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Abstract A common statistical model for paired
comparisons is the Bradley–Terry model. This research
re-parameterizes the Bradley–Terry model as a single-
layer artificial neural network (ANN) and shows how it
can be fitted using the delta rule. The ANN model is
appealing because it makes using and extending the
Bradley–Terry model accessible to a broader commu-
nity. It also leads to natural incremental and iterative
updating methods. Several extensions are presented
that allow the ANN model to learn to predict the
outcome of complex, uneven two-team group compe-
titions by rating individuals—no other published model
currently does this. An incremental-learning Bradley–
Terry ANN yields a probability estimate within less
than 5% of the actual value training over 3,379 multi-
player online matches of a popular team- and objec-
tive-based first-person shooter.
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1 Introduction

The Bradley–Terry model is well known for its use in
statistics for paired comparisons [1–4]. It has also been
applied in machine learning to obtain multi-class

probability estimates [5–7]. The original model states
that:

PrðAdefeatsBÞ ¼ kA
kA þ kB

; ð1Þ

where kA and kB are both positive and subjectsA and B
compete in a paired-comparison. kA and kA represent
the strengths of subjects A and B.

Bradley–Terry maximum likelihood models are of-
ten fit using methods like Markov Chain Monte Carlo
(MCMC) integration or fixed-point algorithms that
seek the mode of the negative log-likelihood function
[4]. These methods however, ‘‘are inadequate for large
populations of competitors because the computation
becomes intractable.’’ [8]. The following paper pre-
sents a method for determining the ratings of over
4,000 players over 3,379 competitions.

Elo [9], a chess master and physics professor, sug-
gested an efficient approach to update the ratings of
thousands of players competing in thousands of chess
tournaments. Now commonly referred to as the ELO
Rating System, it has been used in the past by both the
United States Chess Federation (USCF) and the World
Chess Federation (FIDE). Most common large-scale
rating systems in use today have roots in the ELO
system. His method re-parameterizes the Bradley–
Terry model by setting kA ¼ 10hA yielding:

PrðAdefeatsBÞ ¼ 1

1þ 10&
hA&hB
400

: ð2Þ

The scale specific parameters are historical only and
can be changed to the following which uses the natural
base instead:
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PrðAdefeatsBÞ ¼ 1

1þ e&ðhA&hBÞ
: ð3Þ

This is also the equation for the standard sigmoid used
as a transfer function in artificial neural network
(ANN) nodes, and therefore substituting w for h in (3)
yields the single-layer ANN in Fig. 1. This single-layer
sigmoid node ANN can be viewed as a Bradley–Terry
model where the input corresponding to subject A is
always 1, and B, always –1. The weights wA and wB

correspond to the Bradley–Terry strengths hA and
hB—often referred to as ratings. The Bradley–Terry
ANN model can be fit by using the standard delta rule
training method for single-layer ANNs.

This ANN interpretation is appealing because many
types of common extensions can be added simply as
additional inputs to the ANN. It also makes the
Bradley–Terry model accessible to anyone familiar
with ANNs and provides natural incremental as well as
iterative training methods (see Sect. 3). Bradley–Terry
models are useful because they can be applied to any
situation where the probability of one subject being
‘‘better’’ than another is needed. This can include not
only sports, but obtaining multi-class probability esti-
mates from binary classifiers in machine learning
[5,1000,7], market predictions for economics, biosta-
tistics [1], bibliometrics or deciding which publications
are more significant [10], genetics [11], taste-testing,
military encounters, and any other prediction that
requires the probability of one subject being more
desirable than another. In addition to making the usage
of the Bradley–Terry model more accessible to the
machine learning community, viewing the Bradley–
Terry model as an ANN also makes research into
extending and improving the model more accessible.
This research demonstrates this by adding and pro-
posing several extensions based on this ANN view of
the Bradley–Terry model.

The first extension presented is actually a general-
ization of the original Bradley–Terry model which
provides for the case where the subjects being compared
are groups and the goal is to obtain the ratings of the
individuals in the group. The original model does not
do this. The following presents a model that can give
individual ratings from groups and shows further
extensions of the model to handle ‘‘home field advan-
tage’’, weighting individuals by contribution, dealing
with variable-sized groups, and other issues. The prob-
ability estimates given by the final model are accurate to
within less than 5% of the actual observed values over
3,379 multi-player online matches of a popular team-
and objective-based first-person shooter. This is signif-
icant because of the difficulty in the predicting the out-
come of these highly dynamic matches. They can be
compared to a soccer game where either team can have
as many players as they like so long as the combined
number of players on the field is less than some maxi-
mum. To complicate matters further, the players are free
to switch between teams at will. Furthermore, the soccer
field does not have to be symmetrical: the field can be on
an incline such that the ball naturally rolls towards one
team’s goal, and it can also include obstacles on one end
that are not on the other. The pool of possible players
also does not have a limit, ranging as high as 4,000, and
the players are free to leave and join a match at any time.
There are no other published models designed to handle
this complex of a competition, and therefore nothing
with which to compare the current results. The fact that
the proposed model provides probability estimates
within less than 5% of a match’s actual outcome and that
these estimates can be created in a short amount of time
is in and of itself a significant result.

One other extension that will be presented is for
dealing with the effects of the passage of time within a
competition. There exist competitions and paired-
comparisons in which the probability of a given com-
petitor defeating the other is related to the amount of
time that has passed in the competition. For instance,
in chess, there may be players that win often when they
are able to defeat their opponents early in the match,
but who do not win as often when the match lasts
longer than average. In the multi-player online game
used for the results in this paper, one team is usually
trying to prevent the other from achieving a known
objective for a certain amount of time. When the
objective is not accomplished in the usual amount of
time, the probability of the achieving team winning is
likely to be less than expected. Games and sports are
not the only applications where the passage is signifi-
cant. Modeling time in paired-comparisons can also be
applied in education to determine how time affectsFig. 1 The Bradley–Terry model as a single-layer ANN
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different teaching and testing methods, it can be ap-
plied in medicine to account for the passage of time
given different treatments, it can be used in military
applications for balancing exercises or determining
how long a given encounter should last, and it can be
used in any other paired-comparison or competition
where time may play an important role. One of the
extensions in the following paper uses an artificial
neural network approach to learn how important the
passage of time is for a given paired-comparison.
Including this extension results in further a 16% de-
crease in error over the 3,379 matches.

This article will proceed as follows: Sect. 2 gives
more related background on prior uses and methods
for the fitting of Bradley–Terry models, Sect. 3 explains
the proposed model, extensions, and how to fit it, Sect.
4 explains how the model is evaluated, Sect. 5 gives
results and analysis of the model’s evaluations, a fur-
ther analysis of the meaning of the time weights is
given in Sect. 7, a discussion of possible applications
of the model are given in Sect. 6 and Sect. 8 gives
conclusions and future research directions.

2 Background

The Bradley–Terry model was originally introduced by
Bradley and Terry [1]. It has been widely applied
in situations where the strength of a particular choice
or individual needs to be evaluated with respect to
another. This includes sports and other competitive
applications. There are several reviews on extensions
and methods of fitting Bradley–Terry models [1–4].
This paper differs from previous research in at least
two ways. First, it proposes a method to determine
individual ratings and rankings when the subjects being
compared are groups. Recently, Huang et al. proposed
similar extensions by modeling group ratings as the
sum of the ratings of the individuals in each group [7,
12]. One of their papers models the increase in a larger
group’s rating linearly [7] and the other uses a similar
model to that used here to model that increase expo-
nentially [12]. We model group ratings as an expon-
entiated average of the individual ratings in a group,
along with an exponentiated ‘‘field’’ weight that takes
into account the number of individuals in each group.
Like Huang et al.’s second model, ours assumes having
more individuals in one group than another results in
an exponential increase in the larger group’s proba-
bility of winning. This is appealing in competitions
where each individuals can act simultaneously.

The more common methods for fitting a Bradley–
Terry model require that all of the comparisons to be

considered involving all of the competitors have al-
ready taken place so the model can be fit simulta-
neously. This includes two different iterative methods
proposed Huang et al. [7, 12]. While this can be more
theoretically accurate, it becomes computationally
intensive in situations involving thousands of compar-
isons and competitors. It would require storing and
retaining information about every match that ever oc-
curs and refitting the model after each match. This can
be unreasonable if the system is meant to continually
processes a potentially unlimited amount of matches.
In addition, as the number of matches grows, it may
take longer to fit the model than the length of a match.
An average match in the game used here usually lasts
at least 15 min, but can often last as little as 5. Once the
number of matches becomes large enough so that
iterative methods take longer than this to fit the model,
the rating estimates will fall farther and farther behind.
This will make them unusable for the real-time appli-
cations discussed in Sect. 6.

Elo [9], and also Glickman [8], both proposed
methods for approximating an iterative fit by by
adapting the Bradley–Terry model after every com-
parison without requiring storing match information.
However, neither of their models has been extended to
extract individual ratings from groups. The model
presented here does allow individual ratings to be
determined in addition to providing an efficient update
after each comparison. Although adapting using only
local information may result in theoretically less
accurate estimates of the ratings than iterative meth-
ods, they do have the advantage of assuming a moving
average of the ratings instead of a static one. This al-
lows them to track time-varying changes in individual
ratings. Over the course of thousands of matches, the
true average of an individual rating may increase or
decrease based on increased experience, or decrease
in interest. Iterative methods such as those used by
Huang et al. [7, 12] assume individuals have the same
rating over all matches. While this assumption may
hold over a reasonable set or hundreds of matches [12],
it is less appropriate over a larger set or thousands of
matches like that used here.

3 The ANN model

The section proceeds as follows: the first Sect. 3.1,
presents the basic framework for viewing the Bradley–
Terry model as a delta-rule trained single layer ANN,
Sect. 3.2 will show how to extend the model to learn
individual ratings within a group, Sect. 3.3 extends the
model to allow different weights for each individual

Neural Comput & Applic (2008) 17:175–186 177

123



based on their contribution, Sect. 3.4 shows how the
model can be extended to learn ‘‘home field’’ advan-
tages, Sect. 3.6 presents a heuristic to deal with
uncertainty in an individual’s rating, and Sect. 3.7 gives
another heuristic for preventing rating inflation.

3.1 The basic model

The basis for the Bradley–Terry ANN Model begins
with the ANN shown in Fig. 1. Assuming, without loss
of generality, that the ANN model is designed to al-
ways predict the probability that subject A will win, the
input for wA will always be 1 and the input for wB will
always be –1. This assumption is a new approach for
using ANNs because it suggests the use of inter-
changeable weights. It is an important part of viewing
the Bradley–Terry model as an ANN because it allows
a given subject to ‘‘carry its own weight’’ as its rating.
That rating is ‘‘plugged in’’ as the winning or losing
weight when that subject competes, and ignored
otherwise. For example, given two subjects, 1 and 2, if
subject 1 defeats subject 2, then wA is set to the rating
of subject 1, h1, and wB is set to the rating of subject 2,
h2. However, if subject 2 defeats subject 1, the opposite
occurs: wA is set to h2 because subject 2 is the winner. If
a subject is not currently competing, then its weight or
rating is ignored altogether—equivalent to setting the
input for that weight to 0. Instead of the classical no-
tion that weights are always associated with the same
inputs, the weights are interchanged based on the
outcome of the comparison. Another way of viewing
this approach is that the weight for every subject is
always present, but the inputs are different. If a subject
wins, the input for its weight becomes 1. If that subject
loses, its input is –1. If the subject is not competing,
its input is 0. In addition, only two weights can be
non-zero for a given comparison—in other words, only
two subjects are compared at a time. There do exist
extensions to the Bradley–Terry model allowing for
more than one comparison at a time [4, 13], but that is
beyond the scope of this work.

The equation for the model can be written as

Output ¼ PrðA defeatsBÞ ¼ 1

1þ e&ðwA&wBÞ
ð4Þ

which is the same as (3), except wA and wB are
substituted for hA and hB. This can be rewritten as:

Output ¼ PrðA defeatsBÞ ¼ ewA

ewA þ ewB
; ð5Þ

which is the same as (1) with kA ¼ ewA : This is a con-
ditional exponential model, like that of [12].

Since we assume that wA is always the rating of the
winning subject, and wB the rating of the losing subject,
the likelihood of wA and wB over a set of m matches
can be written as:

LðwA;wBÞ ¼
Ym

i¼1

ewA

ewA þ ewB
: ð6Þ

where wAiðwBiÞ is the rating of the winning (losing)
subject in match i. The negative log-likelihood is
therefore:

LðwA;wBÞ ¼ &
Xm

i¼1

log
ewA

ewA þ ewB

! "
ð7Þ

where the goal is finding the wA and wB for each i
that minimize L(wA,wB). As [12] stated, ‘‘it is well
known that the log-likelihood of a conditional expo-
nential model is concave. Thus (its negative log-
likelihood) is convex, so one can easily find a global
minimum...’’ Although [12] uses an iterative method
to find the minimum of (7), they also mention that
‘‘Standard optimization methods (e.g., gradient...) can
be used’’, which is what will be used here. This is
done so that a sequential update can be derived that
can minimize (7) over a potentially infinite set of
matches.

The negative log-likelihood over the predictions of a
set of Bernouli observations, like those given here, is
also known as the cross-entropy of those predictions. A
variation of the well-known delta rule for ANN train-
ing can be used to minimize the cross-entropy of the
predictions of an ANN with respect to its weights.
Further details and derivations can be found in [14–16].
For the ANN model used here, the delta rule update
after a single match is

Dwi ¼ gdxi ð8Þ

where g is a learning rate, d is the error measured with
respect to the output, and xi is the input for wi. The
error, d is measured here as

d ¼ Target Output&Actual Output: ð9Þ

For the ANN Bradley–Terry model, the target output
is always 1 given the assumption that A will defeat B.
The actual output is the output of the single node
ANN. Therefore, the delta rule error can be rewritten
as

d ¼ 1& PrðA defeats BÞ ¼ 1&Output; ð10Þ

and the weight updates can be written as
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DwA ¼ gð1&OutputÞ ð11Þ

DwB ¼ &gð1&OutputÞ: ð12Þ

Here, xi is implicit as 1 for wA and –1 for wB, again
since A is assumed to be the winning subject. This
formulation of the delta rule can be applied incre-
mentally, updating the model after each competition,
or iteratively over a training-set of paired-comparisons.
The first approach may be less accurate, but is also less
likely to overfit since it will never update based on the
same comparison more than once. The iterative ap-
proach should only be used if the training-set can be
assumed to contain a sampling of all possible compe-
titions that matches all expected future competitions.

3.2 Individual ratings from groups

In order to extend the ANN model given in 1 to learn
individual ratings, the weights for each group are ob-
tained by averaging the ratings of the individuals in
each group. Huang et al. [7, 12] modeled the strength
of a given group by using the sum of the strengths of
the individuals in the group. Their first model [7] as-
sumes that when there are an uneven number of indi-
viduals in each group, the increase in rating from
having a larger group is linear. Their second model [12]
assumes the effect of a difference in the number of
individuals is exponential. The former was appropriate
for the application in [7] because they did not use their
model for applications where there were an uneven
number of individuals in each group, and therefore
how their model handled uneven team numbers was
not relevant. For the application in this paper, how-
ever, it is common to have competing groups of dif-
fering sizes. Instead of modeling the effect of an
imbalance in numbers exponentially directly as Huang
et al. do [12], the model we present uses an average
instead so that the effect of a difference in the number
of individuals can be handled separately. For example,
the home field advantage formulation in Sect. 3.4 uses
the relative number of individuals per group as an
explicit input into the ANN, yielding an exponential
increase in a group’s likelihood of winning if it has
more individuals than the other group. Averaging
instead of summing the ratings is also analogous to
normalizing the inputs—a common practice in effi-
ciently training ANNs. Neither method changes the
general form of the likelihood. The only difference is
that each subject is now a group instead of an indi-
vidual. Instead of inserting an individual’s known rat-
ing hi in for the winning or losing weight, the average of
a group’s individual ratings is inserted for the winning

or losing weight. Instead of each individual ‘‘carrying
its own weight’’ as a rating, each individual carries its
own rating, and that rating is combined with the other
individuals within the group to create that weight.
Therefore, the weights for the ANN model in 1 are
obtained as follows:

wA ¼
P

i2A hi
NA

ð13Þ

wB ¼
P

i2B hi
NB

; ð14Þ

where i 2 A means individual i belongs to group A and
NA is the number of individuals in group A. With
respect to the original Bradley–Terry model, the
strength for a group A becomes:

kA ¼ exp

P
i2A hi
NA

! "
: ð15Þ

Combining individual ratings in this manner means
that the difference in the performance between two
different individuals within a single competition can
not be distinguished. However, after two individuals
have compared within several different groups, their
ratings can diverge.

The weight update for each individual hi is equal to
the update for Dwgroup given in (11):

8i 2 A;Dhi ¼ gð1&OutputÞ ð16Þ

8i 2 B;Dhi ¼ &gð1&OutputÞ; ð17Þ

where A is the winning group and B is the losing group.
In this model, instead of updating wA and wB directly,
each individual receives the same update, therefore
indirectly changing the average group ratings wi by the
same amount that the update in (11) does for DwA and
DwB.

Notice that this model still assumes that groups are
fixed within a comparison. Section 3.3 discusses a way
to implicitly model individuals changing their groups
within a single comparison.

3.3 Weighting player contribution

Depending on the type of competition, prior knowl-
edge may suggest certain individuals within a group are
more or less important despite their ratings. As an
example, consider a public online multi-player com-
petition where players are free to join and leave either
team at any time. All else being equal, players that
remain in the competition longer are expected to
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contribute more to the outcome than those who leave
early, join late, or divide their time between teams.
Therefore, it would be appropriate to weight each
player’s contribution to wA or wB by the length of time
they spent on team A and team B. In addition, the
update to each player’s rating should also be weighted
by the amount of time the player spends on both teams.
Therefore, wA is rewritten as an average weighted by
time spent in either group:

wA ¼
X

i2A
hi

tiAP
j2A tjA

: ð18Þ

Here, tA
i means the amount of time individual i spent in

group A. The rating hi is therefore weighted by the
amount of time individual i spends in group A relative
to the total time spent by all individuals in group A.
Weighting can be used for more than just the amount
of time an individual participates in a competition. For
example, in sports, it may have been previously
determined that a given position is more important
than another. This gives an average that is weighted by
each individual’s contribution compared to the rest of
the individuals’ contributions in the group.

3.4 Home field advantage

The common way of modeling home field advantage
in a Bradley–Terry model is to add a parameter
learned for each ‘‘field’’ into the rating of the
appropriate group [17]. In the ANN model of Fig. 1,
this would be analogous to adding a new connection
with a weight of hf. If the advantage is in favor of the
winning group, the input for hf is 1, if it is for the
losing group, that input is –1. This would be one way
to model home field advantage in the current ANN
model. However, since the model uses group averages
to form the weights, the home field advantage model
can be expanded to include situations where there is
an uneven amount of individuals in each group
(NA „ NB). Instead of having a single parameter per
field, hfg is the advantage for group g on field f. The
input to the ANN model then becomes 1 for the
winning group (A) and –1 for the losing group (B).
The parameters can be stored one per group per field,
or each if it applies, each field can have a parameter
for its home group, and one for any visitor. The fol-
lowing change to the chosen field inputs, fA and fB,
extends this to handle uneven groups:

fA ¼ NA

NA þNB
ð19Þ

fB ¼ NB

NA þNB
ð20Þ

This is appealing because hfg then represents the worth
of an average-rated individual from group g on field f.

Therefore, the field inputs are the relative size of
each group. The full model including the field inputs
then becomes:

Output ¼ PrðA defeats BÞ ¼ 1

1þ e&ðwA&wBþhfAfA&hfBfBÞ
:

ð21Þ

The weight update after each comparison on field f
then extends the delta-rule update from (11) to include
the new parameters:

DhfA ¼ gð1&OutputÞfA ð22Þ

DhfB ¼ &gð1&OutputÞfB: ð23Þ

3.5 Taking into account time

One of the appealing properties of viewing a Bradley–
Terry model as an ANN is that adding extensions is
often as simple as including an additional input into the
ANN. Time can therefore be accounted for by adding
inputs xtA and xtB with corresponding time weights htA
and htB into the ANN. xtA is the time input for subject
A and xtB is the time input for subject B. Again, subject
A is the winning subject and subject B, the losing
subject. Since the ANN is being used to learn the sig-
nificance of a paired difference, xtA should be positive
and xtB negative. The magnitude of the input can be
encoded appropriately to the given data to be fit. For
example, if there is a known maximum time limit the
time input can be the percent of that maximum that has
passed. If time is dependant on the particular ‘‘field’’
the subjects are being compared on, then a time weight
can be learned per subject per field. If it can be as-
sumed that all visiting competitors are affected equally
by time on a given ‘‘home field’’, each field can have
one weight for its home subject, and one for any visitor.
The time weight is updated in the same manner as the
subject weights wA and wB by applying the delta rule:

DhtA ¼ gð1&OutputÞxtA ð24Þ

DhtB ¼ &gð1&OutputÞxtB : ð25Þ

The terms xtA and xtB are included here because they
are not necessarily 1 or –1 as is the case with the sub-
ject inputs on weights wA and wB.
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3.6 Rating uncertainty

One of the problems of the given model is that when an
individual participates for the first time, their rating is
assumed to be average. This can result in incorrect
predictions when a newer individual’s true rating is
actually significantly higher or lower than average.
Therefore, it would be appropriate to include the
concept of uncertainty or variance in an individuals
rating. Glickman [8] derived both a likelihood-based
method and a regular-updating method (like Elo’s) for
modeling this type of uncertainty in Bradley–Terry
models. However, his methods did not account for
finding individual ratings within groups. Instead of
extending his models to do so, we give the following
heuristic which models uncertainty without negatively
impacting the gradient descent method.

Given gi, the number of times that individual i has
participated in a comparison, let the certainty ci of that
individual be:

ci ¼
minðgi;GÞ

G
; ð26Þ

where G is a constant that represents the number of
comparisons needed before individual i’s rating is fully
trusted. The overall certainty of the comparison is then
the average certainty of the individuals from both
groups. If a weighting is used, then the certainty for the
comparison is the weighted average of all the individuals
in either group. The probability estimate then becomes:

Output ¼ PrðA defeats BÞ ¼ 1

1þ e&ðcðwA&wBÞþhfAfA&hfBfBÞ
;

ð27Þ

where c is the average certainty of all of the individuals
participating in the comparison. This effectively
stretches the logistic function, making the probability
estimate more likely to tend towards 0.5—which is
desirable in more uncertain comparisons. For example,
assuming the map weights are close to 0, a comparison
yielding a 70% chance of group A defeating group B
with c = 1.0, would yield a 60% chance of group A
winning if c = 0.5. The modified weight update appears
as follows:

8i 2 A;Dhi ¼ cgð1&OutputÞ ð28Þ

8i 2 B;Dhi ¼ &cgð1&OutputÞ: ð29Þ

Since this can also be seen to effectively lower the
learning rate, g is in practice chosen to be twice as large
for the individual updates as the field-group updates.

The down side to this method of modeling uncer-
tainty is that is does not allow for a later change in an
individuals rating due to long periods of inactivity or
due to improving rating over time. This could be
implemented with a form of certainty decay that low-
ered an individual’s certainty value ci, over time. Also,
notice a similar measure of uncertainty could be ap-
plied to the field-group parameters.

3.7 Preventing rating inflation

One of the problems with averaging (or summing)
individual ratings is that there is no way to model a
single individual’s expected contribution based on their
rating. An individual with a rating significantly higher
or lower than a group they participate in will have an
equal update to the rest of the group. This can result in
inflating that individual’s rating if they constantly win
with weaker groups. Likewise, a weaker individual
participating in a highly skilled but losing group may
have their rating decreased farther than is appropriate
because that weaker individual was not expected to
help their group win as much as the higher rated
individuals were. One heuristic to offset this problem is
to use an individual’s own rating instead of that indi-
vidual’s group rating when comparing that individual
to the other group. This will result in individuals with
ratings higher than their group’s average receiving
smaller updates than the rest of the group when their
group wins, and larger negative updates when they
lose. The opposite is true for individuals with ratings
lower than their group’s average. They will be larger
when they win, and smaller when they lose. This at-
tempts to account for situations where there are large
differences in the expected worth of participating
individuals. This substitution can be written as

wA ¼ hi ð30Þ

if individual i is in the winning group, and

wB ¼ hi ð31Þ

if individual i is on the losing group. The substitution is
only used to calculate Pr(A defeats B) for the Output
used in player i’s update.

4 Experiments

The final model employs all of the extensions discussed
in Sect. 3. The model was developed originally to rate
players and predict the outcome of matches in the
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World War II-based online team first-person shooter
computer game Enemy Territory. With hundreds of
thousands of players over thousands of servers world-
wide, Enemy Territory is one of the most popular
multi-player first-person shooters available. In this
game, two teams of on average 4–20 players each,
the Axis and the Allies, compete on a given ‘‘map’’.
Both teams have objectives they need to accomplish on
the map to defeat the other team. Whichever team
accomplishes their objectives first is declared the
winner of that map. Usually one of the teams has a
time-based objective—they need to prevent the other
team from accomplishing their objectives for a certain
period of time. If they do so, they are the winner. In
addition, the objectives for one team on a given map
can be easier or harder than the other team’s objec-
tives. The size of either team can also be different and
players can both enter, leave, and change teams at will
during the play of the given map. These characteristics
motivated the development of the above extensions
because they are common in public Enemy Territory
servers. Weighting individuals by time deals with
players coming, going, and changing teams. Incorpo-
rating a group size-based ‘‘home field advantage’’
extension deals with both the uneven numbers and the
difference in difficulty for either team on a given map.
The time parameters allow the model to adapt to sit-
uation where the length of the match is unusual for the
given teams. The certainty parameter was developed to
deal with inflated probability estimates given several
new and not fully tested players. Since it is common
practice for a server to drop a player’s rating infor-
mation if they do not play on the server for an ex-
tended period of time, no decay in the player’s
certainty was deemed necessary.

The model was developed to predict the outcome for
a given set of teams playing a match on a given map.
Therefore, the individual and field-group parameters
(in this case both an Axis and Allies parameter for each
map) are updated after the winner is declared for each
match.

In order to evaluate the effectiveness of the model,
its extensions, and training method, data was collected
from 3,379 competitions including 4,249 players and 24
unique maps. The data included which players partic-
ipated in each map, how long they played on each
team, which team won the map, and how long the map
lasted. Custom software was implemented in Python to
simulate the ANN and its training. The ANN model is
trained as described in Sect. 3, using the update rule
after every map. The model is evaluated five times,
only adding the time parameters for the last run. The
runs without the time parameters include one with no

heuristics, one with only the certainty heuristic from
Sect. 3.6, one with only the rating inflation prevention
heuristic from Sect. 3.7, and one combining both heu-
ristics. The final run includes all of the heuristics
because they are shown to be effective, and it also
includes the time parameters.

For the results given, the model’s accuracy on a gi-
ven match is always measured before being trained that
match. This leave-one-out approach ensures the results
are not biased in favor of the data used for training. It
does, however, result in a bias that leads to less accu-
rate results initially and then more accurate results
near the end. This however, is appealing because it
gives a measure of the performance of the model when
used for the real-time application for which it was de-
signed—namely continually ranking and rating players
in this online game. When applied in the real-world,
the model will be fit in this exact sequential manner,
and therefore the results given are specifically appro-
priate to the application.

One way to measure the effectiveness of these runs
would be to look at how often the team with the higher
probability of winning does not actually win. However,
this result can be misleading because it assumes a team
with a 55% chance of winning should win 100% of the
time—which is not desirable. The real question is
whether or not a team given a P% chance of winning
actually wins P% of the time. Therefore, the method
chosen to judge the model’s effectiveness uses a histo-
gram to measure how often a team given a P% chance
of winning actually wins. For the results in Sect. 5, the
size of the histogram intervals is chosen to be 1%. This
measure is called the prediction error because it shows
how far off the predicted outcome is from the actual
result. A prediction error of 5% means that when
the model predicts team A has a 70% probability of
winning, they really have a probability of winning
between 65 and 75%. Or, in the histogram sense, it
means that given all of the occurrences of the the model
giving a team a 70% chance of winning, that team will
actually win in 65–75% of those occurrences.

As mentioned in Sect. 1, there are no currently
published models which with to compare this one, so
none are given. It can only be said that given the
complexity of the problem, producing reasonable
estimates of match outcomes is, in and of itself, sig-
nificant.

5 Results and analysis

The results are shown in Table 1. Each column gives
the prediction error resulting from a different combi-
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nation of heuristics. The first column uses no heuristics,
the second uses only the inflation prevention heuristic
(see Sect. 3.7), the third column uses only the rating
certainty heuristic (see Sect. 3.6), the fourth column
combines both heuristics, and the last column com-
bines both heuristics along with taking into account the
time parameters. Each heuristic improves the results
and combining both gives a prediction error at 5.42%.
Adding in the time parameters brings the error 16%
lower to 0.0457. This value means that a given estimate
is, on average, 4.57% too high or 4.57% too low.
Therefore, when the model predicts a team has a 75%
chance of winning, the actual average % chance of
winning is between 70 and 80%.

One question is on which side does the prediction
error tend for a given probability. To examine this, two
plots are shown. Each plot gives the predictions plotted
against the true values taking 20 5% histogram inter-
vals of the results. Figure 2 shows the predictions for
the final model without the time parameters, and Fig. 3
shows the predictions with the time parameters. The
lines in the middle of each figure give the ideal, and
therefore deviations from the line show the direction of
the error for each prediction. Notice that with only two
low-error exceptions on the extremes, the prediction
error for the model without the time parameters tends
to be positive when the prediction probability is low,

and negative when it is high. This means that the ori-
ginal model is slightly extreme on average. For exam-
ple, if the model predicts a team is 75% likely to win,
they will be on average only 70% likely to win. A team
predicted to be 25% likely to win will be on average
30% likely to win. The model with the time parame-
ters, however, has the opposite trend. It tends to have
negative error when the prediction is low, and positive
when it is high. This means it is more conservative.
When the newer model predicts a team is 75% likely to
win, that team is really, on average, closer to 80%
likely to win. When it predicts a team in 25% likely to
win, that team is closer to 20% likely to win. It is not
surprising that taking into account time results in a
more conservative model because it lowers the expec-
tation of a superior team winning if that team is
‘‘taking too long’’ to win. Another interesting differ-
ence when taking into account time is the fact it is
more accurate near 50% (and therefore more likely to
predict ties correctly) and the clusters are ‘‘tighter’’,
meaning it has a lower variance.

In addition to evaluating the model analytically, the
ratings it assigns to the players can be assessed from
experience. For the matches used for the results, the
well-known best players also have the highest ratings
according to the model. These players are well-known
on for their tenacity in winning maps, and therefore the
model’s ranking appears to fit intuition gained from
experience with these players. In summary, the model
effectively predicts the outcome of a given map with a
prediction error of less than 5%, and provides rea-
sonable ratings for the players.

Table 1 Bradley–Terry ANN Enemy Territory prediction errors

Heuristic None Inflation Certainty Both With time

Prediction error 0.1034 0.0635 0.0600 0.0542 0.0457
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Fig. 2 Prediction versus true probability using 20 5% histogram
intervals
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Fig. 3 Prediction versus true probability using 20 5% histogram
intervals with the time-based parameters added
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6 Application

One of the goals in creating an entertaining multi-
player game or running an entertaining multi-player
game server is keeping the gameplay fair for both
teams. Players are more likely to continue playing a
game or continue playing on a given game server if the
competition is neither too easy nor too hard. When the
gameplay is uneven, players tend to become discour-
aged and leave the server or play different games. This
is where the rating system becomes useful. Besides
being able to rate individual players and predict the
outcome of matches in a multiplayer game like Enemy
Territory, the predictions can also be used during a
given map to balance the teams. If a team’s probability
of winning is greater than some chosen threshold, a
player can be moved from that team to the other team
in order to ‘‘even the odds.’’ The Bradley–Terry ANN
model as adapted for Enemy Territory is now being
run on hundreds of Enemy Territory servers involving
hundreds of thousands of players world-wide. A large
number of those servers have enabled an option that
keeps the teams balanced, and therefore, in theory,
keeps the gameplay entertaining for the players.

One extension of this system would be to track
player ratings across multiple servers world-wide with
a master server and then recommend servers to players
based on the difficulty level of each server. This would
allow players to find matches for a given online game in
which the gameplay felt ‘‘even’’ to them. This type of
‘‘difficulty matching’’ is already used in several online
games today, but only for either one-on-one type
matches, or teams where the players never change. The
given Bradley–Terry ANN model could extend this to
allow for dynamic teams on public servers that main-
tain an even balance of play.

This can also be applied to improving groups chosen
for sports or military purposes. Individuals can be rated
within groups as long as they are shuffled through
several groups and then, over time, groups can be
either chosen by using the highest rated individuals,
or balanced by choosing a mix for each group. The
higher-rated groups would be appropriate for real
encounters, whereas balanced groups may be preferred
for practicing or training purposes.

7 Weight analyses

Besides the importance of the accuracy of the pro-
posed model, also of interest are the values of the
parameters themselves. Analyzing these parameters
can lead to improvements in gameplay. For example,

examining the time parameters and the field parame-
ters can lead to insights that allow server administra-
tors to more fairly balance matches, and allow level
and map designers to either create more balanced
maps, or recommend more appropriate time limits.

As an example, consider the time and field weights
assigned to two maps shown in Tables 2 and 3. First,
note that the time weights are symmetrical. This is not
surprising because the weight updates are the same for
the time weights. In fact, both the field and time
weights could be stored in a single weight, but they are
separated for ease of interpretation. Notice in the
baserace map (Table 2) the field weights are close and
the time weights are small. This exactly matches intu-
ition about baserace because it is a perfectly symmet-
rical map. The objectives are the same for both sides,
and the physical layout is also the same on both sides of
the map. Therefore, the expectation is that the weights
should be very similar, and time should not have a
strong affect on the map. The ice map, on the other
hand, is almost the opposite. It is far easier in practice
for the Axis team to win the ice map—however, when
they do win, they usually win quite early. The negative
time weight for the Axis team suggests that they be-
come less and less likely to win as time passes. In
practice, this usually means the Allies have found a
way to defend against the Axis on this map more
effectively than usual. Notice, however, that the dif-
ference in the field weights is still greater than the
difference in the time weights. This suggests that even
though the Axis team will become less likely to win
over time, they are still expected to win more often in
general. This also suggests that the model has detected
that the ice map’s timelimit may be too long because
the input for the time weights is the amount of time the
map took over the timelimit. If shortened, the field and
time parameters may come more into balance. This
was seen using the team balancing system in practice.

As suggested above, the predictions from the
Bradley–Terry model as applied to Enemy Territory

Table 2 Time and field weights for the baserace map

Field Time

Allies 1.86 0.12
Axis 2.01 –0.12

Table 3 Time and field weights for the ice map

Field Time

Allies –0.97 1.04
Axis 1.78 –1.04

184 Neural Comput & Applic (2008) 17:175–186

123



can be used to actively balance the teams in a given
match. In earlier tests, balancing the team without
taking time into account resulted in maps like ice being
heavily stacked in favor of the defense. This is because
without the time weight parameter, the model can only
assume that without a greater number of players, the
Axis team will win most of the time. Adding the time
weight parameter to this system results in more bal-
anced play. It still stacks the defense initially, however,
as time passes, the time-weighted model detects the
Axis team is not as likely to win as originally predicted,
and moves more players off the defense. Even with the
time weighting, however, it was not uncommon for the
team balancing system to not allow any players on
the Axis team for several minutes. This is due to the
aforementioned domination of the time weights by the
field weights. Here, the team balancing system is
effectively giving the unfavored Allies team a ‘‘head
start’’ While logically correct, this is less entertaining
for the players, who prefer to have contestants to play
against, regardless of the difficulty. Fortunately, the
‘‘head start’’ the team balancing system suggests also
implies that the map’s timelimit may be too long. By
decreasing the time limit of the map by roughly the
amount of time the balancing system kept the teams
empty, the time weight can come more into balance
with the field weight. This results in a more balanced
experience for both teams. Therefore, the results of
adding time weights not only improves the model’s
predictive power, but also leads to new insights that
improve gameplay overall. This suggests the model can
be used not only for prediction, but map creators can
use it for creating more balanced and therefore more
entertaining maps. Games that provide a more enter-
taining experience are generally more popular, which is
beneficial to both the makers of the games, and the
players who will have more people with which to par-
ticipate.

Analyzing time weights can be used for more than
just improving the balance of online games. It can be
applied to any situation where determining the effects
of time on a comparison or competition is important.
In the military sense, it can be used to balance exer-
cises or to determine how long to allow an encounter to
continue. For sports it can be used to better determine
how long a match should last. This can include team
sports as well as other time involved matches like ice-
skating where a skater has a set amount of time in their
program. In education, it could be applied to how long
it takes to learn a given concept when comparing dif-
ferent methods of teaching. In medicine, in can be
applied to determine how time will affect the recovery
or worsening of a given patient using different treat-

ments. There are several significant applications where
analyzing the effects of the passage of time can lead to
new insights on important paired-comparisons.

8 Conclusions and future work

This paper has presented a method to learn Bradley–
Terry models using an ANN. An ANN model is
appealing because it makes using and extending the
Bradley–Terry model accessible for a broader com-
munity. In addition, ANN re-parameterization also
provides a training rule that can be used incrementally
or iteratively. The basic model is extended to rate
individuals where groups are being compared, to allow
for weighting individuals, to model ‘‘home field
advantages’’, to take into account the effects of time
on gameplay, to deal with rating uncertainty, and
to prevent rating inflation. The results when applied to
a large, real-world problem including thousands of
comparisons involving thousands of players yields
probability prediction estimates within less than 5% of
the actual values. In addition, analysis of the resulting
parameters leads to new insights that suggest ways of
improving the game’s overall balance.

This type of individual rating out of groups can be
important in many other applications. This can include
rating individual players on sports teams, rating sol-
diers that participate in military group training, rating
employees who participate in competing projects ac-
ross different groups, rating competing manufacturing
processes at the machine-level, and any other appli-
cation where it is advantageous to rank individual
subjects when they are only compared at group levels.
In today’s world, overall performance is measured
more often than not at the group instead of individual
level, and therefore approaches for rating in that con-
text are becoming more and more important. The fact
that the given method provided here performs well on
an application as complex as public-style online gaming
suggests it could perform well on other important
applications as well.

One of the problems with the current model is that
all associations are assumed to be additive and expo-
nential. They are additive in the sense that the skill of a
given group is proportional to the exponentiated sum
of the skill of the individuals in that group. It does not
take into account higher-level interactions between the
individuals. It is exponential because the effects of time
and the number of individuals per group is assumed to
affect the model in an exponential fashion. This may be
inaccurate if having more individuals implies more or
less an exponential increase in the skill, or being in a
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group twice as long affects the outcome in a non-
exponential fashion. Two approaches to improving the
robustness of the current model include:

1. Extending the current single-layer ANN to a multi-
layer ANN.

2. Constructing a higher-level statistical model that
allows for these additional complexities.

One of the nice properties of using an ANN as a
Bradley–Terry model is that it can be easily extended
from a single-layer model to a multi-layer ANN. No
currently known Bradley–Terry model incorporates
interaction effects between individuals within a group
or in a competing group. Current models do not
consider that individuals i and j may have a higher
effective rating when playing together than apart. A
multi-layer ANN is able to model these higher-order
interactions by making each hidden node represent a
subset of the stronger interactions. In addition, a multi-
layer ANN is able to learn non-linear functions of its
inputs, and therefore a multi-layer Bradley–Terry
ANN can find if either or both of the group size and
time inputs affect the outcome in a different fashion.
The next Bradley–Terry model will be a multi-layer
Bradley–Terry ANN constructed to determining these
relationships.

One of the down sides of using a multi-layer ANN is
that it will be harder to interpret the individual ratings.
Therefore, statistical approaches including hierarchical
Bayes will also be applied to see if a more identifiable
model can be constructed. One way to develop an
identifiable interaction model can extend from the fact
that it is common for sub-groups of players to play in
‘‘fire-teams’’ or ‘‘squads’’ in games like Enemy Terri-
tory. An interaction model can be designed that uses
the fire-teams as a basis without needing to consider the
intractable number of all-possible interactions. For the
time and group size effects, more robust, non-linear
functions can be chosen and fit for combining these
parameters. Using a statistical model would also make
it more natural to account for the uncertainty in indi-
vidual ratings. The uncertainty can be modeled directly
as the variance in a given individual’s rating. This more
principled approach to handling uncertainty can then

be used to replace the Bradley–Terry ANN model
parameter c with an true estimate instead of a heuristic.
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