
Generating a Novel Sort Algorithm using Reinforcement
Programming

Spencer K. White, Tony Martinez and George Rudolph

Abstract— Reinforcement Programming (RP) is a new ap-
proach to automatically generating algorithms, that uses rein-
forcement learning techniques. This paper describes the RP ap-
proach and gives results of experiments using RP to generate a
generalized, in-place, iterative sort algorithm. The RP approach
improves on earlier results that that use genetic programming
(GP). The resulting algorithm is a novel algorithm that is more
efficient than comparable sorting routines. RP learns the sort
in fewer iterations than GP and with fewer resources. Results
establish interesting empirical bounds on learning the sort
algorithm: A list of size 4 is sufficient to learn the generalized
sort algorithm. The training set only requires one element and
learning took less than 200,000 iterations. RP has also been
used to generate three binary addition algorithms: a full adder,
a binary incrementer, and a binary adder.

I. INTRODUCTION

Reinforcement Programming (RP) is a new technique to
automatically generate algorithms. This paper introduces RP
by showing how RP can be used to solve the task of learning
an iterative in-place sorting algorithm. Some comaprisons
with earlier work by Kinnear [1], [2], which used genetic
programming (GP), are made. Experiments show that RP
generates an efficient sorting algorithm in fewer iterations
than GP. The learned algorithm is a novel algorithm, and is
more efficient than the sort learned by GP.

Perhaps the most important result gives practical bounds
on the empirical complexity of learning in-place, iterative
sorts. Using RP, we found empirically that:

• a 4-element list is sufficient to learn an algorithm that
will sort a list of any size,

• the smallest training set requires only one list: the list
sorted in reverse order, and

• RPSort learns in less than 200,000 iterations, 90% of
the time.

This reduces the empirical complexity of learning an in-
place iterative sort to about the same complexity as learning
TicTacToe.

This paper assumes that the reader is familiar with Rein-
forcement Learning (RL), the Q-Learning algorithm [3], [4],
[5], with GP and with Genetic Algorithms (GAs).

Both RL and GAs attempt to find a solution through a
combination of stochastic exploration and the exploitation of
the properties of the problem. The difference between RL

Spencer White may be contacted at 27921 NE 152nd St. Duvall, Wash-
ington, USA, 98019 (email: Skwhite314@gmail.com).

Tony Martinez is with the Computer Science Department, Brigham Young
University, Provo, Utah, USA 84602 (email: martinez@cs.byu.edu).

George Rudolph is with the Department of Mathematics and Computer
Science, The Citadel, Charleston, South Carolina, USA 29409 (email:
george.rudolph@citadel.edu).

and GA lies in the problem formulation and the technique
used to solve the problem. Similarly, RP and GP both use
stochastic exploration combined with exploitation, but the
techniques and program representations differ dramatically.

GAs [6] [7], [8], [9] model Darwinian evolution to opti-
mize a solution to a given problem. GP uses GAs to generate
programs in an evolutionary manner, where the individuals in
a population are complete programs expressed as expression
trees.

In typical Reinforcement Learning (RL) [10], [11], [12],
[13], [14], an agent is given a collection of states and a
transition function with an associated reward/cost function.
Often, there are one or more goal states. The objective
of the agent is to learn a policy, a sequence of actions
that maximizes the agent’s reward. RP uses reinforcement
learning algorithms, where the policy being learned is an
executable program. The policy is formulated so that it can
be translated directly into a program that a computer can
execute.

It is well-known that Reinforcement Learning (RL) has
been used successfully in game playing and robot control
applications [4], [5]. Like GP, one of the aims of RP is to
extend automatic program generation to problems beyond
these domains.

The RPSort algorithm uses a dynamic, non-deterministic
Q-Learning algorithm with episodic training to learn the sort
algorithm. We formulate the problem in terms of states,
actions/transitions, rewards and goal states. A training set
comprised of sample inputs and their corresponding outputs
are given to the system. The system then learns a policy that
maps the sample inputs to their corresponding outputs. This
policy is formulated such that it can be directly executed
as a computer program. By properly formulating the state
representation, the generated program can generalize to new
inputs.

The RP version of Q-Learning is dynamic in two ways.
The algorithm starts with one, or a few, start states, and
grows (state, action, Q-value) pairings as needed during
learning. Empirically, this strategy results in a much smaller
representation than a fixed table that contains q-values for all
possible (state-action) pairs. Once a correct policy has been
learned, a pruning algorithm is used to delete unneeded states
from the representation, thus optimizing the learned policy.

RP techniques have been used to generate code for more
than just sorting: a full adder, a binary incrementer, and a
binary adder [15]. This paper focuses on a sorting algorithm,
however.

Section II reviews Kinnear’s technique for using GP to

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c�2010 IEEE 2633

learn a generalized in-place iterative sorting algorithm. Sec-
tion III discusses RP concepts. Section IV describes training
the RP system to generate RPSort. Section V describes
results of experiments with RPSort, compares those results to
Kinnear’s earlier GP results, and briefly describes results for
the binary addition algorithms. Section VI is the conclusion.

II. A REVIEW OF GP-GENERATED SORTS

Genetic Programming most commonly involves using ge-
netic algorithms to modify a population of expression trees,
where each individual tree is an executable program. [16],
[17]. This functional approach to program structure and
behavior is powerful and elegant. The set of usable functions
is limited only by what can be represented as a function. The
tree structure allows a GP to represent arbitrarily complex
programs in a uniform way, and execute them in Functional
languages such as LISP.

Kinnear chose functions and terminals for his GP system
that narrowed the focus of his experiments to evolving in-
place iterative sorting algorithms (algorithms that only use a
small number of iterator variables and the computer memory
already occupied by the list). Recursive sorts and non-in-
place iterative sorts were not treated. In an effort to decrease
the size of the resulting programs, Kinnear included a size
penalty in his fitness function. The deeper a program tree is,
the less fit the program is considered to be. A strong enough
penalty is sufficient to ensure that a program will be simple
enough to be general.

The ”most fit” sort Kinnear’s system generated was a
BubbleSort. Obviously, it is general enough to sort any size
list, but it is inefficient for large lists. There are several
other problems as well. First, Kinnear’s experiments failed
to always produce a general sorting algorithm without severe
complexity penalties. Second, many different programs had
to be evaluated during each iteration. Third, the program
trees had a tendency to grow large very rapidly, hurting gen-
eralization and increasing complexity. RP overcomes these
issues.

III. STATES, ACTIONS, TRANSITIONS AND REWARDS

This section briefly describes the states, actions, transitions
and rewards used for RPSort.

A. States

Figure 1 shows an example of a state for RPSort. The state
is divided into two parts, data-specific and RP-specific. The
data-specific portion contains the training instance and any
variables being used. It corresponds roughly to the ”external
environment” or agent inputs. The RP-specific portion con-
tains relationships between the data and variables that allow
generalization. In RPSort, the relationships and constraints
contained in the RP-specific portion of the state translate
into the conditionals that handle program control flow. The
RP-specific portion of each state corresponds roughly to a
portion of an agent’s internal state.

The data-specific portion of the state contains the list being
sorted, the length of the list (len) three variables, i, j, k. i and

Fig. 1. An example state structure for RPSort.

j are both bound variables. k is a free variable. A variable
that directly references the input, or has an explicit purpose
is called a bound variable. A free variable has no predefined
purpose. We included free variables in our experiments in
order to see what the system would do with them as it
learned.

The RP-specific portion of the state contains a set of
Boolean flags and the last action performed. The Boolean
flags are: whether i = 0, j = 0, k = 0, i < j, i > j, i =
len, j = len, k = len, and list[i] > list[j]. The list is
indexed as a 0-based array, (0 to len − 1). If i = len or
j = len, then as a default relationship list[i] <= list[j]
to avoid out-of-bounds array errors. Including the action in
the state, as a practical matter, also simplifies the process
of associating (state,action) pairs with q-values and rewards
during training.

Two states are equivalent if and only if the RP-specific por-
tions of the two states are the same. The data-specific portion
is not used when determining if two states are equivalent to
each other. This distinction is what allows generalization–one
RP-specific state can represent many possible states.

B. Actions, Transitions and Rewards

Table I lists the actions for RPSort, which were chosen to
be as primitive as possible. A NOOP action is provided as a
starting ”last state” for the initial state. Some restrictions are
put on what actions can be chosen, depending on the current
state. If any of the three variables i, j, k are equal to len,
they can not be incremented. This is to avoid out-of-bound
array errors.

Only two actions give immediate rewards, TERMINATE
and SWAP. Any state in which the last action performed is
TERMINATE is a potential goal state. There is a reward
for terminating when the list is sorted, and a penalty for
terminating when the list is unsorted. The system checks a
list to see if it is sorted only when TERMINATE is taken.
The actual sorting algorithm does not use this check in any
way. A sorting algorithm is not required in order to determine
if the list is sorted. It is only necessary to check that each
pair of adjacent elements is in ascending order.

SWAP gives a reward of 10 if i < len, j < len, i < j,
and the two swapped elements are sorted with respect to each
other after the swap. In other words, a reward was given for
finding a sub-solution. Any other SWAP incurs a penalty of -
10. This strategy rewards swaps that progress the list towards
a solution, and penalizes swaps that have no effect, result in
an out-of-bounds array error, or move the list away from

2634

TABLE I

ACTIONS AND REWARDS USED IN RPSORT.

Action Reward Penalty Description

NOOP 0 0 Initial ”last action” only.
TERMINATE 100 -100 End.
INCI 0 0 Increments i

INCJ 0 0 Increments j

INCK 0 0 Increments k

SETIZERO 0 0 Set i = 0
SETJZERO 0 0 Set j = 0
SETKZERO 0 0 Set k = 0
SWAP 10 -10 Swaps the values in list[i] and list[j]

being sorted.
This set of actions is more primitive than those used by

Kinnear. There are no explicit ”order” instructions, only the
ability to swap two elements. The only explicit iteration is
the main while-loop that repeatedly executes the policy. Any
iteration in the generated sorting algorithm is learned by the
system.

When an action is executed, it causes a state transition, or
a change in state. A state transition may lead to the creation
of a new state, a state that has already been visited, or back to
the same state (as defined by RP state equivalence). As state
transitions are explored, the probability distribution for the
state transitions is constructed, including adding new states
over time.

Fig. 2. An example state transition for RPSort.

Fig. 3. SWAP modifies the training list.

Figure 2 demonstrates a state transition. The arrow in-
dicates the transition, and the label on the arrow indicates
the action performed. Recall that since the list is indexed
starting at 0, i=2 references the third element in the list, and
j=3 references the fourth. Figure 3 demonstrates the way
an action can affect the training instance. Note that in the
case of RPSort, SWAP is the only action that modifies the
list during training. This is similar to how a robot might
modify the environment, or a player agent might modify the
game state during a game. As above, the arrow indicates a
transition and the label above the arrow indicates the action.

Assigning rewards does not require any knowledge of what
the solution to the task ought to be. It only requires knowing
whether a particular action is desirable in a particular state.

IV. TRAINING FOR RPSORT

RPSort is the group of algorithms developed by RP to
sort lists of arbitrary size. The programs produced by RP for
sorting generally have the same structure, with minor control
differences resulting from the different random walks the
system takes during each execution. As discussed previously,
the actual resulting programs are dependent on the actions
and state representation chosen for the system. This section
discusses the training algorithms, training data, and example
training scenarios.

TABLE II

SYMBOLS USED IN Q-LEARNING ALGORITHM.

Q(s, a) current Q-value for state-action pair
(s, a)

Q̂(s, a) updated Q-value for state-action pair
(s, a)

α a decaying weight, where

an =
1

1 + visitsn(s, a)
visitsn(s, a) the number of times state-action pair

(s, a) has been visited during learning
γ discount factor
ri the i-th reward for performing action a

in state s

p(ri|s, a) the probability of receiving reward ri

when taking action a in state s

p(sj |s, a) the probability of transitioning to state
sj from state s when taking action a

σ a rate of decay on the effect of visits
to a state-action pair

πn the policy executed by the system at
time step n

RPSort uses episodic, dynamic, non-deterministic, delayed
Q-Learning for training. The goal of learning is to learn the
optimal policy, then translate that policy into a high-level
language. This differs from typical Q-Learning applications,
where the goal is to learn the optimal policy and then execute
that fixed policy. Table II defines the symbols used in the
equations that describe policy execution and learning.

2635

π∗ = argmaxa(Q(s, a)) (1)

(1) expresses policy execution mathematically: In a given
state s, choose the action a with the highest q-value and
execute it. As with other applications where there are goal
states, policy execution stops when the system reaches a goal
state, rather than continuing forever.

Q̂(s, a)← (1− α)Q(s, a) + α[
�

i

(p(ri|s, a)ri

+ γ
�

j

p(sj |s, a)argmaxa�Q(sj , a
�)] (2)

(2) is used to update Q-values during learning. The version
given here is a probabilistic form of the update equation, such
as those given in [4].

Algorithm 1 gives the episodic training algorithm used
for RPSort and other RP-based algorithms. Algorithm 2 is
the learning/update algorithm for RP. This algorithm is an
expansion of line 12 in Algorithm 1.

Algorithm 1: Episodic training algorithm for RP.
Let T be the full training set;
Let X be a subset of T;
while at-least-one-list-fails and iteration < 100000 do

Add one (state, action, Q-value) triple, per action, to the
Q-table for each list in the training set, if the triple does
not exist;
while notMaxedOut = true do

iteration← iteration + 1;
notMaxedOut← false;
for each list L in X do

initialize start state s with L;
learn (L,Q-table,...,);

if s.visits < 100000 then
notMaxedOut← true;

for each list L in X do
Execute the current policy to see if it will sort the list
correctly;
if any L fails to sort then

at-least-one-list-fails ← true;
if at-least-one-list-fails = false then

for each list L in T do
Execute the current policy to see if it will sort the list
correctly.;
if any L fails to sort then

at-least-one-list-fails ← true;
if iteration > 1000000 then

Indicate a failure to converge;

Because the algorithm dynamically adds states during
learning, this algorithm is different than an algorithm that
uses a fixed table predefined values. If the current state has
no known ”best-so-far” policy, or if the ”best-so-far” policy
has a negative Q-value, an action is chosen at random (each
action chosen with equal probability) and tested. Otherwise,
the action with the highest Q-value is executed 50% of the
time. The other 50% of the time an action is chosen at
random. These parameters for exploration/exploitation allow

Algorithm 2: The delayed Q-Learning algorithm for RP.
Let X be a list from the training set;
iteration← 0;
Initialize s with X;
while (s.lastAction �= TERMINATE) and
(iteration < 1000) do

if (s.lastAction = NOOP) or (highest Q-value for any
action < 0) or (random number > ExploreThreshold)
then

Choose random action a;
else

Choose action a with highest Q-value;
s
� ← Execute a on s;

update Q(s, a);

if s.visits <
MaxV isits

2
then

return;
iteration← 0;
Initialize s with list X;
while (s.lastAction �= TERMINATE) and
(iteration < 2000) do

Choose action a with highest Q-value ;
s
� ← Execute a on s;

update Q(s, a);

for a lot of exploration, but still permit enough exploitation
as to truly evaluate the policy.

Values for γ, the rewards and penalties were determined
empirically. The ratio of the reward and penalty is more
important than their actual values (i.e. reward/penalty gave
exactly the same results as (10*reward)/(10*penalty)). In
other experiments, non-zero rewards were held constant, but
γ and the penalties were varied. A γ value of 0.6 to 0.9
with a penalty of -160 to -180 leads to convergence the most
often. That is, 90% to 95% of the time, convergence occurred
within 200,000 iterations.

Generating training data is simple. A list length is provided
(len) as input, and an exhaustive set of lists is created (all
possible permutations of the numbers 1 to len). These lists
are ordered lexicographically. Experiments to determine the
size of len, and a minimal training set, needed to achieve a
generalized sort are discussed in section V.

Generating all permutations of a very large lists is compu-
tationally prohibitive. The training set of lists initially starts
out with the backwards list–the list sorted in descending
order–which is also the last list in the lexicographical order-
ing. From the standpoint of sorting in ascending order, this
list is the most unsorted list. All other lists can be reached
from the backwards list using swaps that lead towards a
solution. Using other lists risks not reaching all possible
states, and will potentially require retraining with additional
lists. Using just the backwards list typically results in a
generalized sort without the need for additional lists. At each
iteration, each list in the training set is used in the system.
Training of the system proceeds for 200,000 iterations. Over
90% of the time the system converged to a solution within
that number of iterations. As a test, the resulting policy is
used to try to sort all of the lists in the exhaustive set in

2636

lexicographical order. If a list is found that cannot be sorted
by the policy, that list is added to the training set, testing
is stopped, and training begins again. This repeats until all
the lists in the exhaustive set can be sorted. The reason
for this method is to use a minimal training set. Having
a minimal training set decreases the number of evaluations
needed, especially if the length of the list is large.

When it comes time to convert the learned policy to
a program, the RP-specific portions of each state become
the conditionals that control the program, providing the
information required to execute the correct sequence of
functions to accomplish the goal. Not all states that are
learned will be visited during execution of the program
after training. This observation allows for some pruning and
program simplification.

The pruning algorithm is straightforward. For each list in
the training set, execute the policy, and mark each state that is
visited. After all lists have been presented, delete all unvisited
states. The remaining states constitute the pruned policy.

V. RESULTS

This section describes the results obtained from experi-
ments with an implementation of the RP system. The size of
the training set is described. Then the learned policy is pre-
sented. The automatically generated decision tree is shown.
An average-case comparison between the learned sorting
algorithm and other common sorting algorithms is shown.
Finally, a comparison between GP and RP for developing a
sort is given.

A. The Complexity of Learning

The most interesting and surprising result of our experi-
ments with RP have to do with training and the complexity
of generating a generalized sort algorithm. Specifically, the
length of list required for learning, the number of lists in
the training set, the duration of training, and the size of the
system, tells us that learning an iterative, in-place sort is not
very complex.

Experiments showed that lists of size 4 are necessary and
sufficient for learning. The training set required only one list
90-95 percent of the time: the list [4, 3, 2, 1]. Longer lists
generally came up with the same solution, with some minor
random variations due to the non-deterministic nature of the
technique.

B. Free Variables

Another interesting result was the lack of any use of the
free variable k. Some solutions made use of it but only in
a minor way. The most common result had no use of k at
all. If we remove actions related to k from the system, the
system learns faster, but the generated result is the same. We
expect this result, if RPSort is working correctly.

C. The RP-generated Algorithm

Before pruning unnecessary states, the most commonly
generated policy contains 226 states. Pruning reduces this to
17 states. Table III shows the pruned policy. Note that the ID

column is not a part of the policy, it is for ease of reference
only. In the comparative columns, such as ”i vs. j”, a symbol
= means ”i equals j; a ”<” means ” i < j”.

Algorithm 3 displays the program consistently produced
by RPSort. The main while-loop keeps the policy executing
until a goal state is reached–any state in which the last action
is TERMINATE. The body of the loop is the decision tree (in
pseudocode) translated from the learned policy. The variables
of the program are drawn from the variables in the data-
specific portion of the state, and the conditionals are drawn
from the RP-specific portion of the state.

Algorithm 3: RP-generated Sort Algorithm.
list[]← list to be sorted;
len← length of list[];
i← 0;
j ← 0;
lastact← NOOP ;
while lastact �= TERMINATE do

if j �= 0 then
if j �= len then

if list[i] > list[j] then
lastact← SWAP ;
swap(list, i, j);

if lastact = INCI then
lastact← INCJ ;
j + +;

else
if lastact = INCJ then

lastact← INCI;
i + +;

else
if lastact = (swap) then

lastact← (INCJ);
j + +;

else
if lastact = INCI then

if i �= len then
lastact← (SETJZERO);
j ← 0;

lastact← TERMINATE;
else

if lastact = INCJ then
if i �= 0 then

lastact← INCI;
i + +;

else
lastact← SETJZERO;
j ← 0;

else
if i �= 0 then

lastact← SETIZERO;
i← 0;

else
lastact← INCJ ;
j ← 0;

D. Proof that RPSort is a Generalized Algorithm

It is impossible to exhaustively check lists of all possible
lengths in order to guarantee algorithm correctness. However,
we can use a proof. Suppose we partition the set of all pos-
sible lists into two classes: lists already sorted in ascending

2637

TABLE III

RPSORT POLICY.

ID Last Action i j i list[i] Action ID Last Action i j i list[i] Action
vs. j vs. list[j] to Perform vs. j vs. list[j] to Perform

1 NOOP 0 0 = ≤ INCJ 10 INCJ 0 ? < > SWAP

2 INCI ? ? = ≤ INCJ 11 INCJ 0 ? < ≤ INCI

3 INCI ? ? < > SWAP 12 INCJ 0 len < ≤ SETJZERO

4 INCI ? ? < ≤ INCJ 13 SETIZERO 0 0 = ≤ INCJ

5 INCI ? len < ≤ SETJZERO 14 SETJZERO ? 0 > > SETIZERO

6 INCI len len = ≤ TERMINATE 15 SETJZERO 0 0 = ≤ INCJ

7 INCJ ? ? < > SWAP 16 SWAP ? ? = ≤ INCJ

8 INCJ ? ? < ≤ INCI 17 SWAP 0 ? < ≤ INCJ

9 INCJ ? len < ≤ INCI

order, and lists with at least one pair of adjacent elements
out of order. We show that the algorithm will sort each class
of lists correctly. The length of list is irrelevant.

Assume the algorithm has been passed a list sorted in
ascending order. Whenever i = j, INCJ is performed.
Whenever list[i] ≤ list[j] and lastact = INCJ , INCI is
performed. Since the list is sorted, the algorithm alternates
between performing INCJ and INCI, until j = len, regardless
of the length of the list. When j = len and lastact =
INCJ , INCI is performed. At this point, i = len and
j = len, since both i and j have been incremented len
times. The algorithm terminates when i = len and j = len.
Thus, algorithm terminates correctly when the list is sorted.

Now assume the algorithm has been passed an unsorted
list. Two adjacent elements that are out of order with respect
to each other must exist in the list, by definition. The sublist
up to that point in the list is sorted. Thus i and j will be
alternately incremented, as if the list were sorted, up to that
point, until that adjacent out-of-order pair is reached. When
that pair is reached, the last action performed will have been
INCJ. Prior to that action, i = j. When that pair is reached,
i = j−1 and list[i] > list[j]. The adjacent out-of-order pair
is swapped, putting them in order with respect to each other.
INCJ is then performed. At this point, i = j − 2. This gap
increases each time a pair such that list[i] > list[j] is found,
until j = len. When j = len, the last action performed is
INCJ. The algorithm specifies that INCI is performed next.
Since i will be at most j−2 before this action is performed,
incrementing i will not make i = len. The algorithm will
therefore set i = 0 and j = 0, and begin again. Any swaps
made during a given pass through the list cannot unsort the
list, and at least one more pair is relatively in order. When
only two elements are out of place, the algorithm will not
terminate until at least the next pass through the list.

We have shown that RPSort will sort any list correctly.
Therefore, RPSort is a generalized sort.

E. Comparing Various Sorts

Average case growth-rate comparisons were performed for
RPSort, Bubble Sort, Selection Sort, and Insertion Sort. For
Bubblesort, Selection Sort, and Insertion Sort, the average
case was directly calculable. The average case for RPSort
was approximated by randomly selecting 100,000 lists for list
lengths of 100 to 1000 (at intervals of 100) and determining
the average number of comparisons needed to sort the lists.
Figure 4 contains the results. Note that the y-axis is on a
logarithmic scale.

Bubblesort is the worst of the four algorithms from the
start, followed by Selection Sort, then RPSort. Insertion sort
starts off as the best of the four sorting algorithms. Between
list sizes 150 and 175, RPSort starts using the least number
of comparisons on average. This suggests that for non-trival
lists, RPSort is superior to the other three algorithms.

F. Is RPSort Really Learning?

We wanted to ascertain whether RP is just randomly
creating programs until a successful program is found, or
performing a directed search. We used Random Program
Generation (RPG) to randomly create a computer program
using the same state representation used by RP. The entire
state space explored by a given RP application is iterated
over, and each state is assigned a random action. Thus, an
entire policy is created at random. The random policy is
then executed in the same fashion as that learned by RP. By
executing the policy on every training instance used in RP,
the random policy can be compared to the policy learned by
RP. One billion random policies were created and executed
on all the lists of size 4. No random policy successfully
sorted all of the lists. Since a generalized sort was learned
by RP within 200,000 iterations, it is clear that, in this case,
RP performs much better than RPG. In particular, RP is not
merely creating random programs until a successful one is
found.

2638

Fig. 4. RPSort compared to other iterative, in-place sorts.

G. Comparing RP and GP on Generating a Sort

RP appears more efficient at generating a sorting algorithm
than GP when comparing the results in this section with those
obtained by Kinnear. In his work, a single run consisted of
1000 population members operated on for 49 generations.
Each population member at each generation was tested on 55
randomly generated lists. This results in at least two million
evaluations. Since each fitness check is on a mostly new
set of lists, storing fitness for population members carried
forward cannot be done. In learning RPSort, the RP system,
evaluates and updates the policy 200,000 times for the list
[4, 3, 2, 1], a much smaller number of evaluations.

RP also converges consistently to an algorithm that can
sort a list of any size. Even if GP converged to a solution
that sorted the lists used to evaluate fitness, generality was not
assured without strict complexity penalties. The algorithms
developed by GP to sort the lists that actually did generalize
were inefficient algorithms. RPSort, on the other hand, has
a very efficient average case. Lastly, the program developed
by RP for sorting does not require any hand simplification
(having a human alter the code) to make it easy to under-
stand, whereas even the simplest of the sorts evolved by GP
in Kinnear’s papers requires simplifying in order to make the
program understandable without careful examination of the
resulting code. Furthermore, the policy-based structure of the
resulting RP program is more natural to computers than the
tree structure of GP-developed programs.

H. A note on Binary Addition Problems

The problems described in this section do not deal with
RPSort, but outline how RP learned to solve three other
problems. This indicates that the RP approach is capable of
solving tasks beyond RPSort.

The full adder circuit is a circuit that takes in, as input,
three bits (single-digit binary numbers) and outputs the sum
of those bits as a two-bit number. The system used five
actions, TERMINATE plus setting the each of the outputs
true or false. The system is trained on all training instances
at each iteration. The most commonly learned policy contains
171 states, which pruning trims to 24 states. It is straight-
forward to show, by exhaustive testing, that the generated
algorithm performs correctly.

A binary incrementer takes a binary number of any length
and modifies the bits so that the resulting binary number has a
value of one plus the original number. Addition is effectively
mod 2n—the result of adding 1 to the n-bit number that
is all 1’s is all 0’s, ignoring the overflow. The training set
includes all eight 3-bit numbers. Experiments showed that
3 bits are necessary and sufficient to generate a generalized
binary incrementer algorithm. Fewer than 3 bits led to non-
general solutions. More than 3 bits led to the same solution
as that learned using 3 bits. The system is trained on all
training instances during each iteration. The most commonly
learned policy contains 254 states. Pruning trims this to 9
states.

RP generates a generalized incrementer. Starting at the
least-significant bit, the algorithm scans the number. At each
location, it inverts the bit and increments i either until it sets
a bit to 1 or until i = len. This is the exact procedure for
incrementing a binary number.

A general binary adder takes in two binary numbers of
any length (number of digits) and returns a binary number
representing their sum. The shorter of the two input numbers
is padded with leading zeros so that the numbers have the
same number of bits. The output number is also the same
length as the inputs, again effectively addition mod 2n. It
was an implementation decision to require the solution to

2639

have the same number of bits as the inputs. The general
binary adder problem we formulate as learning a generalized
many-to-one function that maps inputs to an output based on
examples.

The training set consists of the cross product of the set
of 4-bit numbers with itself (because two binary number
inputs are needed). 4 bits is the smallest number that is
necessary and sufficient to learn a generalized binary adder.
Experiments showed that 3 bits or fewer did not lead to a
generalized adder, while 4 bits or more did.

The system is trained on all training instances for each
iteration. The most commonly learned policy contains 913
states. Pruning trims this to 48 states. As with the binary
incrementer, there is no way to exhaustively test all possi-
ble inputs to determine algorithm correctness. However, by
looking at the program structure, it is straightforward to see
that the generated algorithm is a correct generalized binary
adder. [15] gives the algorithm and a proof of this.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced Reinforcement Programming (RP)
as an approach to automatically generate programs by us-
ing Reinforcement Learning (RL) techniques to generate
an iterative, in-place sort algorithm. We compared these
results to Kinnear’s earlier work generating sorts with ge-
netic programming (GP) and demonstrated empirically that
RP improves on those earlier results in several ways. RP
generates a novel, fast, efficient, general sorting algorithm.
The algorithm is faster than the most common iterative
sorting algorithms available. RP generates a more efficient
algorithm than GP. Our formulation uses operations that are
more primitive (basic) than those operations that were used to
evolve Bubblesort through GP. The state representation and
transition is more ”natural” to a computer than the function
tree structure used by GP.

A surprising result gives practical bounds on the empirical
complexity of learning in-place, iterative sorts. Experiments
with RP showed that:

• A 4-element list is sufficient to learn an algorithm that
will sort a list of any size.

• The smallest training set required for correct learning
includes only one list, 90% of the time.

• Learning required less than 200,000 iterations, 90% of
the time.

These results reduce the empirical complexity of learning
an in-place iterative sort to about the same complexity as
learning TicTacToe.

Potential future work with RP includes the following:
More extensive comparisons between RPSort and related GP-
generated sorts, involving runtimes, complexity measures and
other metrics; developing RP solutions to other problems
that GP has been used to solve; simulating Turing Complete
languages; learning recursion; handling Partially Observ-
able Markov Decision Processes; formalizing the process
of modeling RP-states; using RL methods other than Q-
Learning; and expanding the range of applications to real-
world problems.

REFERENCES

[1] J. Kenneth E. Kinnear, “Evolving a sort: Lessons in genetic program-
ming,” in Proceedings of the 1993 International Conference on Neural
Networks, vol. 2. San Francisco, USA: IEEE Press, 28 -1 1993, pp.
881–888.

[2] ——, “Generality and difficulty in genetic programming: Evolving a
sort,” in Proceedings of the 5th International Conference on Genetic
Algorithms, ICGA-93, S. Forrest, Ed. University of Illinois at Urbana-
Champaign: Morgan Kaufmann, 17-21 1993, pp. 287–294.

[3] C. J. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
Cambridge university, 1989.

[4] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. MIT Press, 1998.
[6] J. H. Holland, Adaptation in natural and artificial systems. Ann

Arbor, MI: The University of Michigan Press, 1975.
[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization and

Machine Learning. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

[8] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiob-
jective optimization: Formulation, discussion and generalization,” in
Genetic Algorithms: Proceedings of the Fifth International Conference.
Morgan Kaufmann, 1993, pp. 416–423.

[9] E. Nonas, “Optimising a rule based agent using a genetic algorithm,”
Department of Computer Science, King’s College London, Tech. Rep.
TR-98-07, April 1998.

[10] L. P. Kaelbling, M. L. Littman, and A. P. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[11] L. C. Baird, “Residual algorithms: Reinforcement learning with func-
tion approximation,” in International Conference on Machine Learn-
ing, 1995, pp. 30–37.

[12] T. Jaakkola, S. P. Singh, and M. I. Jordan, “Reinforcement learning
algorithm for partially observable Markov decision problems,” in
Advances in Neural Information Processing Systems, G. Tesauro,
D. Touretzky, and T. Leen, Eds., vol. 7. The MIT Press, 1995, pp.
345–352.

[13] A. McGovern and A. G. Barto, “Automatic discovery of subgoals in
reinforcement learning using diverse density,” in Proc. 18th Interna-
tional Conf. on Machine Learning. Morgan Kaufmann, San Francisco,
CA, 2001, pp. 361–368.

[14] R. S. Sutton, D. Precup, and S. P. Singh, “Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement
learning,” Artificial Intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[15] S. K. White, “Reinforcement programming: A new technique in
automatic algorithm development,” Master’s thesis, Brigham Young
University, 2006.

[16] J. R. Koza, “Hierarchical genetic algorithms operating on populations
of computer programs,” in Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence IJCAI-89, N. S. Sridharan,
Ed., vol. 1. Morgan Kaufmann, 20-25 Aug. 1989, pp. 768–774.

[17] J. Koza, “Genetic programming: A paradigm for genetically breed-
ing populations of computer programs to solve problems,” Dept. of
Computer Science, Stanford University, Technical Report STAN-CS-
90-1314, Jun. 1990.

2640

