
Generating Three Binary Addition Algorithms using
Reinforcement Programming

Spencer White
27921 NE 152nd St.
Duvall, WA, 98019

Skwhite314@gmail.com

Tony Martinez
Computer Science

Department
Brigham Young University

Provo, UT 84602
martinez@cs.byu.edu

George Rudolph
Department of Mathematics

and Computer Science
The Citadel

Charleston, SC 29409
george.rudolph@citadel.edu

ABSTRACT
Reinforcement Programming (RP) is a new technique for
automatically generating a computer program using rein-
forcement learning methods. This paper describes how RP
learned to generate code for three binary addition problems:
simulate a full adder circuit, increment a binary number,
and add two binary numbers. Each problem is presented as
an extension of the one previous to it, which provides an
introduction to the practical application of RP. Each solu-
tion uses a dynamic, episodic form of delayed Q-Learning
algorithm. ”Dynamic” means that grows the policy during
learning, and prunes it before the policy is translated to
source code. This is different from Q-Learning models that
use fixed-size tables or neural net function approximators
to store q-values associated with (state,action) pairs. The
states, actions, rewards, other parameters, and results of
experiments are presented for each of the three problems.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming;
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Theory

Keywords
Reinforcement learning, automatic program generation, bi-
nary addition

1. INTRODUCTION
Reinforcement Programming (RP) is a new technique for

automatically generating a computer program using rein-
forcement learning methods. This paper describes how RP
learned to generate code for three binary addition problems:
simulate a full adder circuit, increment a binary number, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE ’10 April 15-17, 2010, Oxford, MS, USA.
Copyright 2010 ACM 978-1-4503-0064-3/10/04 ...$10.00.

add two binary numbers. Each problem is presented as an
extension of the one previous to it, which provides a gradual
introduction to the practical application of RP.

Each solution uses a dynamic, episodic form of delayed
Q-Learning algorithm. This paper assumes that the reader
is familiar with Reinforcement Learning methods [6, 5], the
Q-Learning model [4] and episodic training. Each solution
is described in terms of states, actions, rewards, and a few
other parameters that are used to tune the model for learn-
ing. The learning algorithm is dynamic in that it grows the
policy during learning, and prunes it before translating it
to source code. The algorithm uses delayed learning in that
only a few actions have a non-zero reward or penalty. The
system is trained many times with the same training data
in the same training episode, in order to allow the effects
of rewards and penalties to propagate from a terminal state
back to a start state.

These problems are interesting because they deal with
constructing generalized mappings using a representative
subset of known pairings. The Binary Incrementer learns
a one-to-one mapping, and the General Binary Adder learns
a many-to-one mapping. Experimenting with solving these
problems using RP was also an effort to explore and demon-
strate the applicability of the RP approach. More details
about the ideas discussed in this paper are found in [7]. The
experimental results and generated solutions are interesting
because of what they tell us about the complexity of learn-
ing problems like these. Code and results are discussed in
the applicable sections of the paper.

Along with the states, actions, rewards and other param-
eters, results of experiments with each of the three problems
are presented. Section 2 discusses related work. Section 3
discusses RP concepts and definitions. Section 4 discusses
the Full Adder. Section 5 discusses the Binary Incrementer.
Section 6 discusses the General Binary Adder. Section 7
gives results showing that RP uses directed learning, as op-
posed to conducting a random search. Section 8 is the con-
clusion.

2. RELATED WORK
RP is most closely related to Genetic Programming (GP)

[3] and Reinforcement Learning (RL) [5]. A common way
of implementing a GP system involves using Genetic Algo-
rithms (GA) to modify a population of trees, where each tree
is a complete program. Similarly, RP uses RL techniques (in
this case the Q-Learning model) to generate programs. RP
avoids some of the challenges that programmers face when



using GP, and overcomes some of the limitations faced when
using the classic Q-Learning model.

Both RL and GAs attempt to find a solution to a problem
through a combination of stochastic exploration and the ex-
ploitation of the properties of the problem. The difference
between RL and GAs lies in how problems are formulated
and in the techniques used to solve the problem. Similarly,
RP and GP both use stochastic exploration combined with
exploitation, but the techniques and program representa-
tions differ dramatically. The need to balance exploration
and exploitation is something that RP shares with GP and
other evolutionary algorithms.

Despite it’s successes, GP is not without challenges. For
example, Kinnear describes the challenges presented by us-
ing GP to evolve a truly generalized sort [2]. A collection of
techniques must be used, including intelligent ways to select
the set of functions to be used in the system, a way to vary
the inputs used to determine program fitness, and a way to
penalize tree complexity to avoid simple memorization and
very large trees. The programmer formulates these aspects
of the problem, not the machine. Typically, many program
trees must be evaluated during a given iteration.

In typical Reinforcement Learning (RL) [1, 5], an agent
is given a collection of states and a transition function with
an associated reward/cost function. Often, there are one or
more goal states. The objective of the agent is to learn a pol-
icy, a sequence of actions that maximizes the agent’s reward.
RP uses reinforcement learning algorithms, however, the the
learned policy is intended to be externalized and compiled
as a program at some point, rather than simply continuously
being executed by an agent. Hence, the policy is formulated
so that it can be translated directly into a program that a
computer can execute. It is well-known that Reinforcement
Learning (RL) has been used successfully in game playing
and robot control applications [4, 5]. Like GP, one of the
aims of RP is to extend automatic program generation to
problems beyond these domains.

The classic Q-Learning algorithm has a number of char-
acteristics that have to be dealt with in order to use it suc-
cessfully in practical implementations. The most prominent
of these is that table of (state, action) pairs becomes pro-
hibitive if a lookup table is used. RP starts with one, or
a few, start states, and grows (state, action, Q-value) pair-
ings as needed during learning. Empirically, this strategy
results in a much smaller representation than a fixed table
that contains q-values for all possible (state-action) pairs.
Once a correct policy has been learned, a pruning algorithm
is used to delete unneeded states from the representation,
thus optimizing the learned policy.

3. ON THE RP APPROACH
This section discusses the RP approach. This includes

some Q-Learning model parameters, notions of state, policy
translation, and policy execution.

With regard to the Q-Learning model used in this paper,
the parameters, including rewards and penalties, were de-
termined empirically. Holding the reward at 100 and vary-
ing the penalty and γ (a decay parameter), convergence oc-
curred most rapidly with a penalty of −100 and a γ of 0.9 for
all three problems. A NOOP action is provided as a starting
”last state” for the initial state, when learning begins.

The RP notion of state is divided into two parts, data-
specific and RP-specific. The data-specific portion contains

the training instance and any variables being used. It may
also contain the size of the training instance, and any other
instance-specific information. It corresponds roughly to the
external environment. The RP-specific portion contains re-
lationships between the data and variables that allow gen-
eralization.

There are some basic rules about constructing the state,
and determining what should be in the RP-specific portion
of the state. A variable that directly references the input,
or has an explicit purpose is called a bound variable. A free

variable has no predefined purpose. Bound variables should
have boolean flags in the RP-specific portion of the state
that assert facts or relationships in the state. Any element
of the input that a bound variable references should also
be in the RP-specific portion of the state. The number of
bound variables is determined by the nature of the prob-
lem. The number of free variables is something to be ex-
perimented with. Sometimes the system will learn to make
use of the free variable in some way, sometimes it will not.
The question of how many bound variables to use is open.
The RP-specific portion also typically contains the last ac-
tion performed. This is to give some context to the current
state of the system.

A number of different methods can be used to translate a
learned policy into source code. The method we have used
here is to create a decision tree. The different features of
the states become the features of the decision tree, and the
action to perform in each state becomes the classification.
The policy’s transition function is used to determine the
next state. If the number of different states is small, an ex-
haustive search can be performed to create the tree with the
least number of leaves and shallowest depth. If the number
of states is large, however, other heuristics could be used to
construct the decision tree.

Once the decision tree is created, program execution is
simple. The current state is passed into the decision tree.
The state descends through the branches of the tree until a
leaf node is reached. The action at that leaf node is executed,
modifying the state. This process repeats until a goal state
is reached.

4. FULL ADDER

4.1 Problem Description
The full adder is a circuit that has three inputs and two

outputs. The inputs are two one-bit numbers and a carry in
bit. It outputs the sum of those bits as a two-digit binary
number, a one-bit sum and one-bit carry out. There are a
number of ways to formulate the circuit and its associated
logical representation. A formulation that uses only AND,
OR, and NOT primitives is convenient for generating deci-
sion tree code.

X1, X2, and Cin are the inputs, and Cout and S are the
outputs. The binary relational formulas are as follows:

Cout = X1 ∗X2 +X1 ∗ Cin +X2 ∗ Cin (1)

S = (X1 ∗X2 ∗ Cin) + (X1 ∗X2 ∗ Cin)

+(X1 ∗X2 ∗ Cin) + (X1 ∗X2 ∗ Cin)

4.2 Training Set and State Representation
A training instance for the full adder problem consists of



Table 1: Full Adder Inputs and Outputs

Cin X2 X1 Cout S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 2: Full Adder Action Set

Action Description

NOOP Initial ”last action”.
TERMINATE Ends policy execution
Cout = True Sets output Cout to true (1)
Cout = False Sets output Cout to false (0)
S = True Sets output S to true (1)
S = False Sets output S to false (0)

three bits. The entire training set involved all eight possible
instances the three bits could represent. The corresponding
outputs are in Table 1.

Because the size of the state space is small, we can exhaus-
tively represent all possible inputs, and the state representa-
tion is very simple. It consists of three boolean inputs, and
two integer outputs. We use integer variables here rather
than booleans because the output is tri-state, not binary.
For each output, a value of -1 means that the variable has
not been initialized yet, otherwise the value refers to the ac-
tual output (0 and 1). The state also contains a reference
to the last action performed. Since the number of possible
inputs is finite, there is no data-specific portion; the entire
state is RP-specific.

4.3 Actions and Transitions
Five actions were made available to the system, and are

described in Table 2. The goal states are any state in which
the last action performed is the TERMINATE action. If
any output variable is uninitialized or if the output variables
do not match the correct output when in the goal state, the
transition from the previous state to the goal state receives
a penalty. Otherwise, the transition receives a reward.

4.4 Results and Policy Translation
The system is trained on all training instances at each

iteration. The most commonly learned policy contains 171
states. By executing the resulting policy on all the inputs
and keeping only the visited states, the policy is pruned
down to 24 states. The translation algorithm then trans-
lates the policy into the decision tree given as Listing 1.
When the tree is executed as a program, decision tree is
repeatedly executed until the TERMINATE action is per-
formed. The code has been rewritten slightly to save space
and help clarify its meaning for the reader. Nested if-then-
else clauses have been replaced by a case statement in the
code; nested if statements with single-variable clauses have
been combined into the 16 statements shown in the listing.
The reader can assume that each if statement is mutually

exclusive.

Listing 1: Full Adder Algorithm

1 switch l a s t a c t
2 case (NOOP)
3 i f ( ! Cin && !X1 && !X2) {S=0;}
4 i f ( ! Cin && !X1 && X2) {S=1;}
5 i f ( ! Cin && X1 && !X2) {Cout=0;}
6 i f ( ! Cin && X1 && X2) {S=0;}
7 i f ( Cin && !X1 && !X2) {S=1;}
8 i f ( Cin && !X1 && X2) {S=0;}
9 i f ( Cin && X1 && !X2) {S=0;}
10 i f ( Cin && X1 && X2) {S=1;}
11 case (Cout=1)
12 {TERMINATE;}
13 case (Cout=0)
14 i f ( !X1) {TERMINATE;}
15 i f (X1) {S=1;}
16 case (S=1)
17 i f ( !X1) {Cout=0;}
18 i f (X1 && ! Cin ) {TERMINATE;}
19 i f (X1 && Cin ) {Cout=1;}
20 case (S=0)
21 i f ( ! Cin && !X1) {Cout=0;}
22 i f ( ! Cin && X1) {Cout=1;}
23 i f ( Cin ) {Cout=1;}

It is straightforward to show that this code implements
the mapping from Table 1. Initially, the lastact is always
NOOP , so lines 2-10 cover each one of the 8 possible com-
binations of 3 boolean inputs. As an example, Line 3 should
be read as ”If lastact is NOOP and all inputs are 0, then
set S to 0 and change lastact to action (S=0).” Lines 4-10
read similarly, each assuming the lastact is NOOP. Lines 2,
11, 14,17 and 20 are not assignment statements—they are
meant to designate the last action.

Although there are 8 possible combinations of inputs, there
are only 4 distinct combinations of inputs: all 0’s (000), one
1’s (001, 010, 100), two 1’s (011, 101, 110) and all 1’s (111).
In the all 0’s case, line 3 will execute, then line 21, then
line 16. In the one 1’s case, line 4, 5 or 7, is followed by
line 15, then [it does not terminate]. In the two 1’s case,
line 6, 8 or 9 is followed by line 12 and then line 22. In the
all 1’s case, line 10 is followed by line 18, and then line 13.
In all cases, S and Cout have the correct values when the
algorithm terminates.

5. BINARY INCREMENTER

5.1 Problem Description
A binary incrementer takes a binary number of any length

and modifies the bits so that the resulting binary number
has a value of one plus the original binary number. In the
special case that the input number is all 1’s, the result is all
0’s. In effect this implements modular addition, but keeps
the number of bits in the output the same as those in the
input.

This problem has an interesting abstraction. The binary
incrementer problem is an instance of the taking of a single
input and mapping it to the corresponding output. The
task of the RP system is to learn the one-to-one mapping
between the inputs and the outputs. This application can be
extended to several domains. One of note is the successor

problem, the task of taking any input and generating its
successor in an ordered list. The successor for each input



Table 3: Binary Incrementer Actions

Action Description

NOOP Initial ”last action”
TERMINATE Ends policy execution
INCI Increments i
SETIZERO Sets i = 0
INCJ Increments j
SETJZERO Sets j = 0
SETTRUE Sets dest[i] to 1
SETFALSE Sets dest[i] to 0

may be known, but not the actual mapping. A system that
can automatically generate that mapping is a useful tool.

5.2 Training Set and State Representation
The training instances consists of the entire set of 3-digit

binary numbers. This was the smallest number of bits in the
number that could still give the full range of states needed
to make a general binary incrementer. Experiments with
binary numbers with fewer than 3 digits led to non-general
solutions. Numbers with more than 3 digits led to the same
solution as that learned using 3-digit binary numbers.

The state consists of a data-specific and an RP-specific
portion. The data-specific portion contains two integers:
i and j. i is a bound variable, and j is a free variable.
The data-specific portion also contains the training instance
(source), as well as the destination binary number (dest)
which is initialized to the training instance. Lastly, it has
a variable len, storing how many bits are in the training
instance. The RP-specific portion contains several boolean
flags—whether or not i = 0, j = 0, i = len, and j = len—the
last action performed, and the values of the following bits:
source[i], dest[i], source[i − 1], dest[i − 1]. Both binary
numbers were indexed from 0 to len − 1. If i = 0, then
source[i−1] = 0 and dest[i−1] = 0. If i = len, source[i] = 0
and dest[i] = 0. These constraints avoid potential array out-
of-bounds errors in the implementation.

Experiments performed without including source[i − 1]
and dest[i− 1] failed to lead to convergence. This suggests
that the problem is a Partially Observable Markov Decision
Process (POMDP) [1]–that is, the conditional probability of
reaching future states depends on observing only part of the
current state, not the full state or past states. The additional
state information allows the system to learn using a model
that satisfies the Markov Property, which is a requirement
for using Q-learning.

5.3 Actions and Transitions
Table 3 contains the actions used for this problem. Goal

states are any state with TERMINATE as the last action
performed. The following restriction is placed on action se-
lection: if i = len, then SETFALSE and SETTRUE can-
not be chosen. This avoids out-of-bounds array errors.

The system provides a reward when the agent uses the
TERMINATE action when the dest binary number has
all its bits set to the correct value. If the agent uses the
TERMINATE action in any other situation, a penalty is
provided.

5.4 Results and Policy Translation
The system is trained on all training instances at each

iteration. The most commonly learned policy contains 254
states. The pruning algorithm prunes this policy to 9 states,
and the translation algorithm translates it into the decision
tree given in Listing 2. The generated code has been rewrit-
ten to accommodate the 2-column format. Line 3 should be
read as ”If i is not equal to length, and bit i of source is 0,
and bit i of dest is zero, take action SETTRUE.”

It is interesting to note two things: First, the variable
j provided to the state was neither needed nor used. Sec-
ond, although convergence would not occur without having
source[i − 1] and dest[i − 1] as part of the state, the re-
sulting decision tree uses neither value. Assume that the if
statements are mutually exclusive–the else’s are omitted for
convenience. Indentation indicates nested ifs.

Listing 2: Binary Incrementer Algorithm

1 i f ( i != l en )
2 i f ( sour ce [ i ]==0)
3 i f ( des t [ i ]==0) {SETTRUE;}
4 i f ( des t [ i ]==1) {TERMINATE;}
6 i f ( sour ce [ i ]==1)
7 i f ( des t [ i ]==0) {INCI ;}
8 i f ( des t [ i ]==1) {SETFALSE;}
11 i f ( i == len ) {TERMINATE;}

The variable i starts at 0 and is incremented only when
line 7 is executed. Recall also that dest is initialized to
the same value as source. Every number falls into one of
three possible cases: First, bit 0 is 0. Second, there is some
value k < len such that all the bits from position 0 to k− 1
are 1, and bit k is 0. Third, the number is all 1’s. It is
straightforward to show that the algorithm is correct for
each of the three cases.

Consider the first case. Line 3 will cause dest[0] to be set
to 1. Next, because dest[0] is 1, the policy will execute line
4, which causes the algorithm to terminate. This behavior
increments the original value by 1, which is correct.

Consider the second case. Since source[0] and dest[0] is 1,
line 8 will execute first. This will change dest[0] to 0. Next,
line 7 will execute, which changes the value of i to 1. Line
8 will execute on bit 1, which will change dest[1] to 0, and
then line 7 will execute, again incrementing i. Lines 8 and
7 will alternately execute until the first 0 is encountered in
source and dest at position i == k. This will cause line 3
to execute, which will change dest[k] to 1. Then line 4 will
execute, which terminates the algorithm. This is the correct
behavior.

Consider the third case. Lines 8 and 7 will alternate exe-
cution until there are no more bits i == len. All of the 1’s
have been inverted to 0’s. At this point, line 11 will execute,
and the algorithm will terminate. Again, this is the correct
behavior.

What the learned program does is scan the binary num-
ber, starting at the least-significant bit. At each location,
it inverts the bit and increments i either until it sets a bit
to 1 or until i == len. This is the exact procedure for
incrementing any binary number.

6. GENERAL BINARY ADDER

6.1 Problem Description
A general binary adder takes in n-bit two binary numbers

and returns an n-bit binary number representing their sum.



It is assumed that both inputs have the same number of bits.
If not, the shorter number is padded with leading 0’s to the
proper length. In the even of an overflow, the overflow is
ignored—in effect, the sum is mod 2n. For example, 110 +
101 = 1011, however the binary adder would return 110 +
101 = 011. This was an implementation decision.

This problem has an interesting abstraction. This prob-
lem creates a many-to-one mapping (22n inputs mapping
to 2n outputs, where n is the number of bits). One use-
ful application for a many-to-one mapping is a hash table.
Typically, the hashing function is created beforehand, and
modified until there is an even distribution across the map-
ping. Instead, the mapping can be created beforehand on
a subset of the possible inputs. RP could then be used to
create an appropriate hashing function. The general binary
adder problem will be viewed from the perspective of learn-
ing a generalized function to map inputs to an output based
on examples.

6.2 Training Set and State Representation
The training set consists of the cross product of the entire

set of 4-digit binary numbers with itself (because two binary
number inputs are needed). Size 4 is the smallest size that
still visits every state necessary to learn a generalized binary
adder. Smaller and larger sizes were experimented with, and
size 4 fit the criteria. Size 3 did not lead to a generalized
adder, while sizes 4 and up did.

The state representation consists of a data-specific por-
tion and an RP-specific portion. The data-specific portion
has two variables, i and j,the two input binary numbers,
source1 and source2,the binary number that source1 and
source2 maps to, called map, an array of integers the same
length as the input numbers, called dest,and a variable called
len, which is set to the length of the input numbers. i is a
bound variable and j is a free variable. Any element in
dest can have one of three values: −1, 0, and 1. −1 means
that specific position is uninitialized. The other two values
represent their corresponding binary values.

The RP-specific portion contains four boolean flags, and
integers zcount, ocount, lastzcount, lastocount, dloc and
lastdloc, and the last action performed. The boolean flags
indicate whether i = 0, i = len, j = 0, and j = len.
zcount indicates how many zeros are indexed by source1[i]
and source2[i] (either 0, 1, or 2 zeros). ocount indicates
how many ones are indexed by source1[i] and source2[i].
lastzcount and lastocount indicate how many zeros and ones
(respectively) are referenced by source1[i−1] and source2[i−
1]. dloc and lastdloc reference the value in dest[i] and dest[i−
1] respectively.

Experiments performed without lastzcount, lastocount,
and lastdloc failed to converge. Adding these variables al-
lowed the system to converge. This suggests that the gen-
eral binary adder problem is a Partially Observable Markov
Decision Process, like the binary incrementer (see section
5.4). The elements of source1, source2, and dest are refer-
enced as a zero-based array (0 to len − 1). If i = 0, then
lastzcount = 2, lastocount = 0, and lastdloc = −1. If
i = len, then zcount = 2, ocount = 0, and dloc = −1.
These constraints avoid out-of-bounds array errors in the
implementation.

6.3 Actions and Transitions
The actions used by the general binary adder system are

the same as the actions used in the Binary Incrementer, in
table 3. The goal states are any state where the last action
performed is the TERMINATE action. A reward is given
when the system terminates with dest initialized and set to
the correct answer. Otherwise, a penalty is given.

Smaller rewards and penalties are given for partial results
that are correct, or incorrect, as an aid to convergence. The
values are set empirically, by trial-and-error. If the values
are too high, they will unfairly bias the system toward (or
away from) certain (state, action) pairs. If they are too low,
they don’t bias learning enough to make a difference. If
SETTRUE or SETFALSE sets dest[i] to match map[i],
a small reward (as compared to the termination reward) is
given. Otherwise, a small penalty (as compared to the ter-
mination penalty) is given. Note that the learning algorithm
is not using an addition algorithm to learn an addition al-
gorithm. The system is learning a mapping between given
inputs and outputs, and is rewarded for finding a partial
match.

There are restrictions placed on the actions that can be
selected, depending on the state the agent is in. SETTRUE
and SETFALSE cannot be performed if i = len to avoid
out-of-bound array errors. If dloc = 1 then SETTRUE
cannot be performed. If dloc = 0 then SETFALSE cannot
be performed. These restrictions are necessary to avoid the
infinite reward the agent can get by repeatedly performing
a reward-giving action.

6.4 Results and Policy Translation
The system is trained on all training instances for each

iteration. The most commonly learned policy contains 913
states. After executing the policy on all the training in-
stances, the policy is pruned to 48 states. A table showing
the pruned policy can be found in [7]—it too large to include
here. The policy is then translated into the decision tree pre-
sented as Listing 3. The generated code has been rewritten
to accomodate the 2-column format. Line 3, where the first
action is specified, should be read, ”If i < len and dloc < 0
and zcount is 0 and lastzcount is 0, then take action SET-
TRUE.” It means ”if not done, and dest[i] is undefined, and
both source1[i] and source2[i] are 1, and both source1[i−1]
and source2[i − 1] are 1, then set dest[i] to 1.” Other lines
read similarly. If statements at the same indentation level
are mutually exclusive.

Listing 3: Binary Adder Algorithm

1 i f ( ( i != l en )&&(d loc < 0))
2 i f ( zcount == 0)
3 i f ( l a s t z coun t == 0) {SETTRUE;}
4 i f ( l a s t z coun t == 1)
5 i f ( l a s t d l o c == 0) {SETTRUE;}
6 i f ( l a s t d l o c == 1) {SETFALSE;}
7 i f ( l a s t z coun t == 2) {SETFALSE;}
8 i f ( zcount == 1)
9 i f ( l a s t z coun t == 0) {SETFALSE;}
10 i f ( l a s t z coun t == 1)
11 i f ( l a s t d l o c == 0) {SETFALSE;}
12 i f ( l a s t d l o c == 1) {SETTRUE;}
13 i f ( l a s t z coun t == 2) {SETTRUE;}
14 i f ( zcount == 2)
15 i f ( l a s t z coun t == 0) {SETTRUE;}
16 i f ( l a s t z coun t == 1)
17 i f ( l a s t d l o c == 0) {SETTRUE;}
18 i f ( l a s t d l o c == 1) {SETFALSE;}
19 i f ( l a s t z coun t == 2) {SETFALSE;}



20 i f ( ( i != l en ) && ( d loc = 0)) {INCI ;}
21 i f ( ( i != l en ) && ( d loc = 1)) {INCI ;}
22 i f ( i==len ){TERMINATE;}

This algorithm does not use a carry bit. Instead, it uses
bit counts (zcount and lastzcount), and the previously com-
puted bit in the result (lastdloc) to determine how to set
the current bit (dloc). Using bit counts reduces the number
of unique combinations of bits in the inputs to nine, be-
cause zcount and lastzcount can only be 0, 1, or 2. When
lastzcount is 1, it is necessary to look at lastdloc to deter-
mine whether there was a carry. Thus there are 12 cases,
rather than nine, with associated actions in lines 2-19. Lines
20 and 21 increment i when dloc has been set to a value. The
algorithm terminates only when all bits in the result have
been set (line 22).

When the tree is executed as a program, decision tree
is repeatedly executed until the TERMINATE action is
performed. Initially, i is 0, lastzcount is 2, and lastdloc is
-1. For brevity, we consider one of the 12 possible cases, to
show that the algorithm behaves correctly. The other cases
could be discussed similarly.

Consider the case where source1[i] and source2[i] are both
1, and one or the other of source1[i− 1] and source2[i− 1]
are 0 (but not both), and lastdloc is 0. Line 5 is executed.
Because lastdloc is 0, but lastzcount is 1, there must have
been (in effect) a carry from the addition of bits at i−2. dloc
is therefore set to 1. Next, line 21 is executed, incrementing
the i by 1, and dloc now references the next bit in dest.
lastzcount now changes to 0. We know that line 3, line 9
or line 15 must execute next, depending on the new zcount.
If line 3, dloc should be set to 1, passing along the previous
carry. If line 9, dloc should be set to 0, passing along a
carry. If line 15, dloc is set to 1, absorbing the previous
carry. Next, line 20 is executed, incrementing the value of i.

Assume that the algorithm has the correct behavior for
every possible combination of source1[i− 1], source2[i− 1],
source1[i], source2[i], and dest[i− 1] (this requires enumer-
ating all 12 of the cases discussed above), for some i. It is
straightforward to verify that the algorithm works correctly
for all 1- and 2-bit numbers. Now assume an n-bit number,
n > 2, and choose some k < n. Assume that the algorithm
behaves correctly for the first k − 1 bits. Let k = i. The
algorithm above will generate the correct values for bits k
and k + 1. Therefore, by induction, this algorithm would
generate the correct result for any n-bit number.

7. IS RP REALLY LEARNING?
Is RP just randomly creating programs until a successful

program is found, or performing a directed search? Random
Program Generation (RPG) was used to randomly create a
computer program using the same state representation used
by RP, for each of the three applications presented in this
paper. The entire state space explored by a given RP appli-
cation is iterated over, and each state is assigned a random
action. This process creates an entire policy at random. The
random policy is then executed in the same fashion as that
learned by RP. By executing the policy on every training
instance used in RP, the random policy can be compared to
the policy learned by RP.

One billion random policies were generated for each appli-
cation. No random policy performed correctly on any entire
training set. Each of three RP algorithms described in this

paper were generated in 10,000 iterations or less. Thus, it
is clear that RP performed much better than RPG for these
applications.

8. CONCLUSIONS
This paper presented Reinforcement Programming (RP)

as a new technique for automatically generating programs
using reinforcement learning. We used RP to generate itera-
tive algorithms for three binary addition problems: Simulate
a Full Adder Circuit, a Binary Incrementer, and a Binary
Adder.

Results showed that RP generates a correct, efficient al-
gorithm, and generates it quickly. Each algorithm was gen-
erated in 10,000 iterations or less. RP uses a lookup table
that grows as needed, rather than a fixed-size lookup table,
or a neural network function approximator. The number of
actual states explored is much less than the total possible
number of states, so this seems like a good choice, as it over-
comes some of the weaknesses of the standard Q-Learning
model. Results also show that RP is performing a directed
search, not just randomly creating programs until a success-
ful program is found.

One of the goals in using these problems is to explore
and demonstrate the applicability of the RP approach. The
results given in this paper algorithms extend initial work
on RPSort, which uses RP to generate in-place, iterative
sorting algorithms (currently under review for publication).
Future possible work includes simulating a Turing-complete
language and using RP to find a Turing machine that sorts
any list; exploring real-world applications beyond canonical
benchmark applications; working to formalize the state rep-
resentation process; contribute toward an effort to look at
the higher-level question of how to judge a particular algo-
rithm’s or method’s fitness for a particular task. Further
implementation experiments may involve online vs. offline
learning and exploration/exploitation strategies and the ef-
fects they have on convergence rates and the kind of solution
learned by the system.

9. REFERENCES
[1] T. Jaakkola, S. P. Singh, and M. I. Jordan.

Reinforcement learning algorithm for partially
observable Markov decision problems. In G. Tesauro,
D. Touretzky, and T. Leen, editors, Advances in Neural

Information Processing Systems, volume 7, pages
345–352. The MIT Press, 1995.

[2] K. E. Kinnear. Evolving a Sort: Lessons in Genetic
Programming. In Proceedings of the 1993 International
Conference on Neural Networks, volume 2, pages
881–888. IEEE Press, 1993.

[3] J. R. Koza. Genetic Programming IV: Routine
Human-Competitive Machine Intelligence. Kluwer
Academic Publishers, 2003.

[4] T. M. Mitchell. Machine Learning. McGraw-Hill, New
York, 1997.

[5] R. S. Sutton and A. G. Barto. Reinforcement Learning:

An Introduction. MIT Press, 1998.

[6] C. J. Watkins. Learning from delayed rewards. PhD
thesis, Cambridge university, 1989.

[7] S. K. White. Reinforcement programming: A new
technique in automatic algorithm development.
Master’s thesis, Brigham Young University, 2006.


