metric
that will be used is the average position of the target in the
ordered results (see Equation 5).

% Correct =
(∑

qεQ δ(τ(q), 0)
|Q|

× 100
)

% (2)

% in Top 5 =

(∑
qεQ δ(b

τ(q)
5 c, 0)

|Q|
× 100

)
% (3)

% in Top 10 =

(∑
qεQ δ(b

τ(q)
10 c, 0)

|Q|
× 100

)
% (4)

Average Position =

∑
qεQ τ(q)
|Q|

(5)

For evaluation, the average values of the four metrics are
compared to the baseline of expected values of those metrics
if given random orderings. For example, given 15 songs in
the training set the expected value of the 0-based position of
the target song in a random ordering would be 15−1

2 = 7.
The general form of the expected values of the percentage of
songs correct, percentage of songs in the top 5, percentage
of songs in the top 10, and average position are presented in
Equations 6, 7, 8, and 9, respectively.

E[% Correct] =
(

1
numSongs

× 100
)

% (6)

E[% in Top 5] =
(

5
numSongs

× 100
)

% (7)

E[% in Top 10] =
(

10
numSongs

× 100
)

% (8)

E[Average Position] =
numSongs− 1

2
(9)

A. Data Collection

Sample queries were collected from eight test-users, and
each user chose the query style with which they felt most
comfortable (see Table I). To begin the query collection
process, a song is randomly chosen from the song library, and
then a 10-second segment of that song is randomly selected.
The user is asked to listen to the 10-second clip until they feel
comfortable that they know the clip. The user then records
a query sample of that clip while listening to the clip again.
To prevent the true signal from being included in the query
samples, the audio is only played through headphones. The
query sample is captured using an Apex 181 USB condenser
microphone at 44.1 khz. This process was repeated during
two 1-hour sessions at a pace set by the user. All of the audio
was then processed to extract a desired feature set, yielding
a set of eight datasets of matched query-sample pairs (q, s),
where q is the features representing ten seconds of humming,
and s is the features representing the ten seconds of actual
audio sample the user was trying to match. These 8 datasets
varied in size from 26 to 210 pairs.

B. Experimental Design

Using these eight datasets, 5-fold cross validation-based
testing was performed for a variety of scenarios involving
different audio features, single vs. multiple users and single
vs. multiple query styles. Each dataset was randomly divided
into 5 groups as equally as possible (each group differing by
no more than one song). Each fold (approximately 20% of the
dataset) was used once for training and appeared in the test



User Music Skill Training Query Style Query Skill
A 5 None Sing (words) 4
B 6 None Hum 6
C 7 Some Sing (words) 6
D 4 Some Hum 5
E 7.5 Lots Sing (notes) 6
F 3 Little Whistle 5
G 7 Some Whistle 7
H 6 None Sing (words) 6

TABLE I
Test-user survey information. TEST-USERS PROVIDED INFORMATION

ABOUT HOW MUCH MUSICAL TRAINING THEY HAVE HAD, THE STYLE OF

QUERYING THEY WOULD USE, AND RATED THEMSELVES ON THEIR

OVERALL MUSICAL SKILL AND SKILL IN THEIR QUERY STYLE. THESE

SKILL RATINGS ARE ON A SCALE OF 1-10 WHERE 10 IS THE BEST.

set of all other folds, yielding test sets of approximately 80%
of the dataset. The evaluations were run twice, once with a
feature set of only the Mel-Frequency Cepstral Coefficients
(MFCCs), and once with a feature set of the MFCCs and the
Linear Predictive Coding (LPC) coefficients (both the MFCC
and LPC values are commonly used in MIR and Natural
Language Processing systems). MFCCs are well suited to
MIR tasks because they have been designed specifically
to represent features which the human auditory response
system perceives [22]. LPC is a compression algorithm
which represents the n-th sample of a signal using a linear
combination of the p previous samples combined with an
error correction term [24]. The algorithm is based on a simple
model of the human vocal system.

Before feature extraction, the audio signals for songs and
queries are normalized so that differences in sound levels
are negligible. Because a user querying for a part of a song
will be likely to preserve volume differences only within
the query and not across the entire song, only local volume
changes are important. Normalizing the signal preserves
local volume changes while preventing volume discrepancies
between songs and queries from affecting the results. All
features were extracted for every window of 100ms with
50% overlap. As with the features selected, parameters were
chosen due to their popularity in other systems.

In addition to evaluating SOMs created for each user’s
dataset individually, stratified sampling was used to test the
cross-user robustness of the system. Since multiple users
choose to query by humming, whistling, and singing words,
for each of those query styles, 5-fold cross validation was
performed using data from all users with that query style.
To create the five groups, each user’s dataset was randomly
divided into five groups and then the groups for each user
were combined. So each user’s dataset was spread equally
across the five groups; users with larger datasets had more
songs in each group than users with smaller datasets. As a
final evaluation of the cross-user robustness of the system,
we also performed 5-fold cross validation over all the users
regardless of query style. The groups were created as above
so that each user’s dataset was spread equally over the five

groups. The cross-user experiments used only the MFCCs for
features. All of the SOMs trained were 128x128 in size, as
preliminary tests suggested this size would provide a balance
between training time and system performance.

C. Results

In the overall results for each user, the average value of
each of the metrics (Equations 2-5) across the five folds
is compared to the the expected value of the metric when
using randomly generated orderings (Equations 6-9). This
comparison is reported using the percent improvement,

ι =
α− υ
υ
× 100 (10)

where ι is the percent improvement, α is the average value
of the metric, and υ is the expected value of the metric when
using randomly generated orderings.

For the average position metric, lower results are better so
the percent improvement equation is modified to reflect this:

ι =
υ − α
υ
× 100 (11)

This makes all of the percent improvement values to be com-
parable: higher is better. It is important to remember when
viewing results in this section that percent improvement is
very sensitive when the values are near zero.

1) Single user, MFCC: For the first experiment, each
dataset (user) was treated independently, and the only fea-
tures extracted were the MFCCs. Overall there is definite
improvement over the expected value of random orderings
(Table II). The SOMs trained for users A, C, and E all
had 100% accuracy on all five folds over their respective
training sets. The SOMs trained for user F averaged 86.15%
correct with 2 folds reaching 100%. This result is most likely
because these four users’ training sets were relatively small—
the large size of the SOM compared to the number of queries
simplifies the task. This success on the training sets does
seem to transfer to the test sets, though not as strongly as we
would like. The standard deviations of the metrics are rather
large compared to their means. This suggests that the result
of training a SOM varies from user to user. Despite the large
standard deviations, the average across users of each of the
metrics shows definite improvement over random orderings.

As just mentioned, the size of the dataset relative to the
size of the SOM has a strong effect on how effective the
SOM is at separating different data while grouping similar
data. For performance on the training set, there is an inverse
correlation between average fold size and improvement in
average position (see “Training Set/Position” column in
Table II). Clearly the SOM size compared to the fold size is
the dominating factor in how effective our system is in this
case. However, for the test sets, the correlation disappears—
the size of the SOM affects its ability to recall specific
instances but does not directly impact its generalization.

2) Single user, MFCC and LPC: Next, the LPC coef-
ficients were added to the feature set in an attempt to
improve performance. The results (Table III) show that, for
the training set, including LPC coefficients was detrimental



Training Set Test Set
Fold Size
(train/test)

Correct Top 5 Top 10 Position Correct Top 5 Top 10 Position

User E 5.2/20.8 420.02 4.00 0.00 100.00 21.83 4.20 -6.01 1.15
User A 7.0/28.0 600.28 40.00 0.00 100.00 100.00 28.00 18.01 5.63
User C 10.6/42.4 960.45 112.00 6.00 100.00 0.00 0.00 6.11 4.20
User F 12.6/50.4 985.01 152.02 26.01 96.72 -40.40 3.83 6.00 1.21
User H 22.4/89.6 598.21 199.64 85.84 57.20 -20.54 15.95 0.00 0.52
User G 23.0/92.0 339.77 143.97 80.03 47.36 0.00 16.02 18.03 -0.37
User B 29.6/118.4 316.27 139.67 68.09 35.59 60.71 16.11 20.00 3.70
User D 42.0/168.0 39.92 32.02 26.00 10.54 18.33 -4.36 22.02 1.99

µ 19/76.2 532.49 102.92 36.50 68.43 17.49 7.97 9.63 2.25
σ 11.8/47.2 324.26 69.34 36.14 35.44 44.89 10.76 9.97 2.05

TABLE II
Single user MFCC percent improvement. µ AND σ ARE THE MEAN AND STANDARD DEVIATION RESPECTIVELY.

(compare to Table II). However, the percentage correct and
percentage in the top 5 improved overall in the test sets.
Users B and H showed improvement on the test sets for
all the metrics compared to using only MFCCs. User G
improved on the test sets for all the metrics except percentage
in the top 10. The results for user C were mixed, improving
on the first two metrics and getting worse for the last two.
Users A, D, E, and F, however, showed an overall decrease
in performance. Overall there was improvement on the test
sets on the first two metrics, but decreased performance on
the last two. This mixed improvement comes at the cost of
substantial increases in the standard deviations for all but
the first metric—the effect of including LPC coefficients in
the feature set varies with the user. For the training sets,
the inverse correlation between training set size and percent
improvement of average position still exists, though it is
much less pronounced compared to when only MFCCs are
used, and, again, disappears in the test sets.

3) Cross User, Single Style: For three query styles (hum-
ming, whistling, and singing words) there was more than one
test user. Three users queried by singing words, two users
queried by whistling, and two users queried by humming. To
explore the robustness of the system, 5-fold cross validation
was performed for each of those query styles. MFCCs were
the only features used in these tests. The results suggest that
the system can learn the training set, but is ineffective at
generalizing to the test data (see Table IV). The results for
the humming style do show improvement for three of the
four metrics on the test set and only little improvement in
the training set. This suggests that the training did result in
a more general model and not just superficial memorization
of training patterns (as experiments on the other two styles
suggest happened). This may be due to the fact that the
users that hummed provided the largest datasets, and in
this combined experiment had an average fold size of 71.60
query-target pairs—the larger training set allows the SOM to
learn a more general relationship.

4) Cross User, Cross Style: An ideal solution to musical
query-by-content would be robust across different users
and query styles. The results of a stratified sampling test
combining data from all eight subjects are presented in
Table V. As in the single style experiment, the system shows
improvement on the training set. The test set results show
slight improvement over random orderings for the average
position metric. The improvement in the percent correct
metric in Table V is misleading because the values are close
to zero and one fold showed enough improvement to skew
the average, whereas the average of the other four folds
would be exactly the expected value of random orderings.
The trained SOM is not able to generalize to the test sets in
this experiment, but this is perhaps to be expected given the
variety of query styles and paucity of training data.

5) Comparison to Other Systems: It is desirable to com-
pare these results with those of other query-by-content sys-
tems. Two issues to consider when making such a compari-
son are that other query-by-content systems restrict the query
options of the user to a single style and that these systems
have been in development for over 15 years, allowing many
improvements to have been made to initial designs. The
system presented here, however, is the first we know of
that allows the user to query in any style they choose.
Therefore, it should be expected that the more restricted
and mature systems will yield better results than this new
system. In addition to these issues, the amount of testing
done on other systems appears to be minimal and provides
very little information with which to compare our results.
Of the three systems that provided experimental results, Lu,
You, and Zhang tested an unspecified number of users with a
total of 42 queries from 1000 songs [25]; Liu and Tsai tested
four users with 10 songs each [20]; and Raju, Sundaram, and
Rao tested five users with 20 songs each [26]. In comparison,
we tested eight users making 762 queries on 783 songs.

Lu, You, and Zhang report that 88% of queries produced
a result within the top 10 results, which is a 270% improve-
ment over the expected value of random orderings [25]. Liu



Training Set Test Set
Fold Size
(train/test)

Correct Top 5 Top 10 Position Correct Top 5 Top 10 Position

User E 5.2/20.8 97.61 0.54 0.00 26.67 -38.67 -7.49 6.07 0.61
User A 7.0/28.0 100.07 12.00 0.00 25.67 -19.89 -20.04 4.00 1.11
User C 10.6/42.4 40.72 24.13 2.14 13.96 39.83 7.71 -6.02 1.59
User F 12.6/50.4 -19.27 12.12 6.14 2.59 0.00 -3.93 -10.03 -0.93
User H 22.4/89.6 39.91 24.33 4.12 6.82 0.00 15.95 24.01 5.19
User G 23.0/92.0 20.00 0.00 0.00 2.18 39.45 36.10 5.98 0.79
User B 29.6/118.4 19.53 32.37 32.09 11.19 101.19 56.16 32.11 5.20
User D 42.0/168.0 0.00 4.03 -2.02 -0.54 38.33 -4.03 -17.98 -0.42

µ 19/76.2 37.32 13.69 5.31 11.07 20.03 10.05 4.77 1.64
σ 11.8/47.2 42.77 12.13 11.13 10.48 43.97 25.22 16.79 2.34

TABLE III
Single user MFCC & LPC percent improvement. µ AND σ ARE THE MEAN AND STANDARD DEVIATION RESPECTIVELY.

Training Set Test Set
Style Fold Size

(train/test)
Correct Top 5 Top 10 Position Correct Top 5 Top 10 Position

Whistling 35.6/142.4 240.21 80.41 49.98 17.11 0.00 7.98 -7.98 -1.22
Singing 40/160 438.40 155.52 85.80 35.79 -20.00 -4.00 -11.68 -0.63

Humming 71.6/286.4 0.00 0.00 14.03 6.32 -60.00 4.60 18.05 2.43

TABLE IV
Cross user, single style MFCC percent improvement. EACH SOM WAS TRAINED ON A STRATIFIED SAMPLE ACROSS ALL USERS OF EACH QUERY STYLE.

Training Set Test Set
Correct Top 5 Top 10 Position Correct Top 5 Top 10 Position
140.91 40.55 42.38 5.80 62.50 -15.85 -1.83 1.98

TABLE V
Cross user, cross style MFCC percent improvement. EACH SOM WAS TRAINED ON A STRATIFIED SAMPLE ACROSS ALL USERS AND QUERY STYLES.

and Tsai did not provide enough detail for us to be able
to compare their results to our own. Raju, Sundaram, and
Rao report that 95% of queries returned the correct result
first, an 1800% improvement over the expected value of
random orderings [26]. These results are, as expected, better
than ours; however, our experiments are more comprehensive
and our system more robust to query style. Given the
inherent differences between other, more limited query-by-
content systems and our more general system, as well as
the limited results provided for those systems, we consider
our comparison against random orderings to be a fair and
reproducible way of evaluating our system.

V. CONCLUSION

Musical query-by-content systems, like the one introduced
here, allow users to find music even when they cannot
remember the artist, title, or lyrics. Most other current query-
by-content systems reduce the information-rich audio signal
to a string representation of only the melody; queries are

similarly processed and compared using string matching
techniques. Many of these systems also require that the
user query in a certain style. These restrictions reduce the
flexibility of the system and force the user to interact in
a specific way which may be unnatural. Our system does
not have these restrictions. Using a Self-Organizing Map,
we are able to create a query-by-content system which is
independent of the query style of the user and is able to
retain more of the acoustical content of the audio signal.
This avoids the difficult task of automatically extracting a
single melody and representing it in some simplified form.

Our results show that it is feasible to use a Self-Organizing
Map in a query-by-content system. The system is most
effective when using a dataset from a single user with a single
query style. However, unlike most other musical query-by-
content systems, our system does not dictate the style of
the query. The user may query in whatever style is most
comfortable and the system is able to remain effective. This
is an important step forward in making query-by-content



systems more intuitive and useful to users.
As far as we have been able to determine, this work is

the first to use Self-Organizing Maps in a musical query-
by-content system. Our work shows that SOMs are a viable
option for creating a query-by-content system, but there is
still room for improvement.

The size of the SOM relative to the size of its training
set is important for determining the SOM’s efficacy. We
used a fixed size that we felt balanced training time with
performance. The size of the SOM can be determined in a
more online fashion by using a hierarchical SOM, a self-
growing SOM, or both. These automatically sizing SOMs
allow the system to more easily adjust to the amount of data
available. Of course, this would incur an associated increase
in training time; however, the trade-off is the reduced query
time resulting from these online SOMs—an important factor
in developing a scalable system.

Our approach would require modification in order to
effectively scale to production-size datasets. While improving
the query time of the SOM is important, the bulk of the com-
putation occurs when comparing the computed path to the
stored paths for all songs in the library. One approach to this
problem was presented by Cui et al. which involves storing
signatures in a database for quick elimination of unlikely
candidates [27]. Additionally, the system currently does not
handle varying tempo in queries. A possible approach would
be to interpolate audio samples or remove samples in order
to create longer or shorter queries.

The results suggest that larger training sets allow the SOM
to learn a more general relationship. In each fold we used
only 20% of the dataset for training; simply using more of
the data in training would likely increase performance.

The overall cross-user, cross-style robustness of the system
might be improved by training on a dataset where each user
provides query samples for the same set of targets or by
augmenting SOM vectors with multiple query vectors of
different styles. To better analyze the suitability of this type
of system, a larger study should be conducted including more
users, larger datasets, datasets which match multiple users’
queries to the same target, and more varied query styles.
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