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Abstract— Bayesian methods are theoretically optimal in
many situations. Bayesian model averaging is generally con-
sidered the standard model for creating ensembles of learners
using Bayesian methods, but this technique is often out-
performed by more ad hoc methods in empirical studies. The
reason for this failure has important theoretical implications
for our understanding of why ensembles work. It has been
proposed that Bayesian model averaging struggles in practice
because it accounts for uncertainty about which model is
correct but still operates under the assumption that only one
of them is. In order to more effectively access the benefits
inherent in ensembles, Bayesian strategies should therefore be
directed more towards model combination rather than the
model selection implicit in Bayesian model averaging. This work
provides empirical verification for this hypothesis using several
different Bayesian model combination approaches tested on
a wide variety of classification problems. We show that even
the most simplistic of Bayesian model combination strategies
outperforms the traditional ad hoc techniques of bagging and
boosting, as well as outperforming BMA over a wide variety of
cases. This suggests that the power of ensembles does not come
from their ability to account for model uncertainty, but instead
comes from the changes in representational and preferential
bias inherent in the process of combining several different
models.

I. INTRODUCTION

Learner error can often be reduced by combining infor-
mation from a set of models. This poses the challenge of
finding effective ways to create combinations of learners. A
number of ad hoc strategies have been proposed to address
this task. For example, bagging [1] employs one of the
simplest methods of combining the information presented in
an ensemble: allowing each learner to have one vote toward
the final classification of an instance. Boosting [2], attempts
to focus on harder instances during the course of training,
and votes are weighted by the accuracy that a given learner
achieves on the data set.

One possible explanation for the success of ensemble
learners is based on Bayesian learning theory [3]. Suppos-
edly, using a single model for learning ignores the uncertainty
about model correctness that results from a finite amount
of data. Under this assumption, ensembles work because
they can more effectively deal with this uncertainty about
model correctness. Strategies such as bagging compensate
for this uncertainty simply by incorporating a set of models
into the learning process while Bayesian model averaging
(BMA) should provide the “optimal” ensemble procedure.
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Bayesian model averaging accounts for uncertainty of model
correctness by integrating over the model space and weight-
ing each model by the probability of its being the “correct”
model. BMA is the generally accepted method for applying
Bayesian learning theory to the task of model combination.
Although the result of BMA is a combination of models,
this combination is actually just integrating out the system’s
uncertainty as to which model is correct in the sense of
being the Data Generating Model (DGM) assuming that
one and only one of the models is indeed the DGM. Thus,
BMA is actually a model selection procedure that deals with
uncertainty about its selection using a combination.

One might expect Bayesian model averaging to perform
well since Bayesian techniques have been applied to many
other tasks with high success. For example, even simple
single model classifiers such as Naı̈ve Bayes [4] and Flexible
Bayes [5] can achieve remarkably high accuracy on certain
problems. More complex distributions can be represented
by Bayesian mixture models. Sampling techniques such as
Markov Chain Monte Carlo can be used to infer parameters
in relatively complex models [6]. Specific models are also
commonly used for specific tasks. The latent Dirichlet allo-
cation model is commonly used to identify topics present in a
set of documents [7]. However, when it comes to the task of
ensemble creation, the standard technique of Bayesian model
averaging encounters some problems.

In an empirical study, Domingos [8] showed that Bayesian
model averaging is prone to higher error rates than more ad
hoc methods. Specifically, Bayesian model averaging resulted
in higher average error rates than bagging and partitioning
in a variety of experiments. A similar result was obtained by
Clarke [9], who compared BMA to stacking. At first, these
results appear to be surprising given the supposed optimality
of Bayesian techniques and their success in so many other
areas.

Domingos argued that the problem with BMA is that
it places too much weight on the maximum likelihood
classifier. Even slight differences in error rate between clas-
sifiers result in much higher weighting of the more accurate
classifier in the ensemble. Yet Bayesian model averaging is
theoretically the optimal method for dealing with uncertainty
about which hypothesis in the hypothesis space is correct.
Given the superior performance of ad hoc methods in em-
pirical studies, it would appear that ensemble performance
is due to more than just their ability to deal with model
uncertainty.

While comparing BMA to stacking, Clarke empirically



noticed that when the Data Generating Model (DGM) is not
one of the component models in the ensemble, BMA tends to
converge to the model closest to the DGM rather than to the
combination closest to the DGM [9]. He also empirically
noted that, in the cases he studied, when the DGM is not
one of the component models of an ensemble, there usually
existed a combination of models that could more closely
replicate the behavior of the DMG than could any individual
model on their own.

Three years earlier, Minka theorized that Bayesian model
averaging is outperformed by other strategies because it fails
to take advantage of the enriched hypothesis space that an
ensemble can provide [10]. If Minka is correct, an ensemble
does more than just deal with uncertainty about which model
is the correct model; it can augment the hypothesis space
with hypotheses that its individual members may not be
able to even represent on their own. Further, ensembles
may change the preferential bias of a learning algorithm,
predisposing the algorithm towards combinations of models
that tend to overfit less than single learners. As Minka states
in his paper, “...the only flaw with BMA is the belief that it
is an algorithm for model combination.” Yet, despite this
fact, people continue to employ BMA in the very case
where BMA is unlikely to perform well, namely the case
where the DGM is not one of the component ensemble
members [9]. In this situation, Bagging and other ad hoc
strategies should have an advantage over Bayesian model
averaging because they incorporate more information from
the enriched hypothesis space provided by an ensemble. This
suggests that if Bayesian methods are to be effectively used
in ensemble creation strategies, efforts should be directed
towards creation of Bayesian mixture models that directly
infer the optimal combination of the component models.
Such strategies would take advantage of both the optimal-
ity of Bayesian learning strategies and the error reduction
advantages that can result from combinations of models.

There are several ways in which an ensemble combina-
tion can be generated using Bayesian principles. Bayesian
inference could be used to generate the optimal combination
(ensemble member weights) given a set of fixed (and already
trained) learners. Alternatively, Bayesian inference could be
used to infer the optimal set of component model parameters
given a fixed ensemble combination scheme. Finally, these
two approaches could be used simultaneously. In this work
we will provide empirical evidence for Minka’s hypothesis
by examining the first two of these three possibilities. In
Section II we review Minka’s argument that Bayesian model
averaging assumes that a single ensemble member is the
DGM. Section III then proposes several possibilities for
generating ensemble weighs given a set of fixed compo-
nent models using the same Bayesian principles as BMA,
but directing them towards the task of model combination
instead of model selection. More complicated strategies are
clearly possible, but even the simple models presented here
outperform bagging, boosting, and Bayesian model averaging
in terms of error reduction on 50 data sets. As a complement

to these techniques, we present a strategy in Section IV
that uses Bayesian methods to learn optimal component
model parameters given a fixed combination of weights.
Again, while there is clear potential for more sophisticated
strategies, even this simple one outperforms more ad hoc
methods of model learning in terms of error reduction.

II. BAYESIAN AVERAGING OF LINEAR COMBINATIONS
OF MODELS

With traditional Bayesian model averaging, the class value
assigned to a given example by the overall model is de-
termined by taking the probability of each class value as
predicted by a single model, multiplying by the probability
that the model is the Data Generating Model (DGM) given a
sample of data, and summing these values for all models in
the hypothesis space. Let n be the size of a data set D. Each
individual example di is comprised of a vector of attribute
values xi and an associated class value yi. The model space
is approximated by a finite set of learners, H , with h being
an individual hypothesis in that space. Equation 1 illustrates
how the probability of a class value is determined for a given
example. The class value assigned to the instance will be the
one with the maximum probability.

p(yi|xi, D,H) =
∑

h∈H

p(yi|xi, h)p(h|D) (1)

By Bayes’ Theorem, the posterior probability of h given
D (the posterior probability that h is the DGM) can be
calculated as shown in Equation 2. Here, p(h) represents
the prior probability of h and the product of the p(di|h)
determines the likelihood.

p(h|D) =
p(h)

p(D)

n∏

i=1

p(di|h) (2)

Bayesian model averaging strategies commonly assume a
uniform class noise model when determining likelihood [8].
With this model, the class of each example is assumed to
be corrupted with probability ε. This means that p(di|h)
is 1 − ε if h correctly predicts class yi for example xi

and ε otherwise. Equation 2 can be rewritten as shown in
Equation 3. (Since the prior probability of the data p(D) is
the same for each model, the equation becomes a statement
of proportionality and p(D) can be ignored.)

p(h|D) ∝ p(h)(1− ε)r(ε)n−r (3)

r is the number of examples correctly classified by h. ε can
be estimated by the average error rate of the model on the
data. This method of calculating likelihood tends to weight
even slightly more accurate classifiers much more heavily.
For example, on a data set with 100 examples, a learner that
achieved 95% accuracy would be weighted as 17 times more
likely than a learner that achieved an accuracy of 94%.

(1− 5
100 )

95( 5
100 )

5 = 2.39 ∗ 10−9

(1− 6
100 )

94( 6
100 )

6 = 1.39 ∗ 10−10



Using these posterior probabilities to weight learner clas-
sifications is clearly an effective way of exploiting the model
with the highest accuracy while still allowing influence from
other models to account for the uncertainty about which
model is correct. It is somewhat ineffective, however, at
taking advantage of information provided by the entire set of
models [9]. If the goal is to use optimal Bayesian techniques
and still capitalize on the possible advantages inherent in
learner combinations, these techniques could be modified
in order to produce optimal methods of model combination
rather than model selection.

Fig. 1. Bayesian model averaging. Since the probability of the most likely
hypothesis is often much higher than the probability of the other hypothesis,
p(yi|xi, D,H) will be predominantly determined by p(hmostLikely |D).

III. BAYESIAN MODEL COMBINATION

Bayesian model averaging can easily be modified to pro-
duce an optimal technique for model combination rather
than model selection. This strategy is referred to here as
Bayesian model combination (BMC). Equation 1 is modified
as follows:

p(yi|xi, D,H,E) =
∑

e∈E

p(yi|xi, H, e)p(e|D) (4)

where e is an element in the space E of possible model
combinations. In this case, the outputs from individual hy-
potheses are combined in a variety of ways to create a set of
diverse ensembles. The output from each ensemble is then
weighted by the probability that the ensemble is correct given
the training data. Now, instead of integrating out uncertainty
about which ensemble member is correct, we are instead
integrating out uncertainty about which model combination
is correct.

Although the space of potential model combinations is
very large, as we shall see, it can easily be sampled from
in order to produce a reasonable finite set of potential model
combinations to test.

A. BMC with a Linear Combinations of Models

For the first set of Bayesian model combination exper-
iments, ensembles were created using linear combinations
of outputs from the base classifiers. Ensembles consisted
of m decision trees whose votes were combined using
various weights. In order to systematically generate a diverse
collection of ensembles, nested for loops were used to assign
incrementally increasing values to the base components.

Fig. 2. Bayesian model combination. In this case, p(yi|xi, D,H,E) will
be predominantly determined by p(emostLikely |D). The model is now
heavily weighting the most probable combination of hypotheses instead of
the most probable single hypothesis.

These values were then normalized to produce a vector of
weights. Table I illustrates how weights were assigned. For
the reported experiments m = 10 and ensemble weightings
were assigned using an increment value of three. This
allowed for the creation of 59, 049 different ensembles from
the same ten base classifiers.

TABLE I
WEIGHT ASSIGNMENTS FOR INDIVIDUAL COMPONENTS IN A SIMPLE

BAYESIAN MODEL COMBINATION LEARNER. EACH COMPONENT IS

WEIGHTED WITH A UNIFORM PRIOR IN THESE EXPERIMENTS.

Raw weights Normalized weights p(e)

1 1 1 1 1 1 1 1 1 1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1
59049

1 1 1 1 1 1 1 1 1 2 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.18 1
59049

1 1 1 1 1 1 1 1 1 3 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.25 1
59049

1 1 1 1 1 1 1 1 2 1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.18 0.09 1
59049

. . . . . . . . .
3 3 3 3 3 3 3 3 3 3 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1

59049

This version of Bayesian model combination is com-
pared to the strategies of bagging, boosting, and traditional
Bayesian model averaging. Experiments were implemented
using modified Weka code [11]. Ten J48 decision trees
(Weka’s implementation of the C4.5 algorithm) with reduced-
error pruning were used as the base classifiers in each of the
algorithms. Bagging and boosting were implemented using
Weka defaults. For bagging, training data for the component
classifiers was obtained by drawing with replacement from
the initial training set until a new training set the same size



as the original set was created [1]. Training sets for the
boosting algorithm were generated in a similar manner, but
instances misclassified by initial component classifiers were
more likely to appear in the training data for subsequent clas-
sifiers [2]. Bayesian model averaging and Bayesian model
combination were implemented using the same ten decision
trees that were used in the bagging experiments as component
classifiers.

Probabilities for class predictions by individual learners
and ensembles were estimated using Weka defaults. For
the individual J48 decision trees, p(yi|xi, h) was estimated
based on the purity of classification at the leaf node. For the
ensemble, p(yi|xi, e) was calculated by averaging probability
estimates from the individual trees.

Posterior probabilities for ensembles in the Bayesian
model combination approach were estimated the same way
they were estimated for individual learners in Bayesian
model averaging. Equation 3 can be easily applied to cal-
culate p(e|D) instead of p(h|D). The class of each example
is assumed to be corrupted with probability ε, so p(di|e) is
1 − ε if e correctly predicts class yi for example xi and ε
otherwise.

Empirical results, shown in Table II, demonstrate the
efficacy of this Bayesian model combination strategy. Ex-
periments were conducted on the twenty-six data sets cited
by Domingos, but since this selection of data sets proved
insufficient to draw conclusions about the statistical signifi-
cance of mean differences in accuracy, an additional twenty-
four datasets were included. All data sets were obtained from
the UCI repository [12]. Error was calculated using ten-fold
cross-validation.

Just as in Domingo’s experiments, these results show that
Bayesian model averaging achieves a lower average accuracy
on the data sets than either bagging or boosting. However,
a strategy that iterates over combinations of models allows
a Bayesian method to compete with the ad hoc methods.
An application of the Friedman test reveals significant dif-
ferences in average accuracy among the various strategies.
(27.77 ∼ χ2, DF = 4, p <= 0.01). The Bonferroni-Dunn
post hoc test indicates that the improvement in accuracy of
this Bayesian model combination strategy exceeds the critical
difference for significance at a confidence level of 95% for
two of the other four strategies (Critical difference = 0.87,
Mean rank differences: 1.26, 0.81, 0.18, 1.25).

B. BMC with Sampling from a Dirichlet Distribution
Our previous implementation of BMC used a systematic

method for sampling the space of potential model combina-
tions. But as we shall see, further improvements in accuracy
can be achieved using a slightly more sophisticated stochastic
strategy for creating a set of potential model combinations.
Instead of assigning weights incrementally, the weights for
each combination of the base classifiers can be obtained by
sampling from a Dirichlet distribution.

In this next set of experiments, weights for the first
q combinations were drawn from a Dirichlet distribution
with uniform alpha values. p(e|D) was then calculated for

TABLE II
AVERAGE ACCURACY OF VARIOUS ENSEMBLE COMBINATION

STRATEGIES

J48 Bagging Boosting BMA BMC
anneal 98.44 98.22 99.55 98.22 98.89

audiology 77.88 76.55 84.96 76.11 82.30
autos 81.46 69.76 83.90 70.24 84.39

balance-scale 76.64 82.88 78.88 82.88 81.44
bupa 68.70 71.01 71.59 70.43 69.86

cancer-wisc. 93.85 95.14 95.71 95.28 95.42
cancer-yugo. 75.52 67.83 69.58 68.18 73.08

car 92.36 92.19 96.12 92.01 93.87
cmc 52.14 53.63 50.78 41.96 53.22

credit-a 86.09 85.07 84.20 84.93 85.65
credit-g 70.50 74.40 69.60 74.30 72.90

dermatology 93.99 92.08 95.63 92.08 95.36
diabetes 73.83 74.61 72.40 74.61 72.92

echo 97.30 97.30 95.95 97.30 97.30
ecoli-c 84.23 83.04 81.25 82.74 84.82
glass 66.82 69.63 74.30 68.69 70.56

haberman 71.90 73.20 72.55 73.20 74.51
heart-cleveland 77.56 82.18 82.18 82.18 80.86

heart-h 80.95 78.57 78.57 78.57 79.59
heart-statlog 76.67 79.26 80.37 78.52 80.00

hepatitis 83.87 84.52 85.81 83.87 84.52
horse-colic 85.33 85.33 83.42 85.05 85.87
hypothyroid 99.58 99.55 99.58 99.55 99.60
ionosphere 91.45 90.88 93.16 90.60 93.16

iris 96.00 94.00 93.33 94.00 95.33
kr-vs-kp 99.44 99.12 99.50 99.12 99.44

labor 73.68 85.96 89.47 87.72 84.21
led 100.00 100.00 100.00 100.00 100.00

lenses 83.33 66.67 70.83 58.33 79.17
letter 100.00 100.00 100.00 100.00 100.00

liver-disorders 68.70 71.01 71.59 70.43 69.86
lungcancer 50.00 50.00 53.12 46.88 53.12

lymph 77.03 78.38 81.08 79.05 79.73
monks 96.53 99.54 100.00 96.99 100.00

page-blocks 96.88 97.24 97.02 97.26 97.26
postop 70.00 71.11 56.67 71.11 68.89

primary-tumor 39.82 45.13 40.12 45.13 41.59
promoters 81.13 83.96 85.85 85.85 81.13
segment 96.93 96.97 98.48 96.88 97.66

sick 98.81 98.49 99.18 98.46 98.94
solar-flare 97.83 97.83 96.59 97.83 97.83

sonar 71.15 77.40 77.88 77.40 75.48
soybean 91.51 86.82 92.83 86.38 93.56

spect 78.28 81.65 80.15 82.02 79.03
tic-tac-toe 85.07 92.07 96.35 91.65 93.53

vehicle 72.46 72.70 76.24 72.81 76.36
vote 94.79 94.58 95.66 94.58 95.66
wine 93.82 94.94 96.63 93.26 95.51
yeast 56.00 60.04 56.40 31.20 60.24
zoo 92.08 87.13 96.04 86.14 93.07

average: 82.37 82.79 83.62 81.64 83.93

each combination, and the weights from the most probable
combination were used to update the alpha values for the
distribution from which the next q weight assignments were
drawn. Table III illustrates how weights were assigned in
these experiments.

The same ten base classifiers from the previous section
were used in these experiments. Alpha values were updated
with a q value of three, and 59, 049 Dirchlet-generated weight
assignments were considered. Results are shown in Table IV.

An application of the Friedman test reveals significant
differences in average accuracy among the various strategies.



TABLE III
SAMPLE WEIGHT ASSIGNMENTS FOR INDIVIDUAL COMPONENTS IN A

BAYESIAN MODEL COMBINATION LEARNER EMPLOYING A DIRICHLET

DISTRIBUTION. AFTER A SET OF COMBINATIONS ARE GENERATED, THE

WEIGHTS OF THE MOST PROBABLE COMBINATION ARE USED TO UPDATE

THE ALPHA VALUES OF THE DIRICHLET FROM WHICH THE NEXT SET OF

COMBINATIONS WILL BE DRAWN. AS WITH THE FIRST EXPERIMENTS,
EACH COMPONENT IS WEIGHTED WITH A UNIFORM PRIOR.

Weights p(e|D) p(e)
Initial alpha values: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.06 0.26 0.08 0.11 0.09 0.20 0.17 0.00 0.02 0.01 0.00 1
59049

0.10 0.15 0.14 0.28 0.04 0.00 0.17 0.03 0.07 0.02 0.03 1
59049

0.00 0.10 0.04 0.04 0.03 0.03 0.09 0.02 0.29 0.36 0.02 1
59049

New alpha values: 1.10 1.15 1.14 1.28 1.04 1.00 1.17 1.03 1.07 1.02
0.07 0.00 0.04 0.12 0.26 0.15 0.07 0.13 0.01 0.13 0.03 1

59049
0.16 0.13 0.15 0.05 0.00 0.04 0.07 0.14 0.13 0.12 0.02 1

59049
0.01 0.05 0.07 0.15 0.04 0.08 0.26 0.01 0.26 0.08 0.02 1

59049
New alpha values: 1.17 1.15 1.19 1.40 1.31 1.16 1.24 1.17 1.07 1.15

0.02 0.02 0.03 0.28 0.20 0.04 0.04 0.00 0.18 0.19 0.02 1
59049

0.35 0.12 0.13 0.06 0.08 0.07 0.09 0.02 0.06 0.01 0.00 1
59049

0.07 0.14 0.02 0.01 0.17 0.01 0.17 0.15 0.14 0.12 0.03 1
59049

(28.76 ∼ χ2, DF = 4, p <= 0.01). The Bonferroni-Dunn
post hoc test indicates that the improvement in accuracy
of Bayesian model combination with Dirichlet sampling
exceeds the critical difference for significance at a con-
fidence level of 95% for three of the other four strate-
gies (Critical difference = 0.87, Mean rank differences:
1.33, 0.87, 0.29, 1.31).

IV. BAYESIAN MODEL PARAMETER LEARNING GIVEN A
FIXED COMBINATION OF MODELS

The previous experiments effectively use Bayesian tech-
niques to determine the optimal combination of a fixed set
of learners. Alternately, Bayesian techniques can be used
to update learners given a fixed combination of weights.
There are likely many models for which this sort of strategy
could be applied, but one simple illustrative case involves
the CMAC neural network topology [13].

The CMAC is modeled on the human cerebellum. It func-
tions by mapping weights w[i] to tiles which are interpreted
spatially, as illustrated in Figure 3. Inputs are mapped to
the correct bins by means of an association function b[i](x),
where b[i](x) = 0 when x does not fall within the spacial
region assigned to bin i and where b[i](x) = 1 when it does.
The output of the system can be computed as follows:

fCMAC(x) =
∑

i

w[i]b[i](x) (5)

Note that the CMAC outputs continuous values, so the
experiments in this section will involve data sets with real
rather than discrete target values. The error at location x is
calculated as shown:

e(x) = fCMAC(x)− fobserved(x) (6)

Traditionally, weights are updated as follows:

∆w[i] = α
e(x)∑
i b[i](x)

(7)

TABLE IV
AVERAGE ACCURACY OF VARIOUS ENSEMBLE COMBINATION

STRATEGIES

J48 Bagging Boosting BMA BMC-D
anneal 98.44 98.22 99.55 98.22 98.89

audiology 77.88 76.55 84.96 76.11 82.30
autos 81.46 69.76 83.90 70.24 84.88

balance-scale 76.64 82.88 78.88 82.88 81.92
bupa 68.70 71.01 71.59 70.43 71.88

cancer-wisc. 93.85 95.14 95.71 95.28 95.14
cancer-yugo. 75.52 67.83 69.58 68.18 73.08

car 92.36 92.19 96.12 92.01 93.75
cmc 52.14 53.63 50.78 41.96 52.95

credit-a 86.09 85.07 84.20 84.93 85.07
credit-g 70.50 74.40 69.60 74.30 73.10

dermatology 93.99 92.08 95.63 92.08 95.36
diabetes 73.83 74.61 72.40 74.61 74.35

echo 97.30 97.30 95.95 97.30 97.30
ecoli-c 84.23 83.04 81.25 82.74 84.52
glass 66.82 69.63 74.30 68.69 70.09

haberman 71.90 73.20 72.55 73.20 74.51
heart-cleveland 77.56 82.18 82.18 82.18 79.87

heart-h 80.95 78.57 78.57 78.57 79.59
heart-statlog 76.67 79.26 80.37 78.52 80.00

hepatitis 83.87 84.52 85.81 83.87 83.87
horse-colic 85.33 85.33 83.42 85.05 86.14
hypothyroid 99.58 99.55 99.58 99.55 99.60
ionosphere 91.45 90.88 93.16 90.60 93.45

iris 96.00 94.00 93.33 94.00 95.33
kr-vs-kp 99.44 99.12 99.50 99.12 99.44

labor 73.68 85.96 89.47 87.72 84.21
led 100.00 100.00 100.00 100.00 100.00

lenses 83.33 66.67 70.83 58.33 79.17
letter 100.00 100.00 100.00 100.00 100.00

liver-disorders 68.70 71.01 71.59 70.43 71.88
lungcancer 50.00 50.00 53.12 46.88 56.25

lymph 77.03 78.38 81.08 79.05 80.41
monks 96.53 99.54 100.00 96.99 100.00

page-blocks 96.88 97.24 97.02 97.26 97.24
postop 70.00 71.11 56.67 71.11 67.78

primary-tumor 39.82 45.13 40.12 45.13 41.30
promoters 81.13 83.96 85.85 85.85 81.13
segment 96.93 96.97 98.48 96.88 97.45

sick 98.81 98.49 99.18 98.46 98.97
solar-flare 97.83 97.83 96.59 97.83 97.83

sonar 71.15 77.40 77.88 77.40 74.52
soybean 91.51 86.82 92.83 86.38 93.12

spect 78.28 81.65 80.15 82.02 79.03
tic-tac-toe 85.07 92.07 96.35 91.65 93.53

vehicle 72.46 72.70 76.24 72.81 76.48
vote 94.79 94.58 95.66 94.58 95.44
wine 93.82 94.94 96.63 93.26 95.51
yeast 56.00 60.04 56.40 31.20 60.51
zoo 92.08 87.13 96.04 86.14 93.07

average: 82.37 82.79 83.62 81.64 84.02

where α is the learning rate. The output y of the network
at any position x is the sum of the weights for the tiles that
overlap that position.

Though not a traditional view, the CMAC can be thought
of as an ensemble where each layer learns information about
a given function and outputs are calculated by combining
information from each layer using a fixed weighting scheme
(each layer is equally weighted with all the others). The
ensemble-like structure suggests that the CMAC could also
be reasonably trained using ensemble techniques such as



Fig. 3. Tile structure for a CMAC with three layers and four tiles per layer

bagging or Bayesian model averaging, treating the layers
as individual learners and altering the weightings of layer
outputs according to the given technique. With one task
specifically designed to match the assumptions made by
BMA, that ensemble creation technique is effective in re-
ducing error. However, once again, a Bayesian strategy that
allows for a model combination approach does better on a
wider variety of tasks.

Carroll, Monson, and Seppi [14] showed how Bayesian
techniques can be applied to CMAC learning. Further details
on BCMAC training can be found elsewhere in the literature
[15], but a brief overview is provided here. A function,
f , is assumed to be stationary, and all observations y are
assumed to have linear Gaussian noise with covariance Σy.
The relationship between the data D and the CMAC’s
representation for f can be modeled as follows:

p(y|x, f) = N(y; f(x),Σy). (8)

This can be rewritten as:

p(y|x, f) = N(y|Hw,Σy), (9)

where H can be thought of as an association matrix. Hi,j = 1
if tile j influences the training example i. Weight values
are represented by the vector w. Weights of the model are
related to observations according to a multivariate normal
model [16] with prior parameters µ0µ0µ0 and ΣΣΣ0. The parameters
of the posterior distributions for the mean and covariance can
then be found by:

µµµ1 = µµµ0 +K1(y −Hµµµ0), (10)

and
ΣΣΣ1 = (I−K1H)(ΣΣΣ0), (11)

where
K1 = (ΣΣΣ0)H

T (H(ΣΣΣ0)H
T +ΣΣΣy)

−1. (12)

These equations are identical to the Kalman filter for a
single time step. This observation means that, given a prior
over CMAC weights and some training data, a well-known
and widely studied filtering technique can be applied to solve
in closed form for both the posterior distribution over the

CMAC weights and the posterior predictive distribution over
CMAC outputs.

The benefits of this strategy are demonstrated in the fol-
lowing experiments. The layers of the CMAC were learned
using the traditional CMAC learning rule, bagging, Bayesian
model averaging, and the BCMAC learning rule. All of the
CMACs were constructed with five layers and between three
and seven tiles tiles per dimension on each layer. With the
bagging CMAC, layers were trained individual on size n
subsets selected with replacement from the initial training
set of size n. Outputs of each layer were then weighted
equally when calculating the final output for a given example.
The Bayesian model averaging CMAC was constructed in
a similar manner, but layer outputs were weighted by a
likelihood term calculated using a normal noise model. Priors
for the BCMAC were calculated empirically based on the
data sets.

Experiments are conducted on three numeric data sets
provided by Weka for machine learning tasks [11]. Because
the CMAC was designed for continuous values, these sets
were selected for their limited number of numerical features
and numeric class values. Algorithm performance was also
tested on twoDimEgg, a variant of the two-dimensional egg
carton function y = sin(x1∗2.5)+sin(x2∗2.5), and step2d,
a stepwise function which returns 1 if x2

1 + x2
2 < 10 and

−1 otherwise. This rather simple function was specifically
chosen to have a steep, curved boundary, a situation which
have been shown to be difficult for CMAC based learning
algorithms.

In order to further test the theory that BMA performs
poorly because it performs optimal model selection instead of
optimal model combination, the final data set, optimalBMA,
was constructed to provide a situation where model selection
would perform well [9]. The function assigns −1 to all values
left of a vertical boundary and 1 to all values to the right.
This boundary was aligned with the edge of one of the tiles
in the CMAC. Thus, one of the layers would exactly replicate
the DGM in the sense of providing correct outputs for each
example while every other layer would provide at least some
incorrect outputs. The goal of an ensemble strategy would
be to select this layer.

TABLE V
AVERAGE ERROR RATES OF FOUR LEARNING STRATEGIES

CMAC Bagging BMA BCMAC
elusage 0.047 0.045 0.045 0.035
gascon 0.140 0.135 0.134 0.041
longley 0.097 0.119 0.119 0.062
step2d 0.019 0.018 0.022 0.018
twoDimEgg 0.025 0.109 0.270 0.018
optimalBMA 0.005 0.071 0.006 0.002

The BCMAC achieves a substantially lower error rate
than the Bayesian model averaging strategy on all data sets
studied, except for the case of optimalBMA where the results
are nearly indistinguishable. In fact, with the exception
of one tie with bagging on the step2d function, BCMAC



outperforms all of the other three algorithms in terms of error
reduction over the other five data sets. As with the previous
experiments, bagging was often able to achieve a lower
error rate than Bayesian model averaging. However, Bayesian
model averaging substantially outperforms bagging on the
optimalBMA data set, where placing all of the weight on
one component is the best strategy. BMA was outperformed
by the ad hoc techniques, except in the one case where
model selection was required. This again provides further
empirical justification for Minka’s proposition on the theory
of ensemble learning.

V. CONCLUSION

Despite the theoretical optimality of Bayesian methods and
their successful application to a wide variety of tasks, the
standard technique of Bayesian model averaging struggles in
empirical studies. Minka theorized that since the algorithm
places so much emphasis on the most likely ensemble
member, it fails to take advantage of the benefits inherent in
model combinations. However, as we have shown, if BMA is
modified to integrate over combinations of models rather than
over individual learners, it can achieve much better results.

Domingos described a number of situations in which
Bayesian model averaging is outperformed by standard ad
hoc ensemble creation methods. We have shown that even
the most simplistic of Bayesian model combination strategies
outperforms the traditional ad hoc techniques of bagging and
boosting, as well as outperforming BMA in a significant
number of cases. We have demonstrated with the BCMAC
experiments that, in the rare instances where model selection
is indeed the correct approach, Bayesian model averaging
performs well. On most problems, however, a Bayesian
technique geared toward selecting a combination of models
results in lower error rates.

This work has some theoretical implications for why
ensembles work. The results suggest the effectiveness of
ensembles is due, at least in part, to the enriched hypothesis
space and more general bias that can be provided by a
combination of models. We have demonstrated that there are
a wide variety of potential methods for applying Bayesian
techniques to model combination. We have shown that it is
possible to fix the component learners and then learn the
optimal model combination in a Bayesian fashion (both ver-
sions of BMC). We have also shown that in some situations
it is possible to fix the model combination strategy, and learn
optimal models given the known combination (BCMAC).

Future work will involve the investigation of more so-
phisticated methods of Bayesian model combination. For
example, the simple Bayesian model combination strategies
presented in Section III could be modified to allow for
non-linear combinations of models. Other possible strategies
might take spatial considerations into account, developing
learners to specialize in different areas of the feature space
or training learners with the sampling techniques used in
boosting.

In this paper, we have shown how Bayesian inference
can be used to generate the optimal combination (ensemble
member weights) given a set of fixed (and already trained)
learners. We have also shown how Bayesian inference can be
used to infer the optimal set of component model parameters
given a fixed ensemble combination scheme. Future work
will involve using these two approaches could be used
simultaneously. One way to accomplish this could involve an
expectation maximization strategy. An optimal combination
could be determined given a set of learners, and then the
learners could be updated given the new combination strat-
egy. Alternatively, strategies could be developed that would
allow learners and combinations to be inferred simultane-
ously. The BCMAC can be solved in closed form because
both weights and outputs are distributed normally. Other
learners with similar Normal distribution properties might
also be solved in a similar fashion. Gaussian processes should
be explored as a potential rich framework for building such
learners.
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