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Abstract 
 
This paper studies the performance of standard 
architecture selection strategies, such as 
cost/performance and CV based strategies, for 
voting methods such as bagging.  It is shown that 
standard architecture selection strategies are not 
optimal for voting methods and tend to 
underestimate the complexity of the optimal 
network architecture, since they only examine the 
performance of the network on an individual basis 
and do not consider the correlation between 
responses from multiple networks.   
 
 

1   Introduction 
 
There are several well-known methods for 
combining the predictions of multiple classifiers in 
order to obtain a single prediction.  These include 
Bayesian methods [16], bagging [6], boosting[13], 
and other voting methods [19].  However, little 
work has been done on the problem of model 
selection when using these methods.  This paper 
examines the problem of selecting an appropriate 
neural network architecture when using bagging 
and other voting methods to combine the 
predictions of multiple neural networks.  We show 
that standard architecture selection strategies do 
not always select optimal neural network 
architectures for such methods.   
 
Section 2 discusses voting methods and the 
problem of selecting an optimal network 
architecture for such methods.  Section 3 discusses 
related work in the field of architecture selection.  
Section 4 gives experimental results, and section 5 
gives the conclusion. 
 
 

 
2   Architecture Selection for Voting Methods 
 
Neural network architecture selection strategies 
studied in the literature have focused on choosing 
the single best performing architecture from a 
group of architectures, generally using some kind 
of cost/performance tradeoff or the performance 
of the network on a holdout set as the selection 
criteria.  Under certain assumptions, these 
architecture selection criteria can be shown to be 
optimal.  However, such performance measures 
are only optimal in the case where a single 
network is to be used as the final predictor, and 
are not optimal for the architecture selection 
problem when using bagging or other voting 
methods to combine the predictions of several 
neural networks.  From a Bayesian standpoint, 
the optimal prediction is obtained by calculating 
a weighted average of all possible network 
architectures and all possible weight settings for 
those architectures, where each network is 
weighted by its posterior probability.  From a 
purely Bayesian standpoint, any architecture 
selection strategy which chooses a single 
network architecture using a cost/performance 
tradeoff is sub-optimal, since it entirely ignores a 
large number of possible architectures that could 
significantly impact the solution. 
 
Obviously, the calculation of this weighted 
average is computationally infeasible, however, 
the optimal prediction can be approximated in a 
number of different ways.  Bagging, which can 
be viewed as an approximation to the Bayes 
optimal solution, generates a prediction by 
calculating a weighted average of several 
predictors.  With bagging, the weight is usually 
set to 1 for each predictor, which amounts to the 
assumption that all of the predictors are equal-
probable from a Bayesian standpoint.  This 
assumption is not unreasonable since the 
predictors are often not likely to greatly differ in 

mailto:timothyandersen@yahoo.com


in IEEE International Joint Conference on Neural Networks IJCNN’01, pp. 790-795, 2001. 

 
their posterior probabilities, and it may be difficult 
to accurately estimate the true, relative a-priori 
probabilities. 
 
Bagging and other voting methods work best when 
the errors between the various predictors are 
uncorrelated, and the correct responses between the 
predictors are correlated.  Generally speaking, very 
simple predictors tend to have both correlated 
errors and correlated correct responses.  For 
example, one of the simplest ways to formulate a 
predictor is to always predict the majority class of 
the training set.  Obviously, using multiple such 
predictors cannot increase classification accuracy, 
since the errors (and correct responses) of such 
predictors are 100 percent correlated.  As the 
complexity of the predictors is increased, the 
correlation between the responses of the predictors 
tends to decrease.  This is because with increasing 
complexity there is a corresponding  increase in the 
number of different solutions (minimum error for 
the training set) that the predictor can produce. 
 
Since bagging and other voting methods work best 
when the correct responses between predictors are 
correlated and the incorrect responses are 
uncorrelated, when bagging or other voting 
methods are used to combine the results of multiple 
networks the goal for neural network architecture 
selection is to choose the network architecture 
which maximizes the correlation between multiple 
trained copies of the network when the networks 
are producing the correct response, and minimizes 
the correlation between the networks on incorrect 
responses.  So, the network architecture which 
maximizes a cost/performance tradeoff, or even 
that performs the best on a holdout set, is not 
guaranteed to be the best architecture for bagging, 
since it does not examine this correlation.   
 
 There are a number of factors that can influence 
the choice of the appropriate network architecture 
for voting methods such as bagging.  These include 
but are not limited to: 
 

• Number of bagged predictors  
• Number of training examples 
• Underlying problem domain 
• Idiosyncrasies of the training algorithm 

 
For example, lowering the number of training 
examples is likely to require lowering the 
complexity of the network architecture in order to 
achieve optimal performance.  It is also possible 
that increasing the number of predictors “in the 
bag” may allow for a corresponding increase in the 

complexity of the network architectures being 
bagged.   
 

3   Related Work in Architecture Selection 
 
There have been a number of different 
architecture selection strategies studied in the 
literature.  These strategies are all ultimately 
based on either the use of a holdout set or a 
cost/performance tradeoff to determine the 
‘optimal’ network architecture.  These strategies 
include the following: 
 
Network Construction Algorithms 
 The majority of network construction 
methods start from a very simple basis, usually 
one node, and add nodes and connections as 
needed in order to learn the training set.  These 
strategies include Cascade Correlation [8], 
DNAL [4], Tiling [14], Extentron[3], Perceptron 
Cascade [7], the Tower and Inverted Pyramid 
algorithms [10], and DCN [17].  Other 
construction algorithms include Meiosis [11] and 
node splitting (Wynne-Jones 1992). 
 One of the drawbacks of most current 
MLP construction algorithms is that they do not 
have built in mechanisms to prevent the network 
from overlearning, rather treating this important 
subject as an afterthought.  For example, Burgess 
states that "for good generalization it is necessary 
to restrict the size of the network to match the 
task," [7] but no specific algorithm is presented 
on how to do so.  Left uncontrolled, all of these 
methods will suffer from over learning, and so in 
some respects they do not avoid the architecture 
selection problem but must utilize some type of 
architecture selection strategy (such as CV or 
MDL based strategies) in an attempt to avoid 
over learning.  This is due to the fact that, left 
uncontrolled, the network structure can grow to 
fit the training set data exactly.  But with many 
problems the training data may contain noise that 
will cause the algorithm to perform worse if the 
noisy instances are memorized.  Also, the 
network can grow to the point that the amount of 
training data is insufficient to properly constrain 
the network weights.   
 
Early Stopping 
 Early stopping strategies [1,9,18,23] 
utilize overly complex network architectures.  
One of the main advantages of using a network 
that is more complex than is actually needed is 
that larger networks tend to have fewer local 
minima in the error surface.  However, with a 
larger network there is a higher likelihood that 
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over learning will occur.  In other words, larger 
network architectures are more likely to converge 
to a lower training set error, but often tend to 
produce higher error on non-training examples.  In 
order to avoid this, early stopping strategies try to 
determine when the network has been trained 
sufficiently to do well on the problem but has not 
yet over learned (or memorized) the training data.  
One way to do this is to occasionally test the 
performance of the network on a holdout set and 
stop training when the performance on the holdout 
set begins to degrade. 
 
Cross Validation (CV) 
 CV is often used to select an optimal 
architecture from amongst a set of available 
network architectures.  In a comparison of CV with 
two other MLP architecture selection strategies in a 
recent paper [20] CV was found to be the best at 
choosing the optimal network architecture, at least 
on the data sets tested.  However, the comparison 
was based on only a single type of artificial data 
and did not look at any real world problem 
domains.   
 In a larger study CV was found to not 
perform well when selecting an optimal 
architecture from a large set of relatively similar 
architectures [2].  Several strategies are suggested 
which can be applied when using CV based MLP 
architecture selection to significantly improve the 
performance CV based architecture selection. 
 
Weight Decay 
 Weight decay adds a penalty term to the 
error function that favors smaller weights [5, 12].  
The rate of weight decay is often chosen by 
training several different networks with different 
rates of decay and then using CV to estimate which 
rate is optimal.   
 
Network Pruning 
 Pruning techniques start with an overly 
large network and iteratively prune connections 
that are estimated to be unnecessary.  CV is often 
used to assist in the estimation process.  The 
pruning can take place during the training process 
or training cycles can be alternated with pruning 
cycles.  Pruning strategies include Optimal Brain 
Damage [21], Skeletonization [15], and Optimal 
Brain Surgeon [22].   
 
 

4   Experiments and Results 
 
Experiments were conducted several data sets in 
order to empirically determine the efficacy of 

cost/performance tradeoff and CV based methods 
in determining the optimal network architecture 
for bagging.   The real world data sets were 
obtained from the UC Irvine machine learning 
database repository. 
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Figure 1.  Breast Cancer Wisconsin and Bagging. 
 
For the results reported in this paper the 
complexity level of the tested network 
architectures ranges from 2 to 20 hidden nodes 
arranged in a single hidden layer of a fully 
connected network.  In order to determine the 
best architecture for bagging, 30 sets of network 
weights are trained for each complexity level in 
this range, and the performance of the 30 bagged 
networks is evaluated for each of the network 
architectures.  The performance and complexity 
level of the best architecture for bagging is then 
compared against bagging’s performance and 
complexity level using the network architecture 
chosen by Akaike’s information based measure 
(AIC), and with the architecture selected by CV. 
 
Figure 1 shows the test set results of the bagged 
networks for each of the network architectures 
tested on the Breast Cancer Wisconsin data set.  
This data set is interesting because it shows a 
significant general upward trend in test set 
accuracy as the complexity of the bagged 
networks is increased.  However, there is not a 
significant upward trend in the test set scores of 
the networks taken individually (nor in the 
training set scores), as can be seen in figure 2.  
Because of this, architecture selection strategies 
which only examine the performance of the 
individual networks, such as most 
cost/performance measures and  also CV based 
measures, are unlikely to find the optimal 
architecture for bagging for this particular 
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problem.  Indeed, for this particular problem the 
AIC criteria chooses the simplest network 
architecture, which has a bagged network 
performance which is significantly worse than the 
best performance of the tested architectures (95.9% 
vs 96.9% on the test set). 
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Figure 2.  Breast Cancer Wisconsin - no Bagging. 
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Figure 3.  AIC vs holdout vs optimal test set 

accuracy. 
 
Figure 3 shows the test set performance of AIC vs 
CV for selecting the network architecture for 
bagging, and compares this against the ‘optimal’ 
network architecture for bagging.  On average, the 
AIC criteria is significantly worse than using CV to 
choose an architecture for bagging, and both 
generally fail to pick the optimal network 
architecture for these problems.   
Both AIC and CV significantly underestimate the 

complexity of the best architecture for bagging 
for these problems, as can be seen in figure 4, 
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Figure 4.  Average complexity of chosen 
architecture for each problem. 

 
with AIC on average choosing a network with 4 
hidden nodes and CV choosing an architecture 
with 6 hidden nodes, with the optimal network 
architecture for bagging containing (on average) 
14 hidden nodes. 
 
      
 

5   Conclusion 
 
The experimental results show that, for the 
problems tested in this paper, the optimal 
network architecture for bagging (and  by 
extension other voting methods) is more complex 
than the network architecture chosen by 
cost/performance tradeoff methods such as MML 
and MDL, and also more complex than the 
network architecture chosen by CV based 
methods which only examine the performance of 
individual networks.  We have argued that this 
empirical result will hold for most learning 
problems, since these strategies are only 
designed to identify the optimal network 
architecture if a single network will be used as 
the final predictor.  When multiple networks are 
combined using a voting method, then these 
strategies tend to underestimate the complexity 
of the optimal network architecture since they 
cannot estimate the degree to which the 
responses of the different network architectures 
will be correlated, and this estimate is critical in 
the determination of the optimal network 
architecture for voting methods.   
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The factors which may affect the optimal 
complexity for bagging and other voting based 
methods include the number predictors that will b e 
voted, the number of training examples, the 
underlying problem domain, and idiosyncrasies of 
the training algorithm.  Future work will focus on 
studying the effects of each of these factors, as well 
as developing a systematic methodology for 
selecting the optimal network architecture for 
voting methods. 
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