
Learning the Architecture of Sum-Product Networks
Using Clustering on Variables

Aaron Dennis
Department of Computer Science

Brigham Young University
Provo, UT 84602

adennis@byu.edu

Dan Ventura
Department of Computer Science

Brigham Young University
Provo, UT 84602

ventura@cs.byu.edu

Abstract

The sum-product network (SPN) is a recently-proposed deep model consisting of
a network of sum and product nodes, and has been shown to be competitive with
state-of-the-art deep models on certain difficult tasks such as image completion.
Designing an SPN network architecture that is suitable for the task at hand is an
open question. We propose an algorithm for learning the SPN architecture from
data. The idea is to cluster variables (as opposed to data instances) in order to
identify variable subsets that strongly interact with one another. Nodes in the SPN
network are then allocated towards explaining these interactions. Experimental
evidence shows that learning the SPN architecture significantly improves its per-
formance compared to using a previously-proposed static architecture.

1 Introduction

The number of parameters in a textbook probabilistic graphical model (PGM) is an exponential
function of the number of parents of the nodes in the graph. Latent variables can often be introduced
such that the number of parents is reduced while still allowing the probability distribution to be
represented. Figure 1 shows an example of modeling the relationship between symptoms of a set of
diseases. The PGM at the left has no latent variables and the PGM at the right has an appropriately
added “disease” variable. The model is able to be simplified because the symptoms are statistically
independent of one another given the disease. The middle PGM shows a model in which the latent
variable is introduced to no simplifying effect, demonstrating the need to be intelligent about what
latent variables are added and how they are added.

S1

S2 S3

(a)

S1

S2 S3

D

(b)

S1 S2 S3

D

(c)

Figure 1: Introducing a latent variable. The PGM in
(a) has no latent variables. The PGM in (b) has a latent
variable introduced to no beneficial effect. The PGM
in (c) has a latent variable that simplifies the model.

Deep models can be interpreted as PGMs
that introduce multiple layers of latent
variables over a layer of observed vari-
ables [1]. The architecture of these latent
variables (the size of the layers, the num-
ber of variables, the connections between
variables) can dramatically affect the per-
formance of these models. Selecting a rea-
sonable architecture is often done by hand.

This paper proposes an algorithm that au-
tomatically learns a deep architecture from
data for a sum-product network (SPN), a
recently-proposed deep model that takes
advantage of the simplifying effect of la-
tent variables [2]. Learning the appropri-

1

+

xx

+ +

λ
a

λ
b

λ
a

λ
b

+ +

A B

Figure 2: A simple SPN over two binary variables A
and B. The leaf node λa takes value 1 if A = 0 and
0 otherwise while leaf node λa takes value 1 if A = 1
and 0 otherwise. If the value of A is not known then
both leaf nodes take value 1. Leaf nodes λb and λb be-
have similarly. Weights on the edges connecting sum
nodes with their children are not shown. The short-
dashed edge causes the SPN to be incomplete. The
long-dashed edge causes the SPN to be inconsistent.

+

xx

+ ++ +

x

+ +

Figure 3: The Poon architecture withm = 1
sum nodes per region. Three product nodes
are introduced because the 2×3-pixel image
patch can be split vertically and horizontally
in three different ways. In general the Poon
architecture has number-of-splits times m2

product nodes per region.

ate architecture for a traditional deep model can be challenging [3, 4], but the nature of SPNs lend
themselves to a remarkably simple, fast, and effective architecture-learning algorithm.

In proposing SPNs, Poon & Domingos introduce a general scheme for building an initial SPN ar-
chitecture; the experiments they run all use one particular instantiation of this scheme to build an
initial “fixed” architecture that is suitable for image data. We will refer to this architecture as the
Poon architecture. Training is done by learning the parameters of an initial SPN; after training is
complete, parts of the SPN may be pruned to produce a final SPN architecture. In this way both the
weights and architecture are learned from data.

We take this a step further by also learning the initial SPN architecture from data. Our algorithm
works by finding subsets of variables (and sets of subsets of variables) that are highly dependent and
then effectively combining these together under a set of latent variables. This encourages the latent
variables to act as mediators between the variables, capturing and representing the dependencies
between them. Our experiments show that learning the initial SPN architecture in this way improves
its performance.

2 Sum-Product Networks

Sum-product networks are rooted, directed acyclic graphs (DAGs) of sum, product, and leaf nodes.
Edges connecting sum nodes to their children are weighted using non-negative weights. The value
of a sum node is computed as the dot product of its weights with the values of it child nodes. The
value of a product node is computed by multiplying the values of its child nodes. A simple SPN is
shown in Figure 2.

Leaf node values are determined by the input to the SPN. Each input variable has an associated set
of leaf nodes, one for each value the variable can take. For example, a binary variable would have
two associated leaf nodes. The leaf nodes act as indicator functions, taking the value 1 when the
variable takes on the value that the leaf node is responsible for and 0 otherwise.

An SPN can be constructed such that it is a representation of some probability distribution, with
the value of its root node and certain partial derivatives with respect to the root node having proba-
bilistic meaning. In particular, all marginal probabilities and many conditional probabilities can be
computed [5]. Consequently an SPN can perform exact inference and does so efficiently when the
size of the SPN is polynomial in the number of variables.

2

If an SPN does represent a probability distribution then we call it a valid SPN; of course, not all
SPNs are valid, nor do they all facilitate efficient, exact inference. However, Poon & Domingos
proved that if the architecture of an SPN follows two simple rules then it will be valid. (Note that
this relationship does not go both ways; an SPN may be valid and violate one or both of these rules.)
This, along with showing that SPNs can represent a broader class of distributions than other models
that allow for efficient and exact inference are the key contributions made by Poon & Domingos.

To understand these rules it will help to know what the “scope of an SPN node” means. The scope
of an SPN node n is a subset of the input variables. This subset can be determined by looking at the
leaf nodes of the subgraph rooted at n. All input variables that have one or more of their associated
leaf nodes in this subgraph are included in the scope of the node. We will denote the scope of n as
scope(n).

The first rule is that all children of a sum node must have the same scope. Such an SPN is called
complete. The second rule is that for every pair of children, (ci, cj), of a product node, there must
not be contradictory leaf nodes in the subgraphs rooted at ci and cj . For example, if the leaf node
corresponding to the variable X taking on value x is in the subgraph rooted at ci, then the leaf nodes
corresponding to the variable X taking on any other value may not appear in the subgraph rooted at
cj . An SPN following this rule is called consistent. The SPN in Figure 2 violates completeness (due
to the short-dashed arrow) and it violates consistency (due to the long-dashed arrow).

An SPN may also be decomposable, which is a property similar to, but somewhat more restrictive
than consistency. A decomposable SPN is one in which the scopes of the children of each product
node are disjoint. All of the architectures described in this paper are decomposable.

Very deep SPNs can be built using these rules as a guide. The number of layers in an SPN can be
on the order of tens of layers, whereas the typical deep model has three to five layers. Recently it
was shown that deep SPNs can compute some functions using exponentially fewer resources than
shallow SPNs would need [6].

The Poon architecture is suited for modeling probability distributions over images, or other domains
with local dependencies among variables. It is constructed as follows. For every possible axis-
aligned rectangular region in the image, the Poon architecture includes a set of m sum nodes, all
of whose scope is the set of variables associated with the pixels in that region. Each of these (non-
single-pixel) regions are conceptually split vertically and horizontally in all possible ways to form
pairs of rectangular subregions. For each pair of subregions, and for every possible pairing of sum
nodes (one taken from each subregion), a product node is introduced and made the parent of the
pair of sum nodes. The product node is also added as a child to all of the top region’s sum nodes.
Figure 3 shows a fragment of a Poon architecture SPN modeling a 2× 3 image patch.

3 Cluster Architecture

As mentioned earlier, care needs to be taken when introducing latent variables into a model. Since
the effect of a latent variable is to help explain the interactions between its child variables [7], it
makes little sense to add a latent variable as the parent of two statistically independent variables.

X Y Z

B

W

A

C

(a)

X Y Z

B

W

A

C

(b)

Figure 4: Latent variables explain the interaction be-
tween child variables, causing the children to be in-
dependent given the latent variable parent. If variable
pairs (W,X) and (Y, Z) strongly interact and other
variable pairs do not, then the PGM in (a) is a more
suitable model than the PGM in (b).

In the example in Figure 4, variables W and
X strongly interact and variables Y and Z
do as well. But the relationship between all
other pairs of variables is weak. The PGM
in (a), therefore, allows latent variable A to
take account of the interaction between W
and X . On the other hand, variable A does
little in the PGM in (b) since W and Y are
nearly independent. A similar argument can
be made about variable B. Consequently,
variable C in the PGM in (a) can be used to
explain the weak interactions between vari-
ables, whereas in the PGM in (b), variable
C essentially has the task of explaining the
interaction between all the variables.

3

In the probabilistic interpretation of an SPN, sum nodes are associated with latent variables. (The
evaluation of a sum node is equivalent to summing out its associated latent variable.) Each latent
variable helps the SPN explain interactions between variables in the scope of the sum nodes. Just as
in the example, then, we would like to place sum nodes over sets of variables with strong interactions.

The Poon architecture takes this principle into account. Images exhibit strong interactions between
pixels in local spatial neighborhoods. Taking advantage of this prior knowledge, the Poon architec-
ture chooses to place sum nodes over local spatial neighborhoods that are rectangular in shape.

There are a few potential problems with this approach, however. One is that the Poon architecture
includes many rectangular regions that are long and skinny. This means that the pixels at each
end of these regions are grouped together even though they probably have only weak interactions.
Some grouping of weakly-interacting pixels is inevitable, but the Poon architecture probably does
this more than is needed. Another problem is that the Poon architecture has no way of explaining
strongly-interacting, non-rectangular local spatial regions. This is a major problem because such
regions are very common in images. Additionally, if the data does not exhibit strong spatially-local
interactions then the Poon architecture could perform poorly.

Our proposed architecture (we will call it the cluster architecture) avoids these problems. Large
regions containing non-interacting pixels are avoided. Sum nodes can be placed over spatially-local,
non-rectangular regions; we are not restricted to rectangular regions, but can explain arbitrarily-
shaped blob-like regions. In fact, the regions found by the cluster architecture are not required to
exhibit spatial locality. This makes our architecture suitable for modeling data that does not exhibit
strong spatially-local interactions between variables.

3.1 Building a Cluster Architecture

As was described earlier, a sum node s in an SPN has the task of explaining the interactions between
all the variables in its scope. Let scope(s) = {V1, · · · , Vn}. If n is large, then this task will likely
be very difficult. SPNs have a mechanism for making it easier, however. Essentially, s delegates
part of its responsibilities to another set of sum nodes. This is done by first forming a partition
of scope(s), where {S1, · · · , Sk} is a partition of scope(s) if and only if

⋃
i Si = scope(s) and

∀i, j(Si∩Sj = ∅). Then, for each subset Si in the partition, an additional sum node si is introduced
into the SPN and is given the task of explaining the interactions between all the variables in Si. The
original sum node s is then given a new child product node p and the product node becomes the
parent of each sum node si.

In this example the node s is analogous to the variable C in Figure 4 and the nodes si are analogous
to the variablesA andB. So this partitioning process allows s to focus on explaining the interactions
between the nodes si and frees it from needing to explain everything about the interactions between
the variables {V1, · · · , Vn}. And, of course, the partitioning process can be repeated recursively,
with any of the nodes si taking the place of s.

This is the main idea behind the algorithm for building a cluster architecture (see Algorithm 1 and
Algorithm 2). However, due to the architectural flexibility of an SPN, discussing this algorithm in
terms of sum and product nodes quickly becomes tedious and confusing. The following definition
will help in this regard.

Definition 1. A region graph is a rooted DAG consisting of region nodes and partition nodes. The
root node is a region node. Partition nodes are restricted to being the children of region nodes and
vice versa. Region and partition nodes have scopes just like nodes in an SPN. The scope of a node
n in a region graph is denoted scope(n).

Region nodes can be thought of as playing the role of sum nodes (explaining interactions among
variables) and partition nodes can be thought of as playing the role of product nodes (delegating
responsibilities). Using the definition of the region graph may not appear to have made things any
simpler, but its benefits will become more clear when discussing the conversion of region graphs to
SPNs (see Figure 5).

At a high level the algorithm for building a cluster architecture is simple: build a region graph
(Algorithm 1 and Algorithm 2), then convert it to an SPN (Algorithm 3). These steps are described
below.

4

Algorithm 1 BuildRegionGraph

1: Input: training data D
2: C ′ ← Cluster(D, 1)
3: for k = 2 to∞ do
4: C ← Cluster(D, k)
5: r ← Quality(C)/Quality(C ′)
6: if r < 1 + δ then
7: break
8: else
9: C ′ ← C

10: G← CreateRegionGraph()
11: n← AddRegionNodeTo(G)
12: for i = 1 to k do
13: ExpandRegionGraph(G,n,Ci)

R1

R3R2 R5R4

(a)

+ +

x xx x x xx x

+ +

x x. . .

+ +

x x. . .

+ +

x x. . .

+ +

x x. . .

R2

P1 P2

R3 R4 R5

R1

(b)

Figure 5: Subfigure (a) shows a region graph fragment con-
sisting of region nodes R1, R2, R3, R4, and R5. R1 has
two parition nodes (the smaller, filled-in nodes). Subfigure
(b) shows the region graph converted to an SPN. In the SPN
each region is allotted two sum nodes. The product nodes
in R1 are surrounded by two rectangles labeled P1 and P2;
they correspond to the partition nodes in the region graph.

Algorithm 1 builds a region graph using training data to guide the construction. In lines 2 through 9
the algorithm clusters the training instances into k clusters C = {C1, · · · , Ck}. Our implementation
uses the scikit-learn [8] implementation of k-means to cluster the data instances, but any clustering
method could be used. The value for k is chosen automatically; larger values of k are tried until
increasing the value does not substantially improve a cluster-quality score. The remainder of the
algorithm creates a single-node region graph G and then adds nodes and edges to G using k calls to
Algorithm 2 (ExpandRegionGraph). To encourage the expansion of G in different ways, a different
subset of the training data, Ci, is passed to ExpandRegionGraph on each call.

At a high level, Algorithm 2 partitions scopes into sub-scopes recursively, adding region and par-
tition nodes to G along the way. The initial call to ExpandRegionGraph partitions the scope of
the root region node. A corresponding partition node is added as a child of the root node. Two
sub-region nodes (whose scopes form the partition) are then added as children to the partition node.
Algorithm 2 is then called recursively with each of these sub-region nodes as arguments (unless the
scope of the sub-region node is too small).

In line 3 of Algorithm 2 the PartitionScope function in our implementation uses the k-means al-
gorithm in an unusual way. Instead of partitioning the instances of the training dataset D into k
instance-clusters, it partitions variables into k variable-clusters as follows. D is encoded as a matrix,
each row being a data instance and each column corresponding to a variable. Then k-means is run
on DT , causing it to partition the variables into k clusters. Actually, the PartitionScope function
is only supposed to partition the variables in scope(n), not all the variables (note its input parame-
ter). So before calling k-means we build a new matrix Dn by removing columns from D, keeping
only those columns that correspond to variables in scope(n). Then k-means is run on DT

n and the
resulting variable partition is returned. The k-means algorithm serves the purpose of detecting sub-
sets of variables that strongly interact with one another. Other methods (including other clustering
algorithms) could be used in its place.

After the scope Sn of a node n has been partitioned into S1 and S2, Algorithm 2 (lines 4 through 11)
looks for region nodes in G whose scope is similar to S1 or S2; if region node r with scope Sr is
such a node, then S1 and S2 are adjusted so that S1 = Sr and {S1, S2} is still a partition of Sn.
Lines 12 through 18 expand the region graph based on the partition of Sn. If node n does not already
have a child partition node representing the partition {S1, S2} then one is created (p in line 15); p is
then connected to child region nodes n1 and n2, whose scopes are S1 and S2, respectively.

Note that n1 and n2 may be newly-created region nodes or they may be nodes that were created dur-
ing a previous call to Algorithm 2. We recursively call ExpandRegionGraph only on newly-created
nodes; the recursive call is also not made if the node is a leaf node (|Si| = 1) since partitioning a
leaf node is not helpful (see lines 19 through 22).

5

Algorithm 2 ExpandRegionGraph

1: Input: region graph G,
region node n in G, training data D

2: Sn ← scope(n)
3: {S1, S2} ← PartitionScope(Sn, D)
4: S ← ScopesOfAllRegionNodesIn(G)
5: for all Sr ∈ S s.t. Sr ⊂ Sn do
6: p1 ← |S1 ∩ Sr|/|S1 ∪ Sr|
7: p2 ← |S2 ∩ Sr|/|S2 ∪ Sr|
8: if max{p1, p2} > threshold then
9: S1 ← Sr

10: S2 ← Sn \ Sr

11: break
12: n1 ← GetOrCreateRegionNode(G, S1)
13: n2 ← GetOrCreateRegionNode(G, S2)
14: if PartitionDoesNotExist(G, n, n1, n2) then
15: p← NewPartitionNode()
16: AddChildToRegionNode(n, p)
17: AddChildToPartitionNode(p, n1)
18: AddChildToPartitionNode(p, n2)
19: if S1 /∈ S ∧ |S1| > 1 then
20: ExpandRegionGraph(G, n1)
21: if S2 /∈ S ∧ |S2| > 1 then
22: ExpandRegionGraph(G, n2)

Algorithm 3 BuildSPN

Input: region graph G, sums per region m
Output: SPN S
R← RegionNodesIn(G)
for all r ∈ R do

if IsRootNode(r) then
N ← AddSumNodesToSPN(S, 1)

else
N ← AddSumNodesToSPN(S, m)

P ← ChildPartitionNodesOf(r)
for all p ∈ P do
C ← ChildrenOf(p)
O ← AddProductNodesToSPN(S, m|C|)
for all n ∈ N do

AddChildrenToSumNode(n, O)
Q← empty list
for all c ∈ C do

//We assume the sum nodes associated
//with c have already been created.
U ← SumNodesAssociatedWith(c)
AppendToList(Q, U)

ConnectProductsToSums(O, Q)
return S

After the k calls to Algorithm 2 have been made, the resulting region graph must be converted to
an SPN. Figure 5 shows a small subgraph from a region graph and its conversion into an SPN;
this example demonstrates the basic pattern that can be applied to all region nodes in G in order
to generate an SPN. A more precise description of this conversion is given in Algorithm 3. In
this algorithm the assumption is made (noted in the comments) that certain sum nodes are inserted
before others. This assumption can be guaranteed if the algorithm performs a postorder traversal of
the region nodes in G in the outermost loop. Also note that the ConnectProductsToSums method
connects product nodes of the current region with sum nodes from its subregions; the children of a
product node consist of a single node drawn from each subregion, and there is a product node for
every possible combination of such sum nodes.

4 Experiments and Results

Poon showed that SPNs can outperform deep belief networks (DBNs), deep Boltzman machines
(DBMs), principle component analysis (PCA), and a nearest- neighbors algorithm (NN) on a difficult
image completion task. The task is the following: given the right/top half of an image, paint in
the left/bottom half of it. The completion results of these models were compared qualitatively by
inspection and quantitatively using mean squared error (MSE). SPNs produced the best results; our
experiments show that the cluster architecture significantly improves SPN performance.

We matched the experimental set-up reported in [2] in order to isolate the effect of changing the
initial SPN architecture and to make their reported results directly comparable to several of our
results. They add 20 sum nodes for each non-unit and non-root region. The root region has one
sum node and the unit regions have four sum nodes, each of which function as a Gaussian over pixel
values. The Gaussians means are calculated using the training data for each pixel, with one Gaussian
covering each quartile of the pixel-values histogram. Each training image is normalized such that
its mean pixel value is zero with a standard deviation of one. Hard expectation maximization (EM)
is used to train the SPNs; mini-batches of 50 training instances are used to calculate each weight
update. All sum node weights are initialized to zero; weight values are decreased after each training
epoch using anL0 prior; add-one smoothing on sum node weights is used during network evaluation.

6

Table 1: Results of experiments on the Olivetti, Cal-
tech 101 Faces, artificial, and shuffled-Olivetti datasets
comparing the Poon and cluster architectures. Negative
log-likelihood (LLH) of the training set and test set is re-
ported along with the MSE for the image completion re-
sults (both left-half and bottom-half completion results).

Dataset Measurement Poon Cluster
Olivetti Train LLH 318 ± 1 433 ± 17

Test LLH 863 ± 9 715 ± 31
MSE (left) 996 ± 42 814 ± 35
MSE (bottom) 963 ± 42 820 ± 38

Caltech Train LLH 289 ± 4 379 ± 8
Faces Test LLH 674 ± 15 557 ± 11

MSE (left) 1968 ± 89 1746 ± 87
MSE (bottom) 1925 ± 82 1561 ± 44

Artificial Train LLH 195 ± 0 169 ± 0
Test LLH 266 ± 4 223 ± 6
MSE (left) 842 ± 51 558 ± 27
MSE (bottom) 877 ± 85 561 ± 29

Shuffled Train LLH 793 ± 3 442 ± 14
Test LLH 1193 ± 3 703 ± 14
MSE (left) 811 ± 11 402 ± 16
MSE (bottom) 817 ± 17 403 ± 17

Figure 6: A cluster-architecture SPN
completed the images in the left col-
umn and a Poon-architecture SPN com-
pleted the images in the right column.
All images shown are left-half comple-
tions. The top row is the best results as
measured by MSE and the bottom row
is the worst results. Note the smooth
edges in the cluster completions and the
jagged edges in the Poon completions.

We test the cluster and Poon architectures by learning on the Olivetti dataset [9], the faces from the
Caltech-101 dataset [10], an artificial dataset that we generated, and the shuffled-Olivetti dataset,
which the Olivetti dataset with the pixels randomly shuffled (all images are shuffled in the same
way). The Caltech-101 faces were preprocessed as described by Poon & Domingos. The cluster
architecture is compared to the Poon architectures using the negative log-likelihood (LLH) of the
training and test sets as well as the MSE of the image completion results for the left half and bottom
half of the images. We train ten cluster architecture SPNs and ten Poon architecture SPNs. Average
results across the ten SPNs along with the standard deviation are given for each measurement.

On the Olivetti and Caltech-101 Faces datasets the Poon architecture resulted in better training set
LLH, but the cluster architecture generalized better, getting a better test set LLH (see Table 1). The
cluster architecture was also clearly better at the image completion tasks as measured by MSE.

The difference between the two architectures is most pronounced on the artificial dataset. The
images in this dataset are created by pasting randomly-shaded circle- and diamond-shaped image
patches on top of one another (see Figure 6), ensuring that various pixel patches are statistically
independent. The cluster architecture outperforms the Poon architecture across all measures on this
dataset (see Table 1); this is due to its ability to focus resources on non-rectangular regions.

To demonstrate that the cluster architecture does not rely on the presence of spatially-local, strong
interactions between the variables, we repeated the Olivetti experiment with the pixels in the images
having been shuffled. In this experiment (see Table 1) the cluster architecture was, as expected,
relatively unaffected by the pixel shuffling. The LLH measures remained basically unchanged from
the Olivetti to the Olivetti-shuffled datasets. (The MSE results did not stay the same because the
image completions happened over different subsets of the pixels.) On the other hand, the perfor-
mance of the Poon architecture dropped considerably due to the fact that it was no longer able to
take advantage of strong correlations between neighboring pixels.

Figure 7 visually demonstrates the difference between the rectangular-regions Poon architecture and
the arbitrarily-shaped-regions cluster architecture. Artifacts of the different region shapes can be
seen in subfigure (a), where some regions are shaded lighter or darker, revealing region boundaries.
Subfigure (b) compares the best of both architectures, showing image completion results on which
both architectures did well, qualitatively speaking. Note how the Poon architecture produces results
that look “blocky”, whereas the cluster architecture produces results that are smoother-looking.

7

(a) (b)

Figure 7: The completion results in subfigure (a) highlight the difference between the rectangular-
shaped regions of the Poon architecture (top image) and the blob-like regions of the cluster archi-
tecture (bottom image), artifacts of which can be seen in the completions. Subfigure (b) shows
ground truth images, cluster-architecture SPN completions, and Poon-architecture SPN completions
in the left, middle, and right columns respectively. Left-half completions are in the top row and
bottom-half completions are in the bottom row.

Table 2: Test set LLH values for the Olivetti, Olivetti45, and Olivetti4590 datasets for different
values of k. For each dataset the best LLH value is marked in bold.

Dataset / k 1 2 3 4 5 6 7 8
Olivetti 650 653 671 685 711 716 717 741
Olivetti45 523 495 508 529 541 528 544 532
Olivetti4590 579 576 550 554 577 595 608 592

Algorithm 1 expands a region graph k times (lines 12 and 13). The value of k can significantly affect
test set LLH, as shown in Table 2. A value that is too low leads to an insufficiently powerful model
and a value that is too high leads to a model that overfits the training data and generalizes poorly.

A singly-expanded model (k = 1) is optimal for the Olivetti dataset. This may be due in part to the
Olivetti dataset having only one distinct class of images (faces in a particular pose). Datasets with
more image classes may benefit from additional expansions. To experiment with this hypothesis
we create two new datasets: Olivetti45 and Olivetti4590. Olivetti45 is created by augmenting the
Olivetti dataset with Olivetti images that are rotated by −45 degrees. Olivetti4590 is built similarly
but with rotations by−45 degrees and by−90 degrees. The Olivetti45 dataset, then, has two distinct
classes of images: rotated and non-rotated. Similarly, Olivetti4590 has three distinct image classes.
Table 2 shows that, as expected, the optimal value of k for the Olivetti45 and Olivetti4590 datasets
is two and three, respectively.

Note that the Olivetti test set LLH with k = 1 in Table 2 is better than the test set LLH reported in
Table 1. This shows that the algorithm for automatically selecting k in Algorithm 1 is not optimal.
Another option is to use a hold-out set to select k, although this method may not not be appropriate
for small datasets.

5 Conclusion

The algorithm for learning a cluster architecture is simple, fast, and effective. It allows the SPN
to focus its resources on explaining the interactions between arbitrary subsets of input variables.
And, being driven by data, the algorithm guides the allocation of SPN resources such that it is able
to model the data more efficiently. Future work includes experimenting with alternative cluster-
ing algorithms, experimenting with methods for selecting the value of k, and experimenting with
variations of Algorithm 2 such as generalizing it to handle partitions of size greater than two.

8

References

[1] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural Computation, 18:1527–1554, July 2006.

[2] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In
Proceedings of the Twenty-Seventh Annual Conference on Uncertainty in Artificial Intelligence
(UAI-11), pages 337–346, Corvallis, Oregon, 2011. AUAI Press.

[3] Ryan Prescott Adams, Hanna M. Wallach, and Zoubin Ghahramani. Learning the structure
of deep sparse graphical models. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, 2010.

[4] Nevin L. Zhang. Hierarchical latent class models for cluster analysis. Journal of Machine
Learning Research, 5:697–723, December 2004.

[5] Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the
ACM, 50:280–305, May 2003.

[6] Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks. In Advances
in Neural Information Processing Systems 24, pages 666–674. 2011.

[7] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[9] F.S. Samaria and A.C. Harter. Parameterisation of a stochastic model for human face identi-
fication. In Proceedings of the Second IEEE Workshop on Applications of Computer Vision,
pages 138 –142, Dec 1994.

[10] Li Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In IEEE CVPR
2004, Workshop on Generative-Model Based Vision, 2004.

9

