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Abstract— Selecting an effective method for combining the
votes of classifiers in an ensemble can have a significant impact
on the ensemble’s overall classification accuracy. Some methods
cannot even achieve as high a classification accuracy as the most
accurate individual classifying component. To address this issue,
we present the strategy of Aggregate Confidence Ensembles,
which uses multiple measures to estimate a classifier’s confi-
dence in its predictions on an instance-by-instance basis. Using
these confidence estimators to weight the votes in an ensemble
results in an overall average increase in classification accuracy
compared to the most accurate classifier in the ensemble. These
aggregate measures result in higher classification accuracy than
using a collection of single confidence estimates. Aggregate
Confidence Ensembles outperform three baseline ensemble
creation strategies, as well as the methods of Modified Stacking
and Arbitration, both in terms of average classification accuracy
and algorithm-by-algorithm comparisons in accuracy over 36
data sets.

I. I NTRODUCTION

Much attention has been directed towards determining
how classifiers should be selected for use in an ensemble.
One approach is to emphasize different portions of the
data set during training, the strategy employed in Bagging
[1]. Another strategy is to generate diversity not from the
training sets but from the classifiers themselves. A number
of techniques have been proposed to measure the diversity
between classifiers [2], [3], and researchers have discussed
correlations between classifier diversity in an ensemble and
the accuracy that the ensemble is able to achieve [4],
[5]. Efforts have been directed towards developing search
strategies to dynamically discover a set of classifiers for use
with a given task [6], [7]. Some research has even focused
on discovering which classifiers and sets of classifiers are
most accurate over the set of all “interesting” classification
tasks. For example, in a large scale empirical study, [8] look
at the behavior of a number of individual classifiers and
ensembles on tens of thousands of data sets to determine
which demonstrate the best overall performance.

However, even if an optimal set of classifiers could be
identified for a given task, there remains the question of
how to combine the information provided by these individual
classifiers. Ideally, component classifiers specialize in differ-
ent areas of the feature space, and the effectiveness of an
ensemble can be enhanced if the votes are combined in a
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way that allows the overall ensemble to leverage these areas
of expertise. This work focuses on optimizing the method
of combining the votes of these classifiers to increase the
overall accuracy of the ensemble.

The simplest method of combining the information pre-
sented in an ensemble is to allow each classifier to have one
vote toward the final classification of an instance. A number
of ensemble techniques such as Bagging [1] employ this
strategy. With Boosting [9], [10], training data is weighted
differently for each classifier, and votes are weighted by
the accuracy that a given classifier achieves on the data
set on which it was trained. More complicated ensemble-
combining strategies include the Adaptive Mixture of Local
Experts strategy [11], where a gating network determines
the probability of selecting the output of one of the base
level classifiers, and Stacking [12] which makes use of a
meta-level learning algorithm that discovers the best way to
combine outputs from the base level classifiers. Arbitration
[13] creates a “referee” to determine the confidence that
a learning model has in its classification of the various
subdomains of a given problem. Information about both the
misclassification of instances and the classifiers themselves
are used in the development of the meta-learner referees.

These ensemble construction methods take advantage of
the fact that individual classifiers generally perform better
on some portions of the feature space than others; higher
ensemble accuracy can often be obtained by taking areas
of specialization into account when weighting ensemble
votes. For example, Delegating [14] is an approach where a
classifier assigns a class label to a given instance only if ithas
high confidence in that particular class. If it is less confident,
the instance is delegated to another learner. With a technique
called Dynamic Selection [15], information is collected on
how well learners perform on instances in the training set.
These learners are then used to classify test set instances,and
their collective predictions are used to determine similarity
to different instances in the training set. The learner that
achieves the best performance on that area of the training
set is then used to classify the test set instance.

Bayesian averaging is a technique that weights the predic-
tions of each classifier in an ensemble by the probability that
each model accurately represents the data [16]. In theory, this
strategy could avoid pitfalls of overfit and achieve optimal
classification accuracy. However, Domingos [17] found that
Bayesian averaging was actually more prone to overfit than
other more ad hoc methods because in practice, it so heavily
favors the maximum likelihood option.

Dzeroski and Zenko [18] found that the accuracy of an



ensemble over a data set is often no better than the accuracy
of one of the classifiers contributing to the ensemble. In
order to justify the overhead of creating an ensemble, the
ensemble should meet the criterion of having a higher overall
classification accuracy than any of its component classifiers.
In the algorithms Dzeroski and Zenko explore, only their
Modified Stacking strategy was able to consistently achieve
this level of accuracy.

This work presents the new strategy of Aggregate Confi-
dence Ensembles. With this technique, the votes of classifiers
are weighted by confidence as determined on an instance-
by-instance basis. Each classifier is trained using a different
algorithm on the same training set data. Then each instance in
the test set is assigned a class value and an overall confidence
rating for that classification by each ofn classifiers. Multiple
factors are taken into consideration when determining this
overall confidence rating. For example, six different con-
fidence estimators are used to calculate confidence in the
prediction of a decision tree classifier. A given instance
would receive six confidence ratings, reflecting properties
such as the purity of the leaf node in which it was classified
and the number of instances classified at that leaf. These
six numbers are then aggregated to produce an overall
confidence rating for the decision tree’s classification of this
particular instance. A similar method is used to calculate an
overall confidence rating for each of the classifiers. The class
label assigned to the instance is then calculated by summing
the weights for each possible label and selecting the class
label with the maximum total.

The technique of Aggregate Confidence Ensembles is
shown to achieve higher average classification accuracy
over 36 data sets than the standard combination strategies
employed by Bagging and Boosting as well as the SelectBest
strategy of allowing the most accurate classifier in the
ensemble to make all the classifications. It also outperforms
Arbitration [13] and the Stacking algorithm presented by
Dzeroski and Zenko [18] both in terms of average classi-
fication accuracy and win/loss ratios.

Section two of this work gives an overview of the
Aggregate Confidence Ensembles algorithm. Section three
presents confidence estimators for five common classification
algorithms. Section four provides results comparing Aggre-
gate Confidence Ensembles with standard voting, voting by
accuracy, the SelectBest strategy, Arbitration, and Modified
Stacking. Section five outlines conclusions and suggests
options for further research.

II. A GGREGATECONFIDENCEENSEMBLES

Let C1...Cn be classifiers constructed using instances
from a training setA. Each classifierCi hasm pre-defined
confidence estimators. For a given instancek in the training
set, a vectorhk

i of m confidence values is calculated, with
hk

ij representing the confidence that estimatorj has in in
classifierCi’s classification of instancek.

For each classifierCi, let ŷi be the predictions ofCi over
the training setA, with ŷk

i being the class label assigned by
classifierCi when instancek appeared in a test fold during

cross-validation on the training set. Lety be a vector of the
target values for the training instances, andzi be a vector
describingŷi = y. In other words, ifŷk

i = yk, then zk
i =

1; if not, zk
i = 0. For each classifierCi, let ri be a vector

of correlation values, whererij is the correlation betweenzi

andhij . The values inri are then scaled to sum to one.
For each unlabeled instancex, let ŷx

i be the class label
assigned to instancex by classifierCi. Let hx

i be a vector of
confidence values calculated for the classification of instance
x by classifierCi. These values will be used in determining
how much weight the overall ensemble should assign to the
classification̂yx

i . In order to make the values assigned by the
various estimators more uniform among the classifiers,hx

ij is
normalized using the maximum and minimum values from
the vectorhij of values calculated for training set instances.

Let wx
i be the dot product ofhx

i and ri. This aggregate
measure is then used to weightŷx

i . The class label assigned
to x by the overall ensemble is calculated by summing
the weights for each possible label and selecting the class
label with the maximum total. The strategy of Aggregate
Confidence Ensembles is outlined in Figure 1.

1.Train each ofn classifiersC1...Cn using training setA.
A. Determine the following for each classifierCi:

1. For each instancek in A:
a. Calculate vectorhk

i of confidence values
usingm estimators specific toCi

b. Calculateŷk
i , the prediction of class label

by Ci whenk appeared in a test fold
during cross-validation onA

c. Identify yk, the target value for instancek
2. Definezi to be a vector describinĝyi = y

3. Calculate vectorri of correlation values
whererij is the correlation betweenzij andhij

2. For an unlabeled instancex:
A. For each classifierCi:

1. Determineŷx
i , the class value ofx as predicted

by Ci

2. Create vectorhx
i of confidence values using

m estimators specific toCi

3. wx
i = hx

i · ri

B. Class value forx = argmaxy∈Y (Σn
i=1

δ(y, ŷx
i )wx

i )

δ(y, ŷi) =
{

1 whenŷi = y
0 otherwise

Fig. 1. Aggregate Confidence Ensembles

III. M ULTIPLE CONFIDENCEESTIMATORS

This section contains the information about the confidence
estimators used to predict confidence in classifications for
each of five different algorithms. The five algorithms used
in this work were selected because they are representative
of standard classes of algorithms used in machine learning.



Many of the confidence estimators presented here could be
adapted for use with similar machine learning algorithms.
The algorithms used in this work are implemented using
Weka open source code [19]. Default settings are used for
each of the algorithms.

While we have tried to select diverse models to represent
the spectrum of machine learning algorithms, the technique
of Aggregate Confidence Ensembles could be applied to
ensembles with any number and type of base-level classifiers.
The ensembles of the five base-level classifiers discussed here
are designed simply to present the concept. One classifier of
each type is used for parsimony and to avoid skewing the
ensemble in favor of any particular classifier.

Efficacy of the various confidence estimators is evaluated
using 36 data sets taken from the UCI Repository [20].
Table I provides information about these data sets. Data sets
were selected so as to achieve variety in number of instances,
attributes, attribute types, and output classes. The data sets
range from 90 to 2310 instances, 5 to 70 attributes, and 2
to 24 output classes. Roughly a third of the data sets feature
discrete attributes, another third have real-valued attributes,
and the remaining data sets have a mixture of real-valued
and discrete attributes. Ten of the data sets contain missing
values. In the case of discrete attributes, unknown values
were replaced by the most common value for the given
attribute. For data sets with real-valued attributes, unknown
values were replaced with the average value for the attribute.

TABLE I

L IST OF DATA SETS

anneal audiology autos balance-scale
bupa cancer car cmc
colic credit-a credit-g dermatology

diabetes ecoli-c glass haberman
heart heart-cleveland heart-statlog hepatitis

ionosphere iris lymph monks
post-op primary-tumor sonar spect

tae tic-tac-toe vehicle vote
wine yeast yugoslavia-cancer zoo

Each subsection contains information about the algorithm
to be addressed and the confidence estimators specific to
that algorithm. The subsections also contain graphs providing
information about the behavior of each confidence estimator
on the data sets shown in Table I. Each of the classifiers was
evaluated over each data sets using ten-fold cross validation,
and instances were marked as correctly or incorrectly clas-
sified based on the classifier’s ability to classify the instance
when it appeared in the test set. This correctness of classifi-
cation is then compared to the confidence measure assigned
to each instance by each of the confidence estimators.

As an example, Figure 2 shows a graph constructed for
the confidence estimator measuring purity of classification
at the leaf node of a decision tree. The graph shows the
number of instances receiving a given confidence value
that were correctly and incorrectly classified. While the
purity confidence estimator provides real values, for clarity
in graphing, confidences are grouped in discrete bins (e.g.

confidence values from 0.5 to 0.59 are all graphed as 0.5).
The real-valued, unbinned confidence estimates are used in
the actual classification experiments. The bar on the left for
each bin represents the number of instances receiving this
confidence value that were correctly classified. The bar on the
right represents the number of instances that were incorrectly
classified. For example, the far right-hand bin in Figure 2
shows that, out of all 36 data sets, 5128 instances receiving
a confidence value of 1.0 from this confidence estimator
were correctly classified, and 863 instances receiving this
confidence value were incorrectly classified.

For each of the estimators studied, higher confidence
values generally corresponded with a higher percentage of
correctly classified instances. More specifically, instances
assigned the highest confidence measure were more likely
to be correctly classified than instances assigned the lowest
confidence measure for each of the estimators studied. How-
ever, in each case, the aggregate confidence estimator was
significantly more correlated with correctness of classifica-
tion than each of the individual estimators. Each subsection
contains a table outlining the correlation between the various
confidence estimators and their correlation with correctness
in test set classification.

Fig. 2. Confidence Estimator Treatment of Correct and Incorrect Instances

A. Decision Tree - J48

The J48 algorithm is the Weka implementation of the C4.5
algorithm [21], an extension of the ID3 decision tree [22]. Six
different confidence estimators are used to predict confidence
in this algorithm’s classification of a given instance. These
include the following: 1) The number of instances with
the majority classification at the leaf node when the given
instance is classified (the purity of classification at that node);
2) The number of instances at the leaf node; 3) The level
of the tree at which the given instance is classified; 4) The
average of the information gain statistics along the classifi-
cation path (normalized by maximum possible information
gain for a given data set); 5) The percentage of instances at
the leaf node that were correctly classified in hold-one-out
cross-validation experiments on the training set; and 6) The
percentage of instances at the leaf nodes with the majority
classification for that node that are correctly classified in
hold-one-out cross validation on the training set. Please note
that in each case where cross validation is conducted on
a training set to determine confidence, the training set is
considered to be the training set for a given fold of the overall



cross-validation experiments used to predict accuracy of the
algorithm.1

Fig. 3. Decision Tree Confidence Estimators Treatment of Correct and
Incorrect Instances

TABLE II

DECISION TREE CONFIDENCEESTIMATORS AND CORRELATION WITH

CORRECTLY CLASSIFIED INSTANCES

Confidence Estimator Correlation

1. Purity of Classification 0.219
2. Instances at Leaf Node 0.167
3. Level of Leaf Node 0.199
4. Information Gain Along Path -0.072
5. Correctly Classified Instances 0.280
6. Correctly Classified Voters 0.248

Aggregate Confidence Estimator 0.292

The first confidence estimator is a standard method for
predicting confidence in the classification of a decision tree
[19]. The second and third provide an effective complement
to the first by providing information about the amount of
overfit and thus how much the first should be trusted. The
fourth confidence estimator provides information about how
effectively a given attribute is able to split the data at each
level of the decision tree, assuming that strong attributeswill
lead to more confident classifications. The fifth identifies how
effective the classifier is at classifying the instances in this

1For a more rigorous presentation of these and all other confidence
estimators mentioned in this paper, please see http://axon.cs.byu.edu/ACE.

particular section of the data. The sixth confidence estimator
provides information about how effectively the classifier was
able to classify the instances specifically contributing tothe
classification of the given instance. Figure 3 shows the behav-
ior of these confidence measures on instances in the thirty-
six data sets studied. Table II shows how values assigned
by these confidence measures correlate with correctness of
classification.

B. Rule-Based Classifier - Decision Table

These experiments use one of Weka’s rule-based classifiers
called a Decision Table [23]. This algorithm selects a set
of attributes to be used in determining classification, and
produces a classification for each combination of observed
values for these attributes. The following attributes are taken
into consideration when trying to predict confidence in this
algorithm’s classification of a given instance: 1) The number
of instances with the majority classification covered by the
rule; 2) The number of antecedents in the rule; 3) The
number of instances covered by the rule; 4) The percentage
of instances covered by the rule that were correctly classified
in hold-one-out cross-validation experiments on the training
set; 5) The percentage of instances covered by the rule with
the majority classification for that rule that were correctly
classified in hold-one-out cross-validation on the training set;
and 6) Whether or not this instance is covered by a rule.

The rationale for these confidence estimators is similar to
the rationale for the decision tree confidence estimators. The
first is a standard measure of confidence. The second and
third assess the probability of overfit or underfit. The fourth
and fifth measure the effectiveness and strength of classifi-
cation. They indicate how effectively the decision table was
able to classify instances that would end up in this region and
how effectively the most pertinent instances in this region
can be classified. The sixth confidence estimator indicates
whether or not a rule was found in the table that covered the
given instance to be classified. Figure 4 shows the behavior
of these confidence measures on data set instances. Table III
shows how values assigned by these confidence measures
correlate with correctness of classification.

TABLE III

RULE-BASED CLASSIFIER CONFIDENCEESTIMATORS AND

CORRELATION WITH CORRECTLY CLASSIFIED INSTANCES

Confidence Estimator Correlation

1. Purity of Classification 0.147
2. Number of Antecedents -0.004
3. Number of Instances Covered 0.110
4. Correctly Classified Instances 0.139
5. Correctly Classified Voters 0.102
6. Instance is Covered by Rule 0.217

Aggregate Confidence Estimator 0.240

C. Instance-Based Classifier

With the instance-basedk-nearest-neighbor algorithm, an
instance is classified based on the classifications of thek



Fig. 4. Rule-Based Classifier Confidence Estimators Treatmentof Correct
and Incorrect Instances

instances nearest that instance [24]. These experiments use
the 5-nearest-neighbor version of the algorithm. Six different
options are used to predict confidence in this algorithm’s
classification of a given instance: 1) The percentage of
the first five neighbors that have the same classification
as the majority classification for those five neighbors; 2)
The difference between the distance-weighted vote of the
predicted class and the distance-weighted vote of the next
highest class; 3) The average distance from this instance
to its first five neighbors (normalized and subtracted from
one); 4) The percentage of the first five neighbors that were
correctly classified in hold-one-out cross-validation on the
training set; 5) The percentage of neighbors with the majority
classification that were correctly classified in hold-one-out
cross-validation on the training set; and 6) A comparison of
3-NN, 5-NN and 7-NN classifications of a given instance.

The first and second confidence estimators indicate the
general confidence in a classification, and how confident that
classification is relative to other possible classifications. The
third measures how close the neighbors are to the individual
instance, making the assumption that a point closer to other
points is more likely to be correctly classified. The fourth and
fifth confidence estimators measure the classification accu-
racy of instances in this region and the accuracy on instances
contributing to the classification of the instance in question.
The last confidence estimator indicates the effectiveness of
using this particular number of neighbors to classify the given

instance. Figure 5 shows the behavior of these confidence
measures on data set instances. Table IV reports correlation
between values assigned by these measures and correctness
of classification.

Fig. 5. Instance-Based Classifier Confidence Estimators Treatment of
Correct and Incorrect Instances

TABLE IV

INSTANCE-BASED CLASSIFIER CONFIDENCEESTIMATORS AND

CORRELATION WITH CORRECTLY CLASSIFIED INSTANCES

Confidence Estimator Correlation

1. Neighbors in Agreement 0.325
2. Highest Minus Second 0.343
3. Average Distance to Neighbors 0.114
4. Correctly Classified Neighbors 0.276
5. Correctly Classified Voters 0.198
6. 3-NN vs. 5-NN vs. 7-NN 0.242

Aggregate Confidence Estimator 0.358

D. Näıve Bayes Classifier

The Näıve Bayes classifier uses Bayesian logic to predict
class values for each instance based on the probabilities
of the attribute values for that instance [25] [26]. The
following are considered when trying to predict confidence
in classification of a given instance by the Naı̈ve Bayes
classifier: 1) Probability of the class value predicted by the
Näıve Bayes classifier; 2) The distance between the predicted
probability and the probability of the second most likely class



Fig. 6. Näıve Bayes Classifier Confidence Estimators Treatment of Correct
and Incorrect Instances

TABLE V

NAÏVE BAYES CLASSIFIER CONFIDENCEESTIMATORS AND

CORRELATION WITH CORRECTLY CLASSIFIED INSTANCES

Confidence Estimator Correlation

1. Probability of Class Value 0.303
2. Highest Minus Second 0.298
3. Highest Minus Remaining 0.303
4. Value Probability Averages 0.075
5. Correctly Classified Neighbors 0.371
6. Correctly Classified Voters 0.306

Aggregate Confidence Estimator 0.394

value for the instance; 3) The distance between the predicted
probability and the sum of the probabilities for the remaining
class values; 4) The average probability across the data set
of each attribute value in the instance; 5) The percentage of
the five neighbors nearest in probability that were correctly
classified in hold-one-out cross-validation on the training set;
and 6) The percentage of the nearest five neighbors with the
same class value as this instance that were correctly classified
in hold-one-out cross-validation on the training set.

The first confidence estimator is used because it is the
standard way of predicting the confidence of a Naı̈ve Bayes
classifier. The second and third confidence estimators are
attempts to gain more information about how confident the
classifier is in its ordering. The fourth confidence estimator
addresses the fact that attribute values with lower represen-

tation in a data set may be less effective at contributing
to a correct classification. The fifth confidence estimator is
aimed at determining how confident the classifier is in this
region of the input space. With this confidence estimator, the
output probabilities of all the instances in the training data
are taken into consideration. The five instances with output
probabilities closest to those of the instance in question
are then located, and the confidence estimate is calculated
by observing the percentage of these five instances that
were correctly classified in hold-one-out cross-validation
on the training set. The sixth confidence estimator focuses
specifically on neighbors with the same classification as
the given instance. Figure 6 shows the confidence measures
assigned to correct and incorrect instances. Table V shows
how values assigned by these confidence measures correlate
with correctness of classification.

E. Multilayer Perceptron trained with Backpropagation

One of the most common methods of training a multi-
layer perceptron, backpropagation incrementally changesthe
weights between nodes when these weights are responsible
for the misclassification of instances during training [27].
The following are considered in trying to predict confidence
in classification by the Multilayer Perceptron: 1) The activa-
tion output for the selected classification; 2) The difference
between the highest and second highest activation outputs;
3) The percentage of the five neighbors nearest in activation
output that were correctly classified in hold-one-out cross-
validation on the training set; 4) The percentage of the five
neighbors nearest in activation output of the hidden layer
that were correctly classified in hold-one-out cross-validation
on the training set; 5) The average difference in activation
output between the selected classification and its five nearest
neighbors compared to the average of this statistic computed
for all instances; and 6) The average difference in hidden-
layer activation output between the selected classification and
its five nearest neighbors compared to the average of this
statistic computed for all instances.

The first and second confidence estimators provide infor-
mation about the confidence of a given classification and
confidence relative to other possible classifications. The third
and fourth provide information about how confident the
learner is on this region of the input space. These confidence
estimators are calculated in a similar manner to the fifth
confidence estimator used for the Naı̈ve Bayes algorithm: all
the instances in the training set are considered, and the five
with output vector most similar to the instance in question
are then used to calculate the confidence estimator. The
third confidence estimator uses the outputs from the standard
output nodes to identify the nearest neighbors. The fourth
confidence estimator uses the outputs from the hidden nodes.
The fifth and sixth confidence estimators provide information
about how similar a given instance is to previously seen
instances, based on the assumption that the classifier will
be more effective at predicting a class value for an instance
similar to one that it has seen before. Figure 7 shows the
behavior of these confidence measures on data set instances.



Table VI reports how values assigned by these confidence
measures correlate with correctness of classification.

Fig. 7. Multilayer Perceptron Confidence Estimators Treatment of Correct
and Incorrect Instances

TABLE VI

MULTILAYER PERCEPTRONCONFIDENCEESTIMATORS AND

CORRELATION WITH CORRECTLY CLASSIFIED INSTANCES

Confidence Estimator Correlation

1. Activation Output 0.053
2. Highest Minus Second 0.051
3. Correctly Classified Neighbors 0.295
4. Correctly Classified Neighbors (Hidden Layer) 0.266
5. Average Distance to Neighbors 0.239
6. Average Distance to Neighbors (Hidden Layer) 0.157

Aggregate Confidence Estimator 0.310

IV. RESULTS AND DISCUSSION

In this section, the strategy of Aggregate Confidence
Ensembles is compared with a number of different ensemble
combining strategies using average accuracy, win/loss/tie
ratios, and overall wins in classification accuracy.

A. Results

The first baseline comparison method is a standard voting
strategy where each classifier in an ensemble votes on the
classification of an instance and the votes are weighted
equally. The second baseline method weights the votes by the

overall accuracy of the learner on the training set. The third
baseline method, identified here as the SelectBest method,
chooses the classifier in the ensemble that achieved the
highest accuracy on the training data and uses that classifier
alone on the test data.

The strategy of Aggregate Confidence Ensembles is also
compared to the method of Stacking found to be most effec-
tive by Dzeroski and Zenko [18]. In this method, identified
as Modified Stacking in the following analyses, the output
probabilities of each of the component classifiers are given
as input to a set of model trees. Each tree is designed
to make a binary decision about a given possible output
class, and the ensemble assigns a value to the instance
according to which model tree has the highest positive
confidence in its prediction. Table VII shows the results of
these comparisons. Using the Wilcoxon signed-rank test to
determine significance [28], Aggregate Confidence Ensem-
bles achieved a significantly higher average accuracy than
any of the other strategies at a confidence level of 99% (p-
values<=0.001,0.003,0.014,0.003,0.008).

TABLE VII

ALGORITHM AVERAGE ACCURACY OVER 36 DATASETS

Standard Voting 83.65
Weight by Accuracy 83.76
SelectBest 83.48
Arbitration 83.58
Modified Stacking 83.20
Aggregate Confidence Ensembles84.32

Aggregate Confidence Ensembles also performed well in
an algorithm-by-algorithm comparison of accuracy on the
thirty-six individual data sets. Table VIII shows an algorithm-
by-algorithm comparison of each of the five strategies. Each
box shows the number of wins, losses, and ties in accuracy
on each of the 36 data sets when comparing the algorithm
in the given row with the algorithm in the given column.
For example, when compared to the standard voting strategy,
Aggregate Confidence Ensembles achieved a higher classi-
fication accuracy on twenty-four of the data sets, a lower
classification accuracy on nine of the data sets, and the
same classification accuracy on three data sets. Aggregate
Confidence Ensembles achieved higher classification accu-
racy on a majority of the data sets studied when compared
to Standard Voting, Weighting by Accuracy, the SelectBest
method, Arbitration, and Modified Stacking.

B. Discussion

Additional experiments were conducted to investigate the
accuracy of ensembles using single confidence estimators.
Many of the single estimator ensembles were able to achieve
a higher average classification accuracy than a baseline
strategy of standard voting. However, the use of these single
values was not sufficient to create an ensemble that produced
a higher average predictive accuracy on a level that was
statistically significant, so the use of additional confidence



TABLE VIII

ALGORITHM COMPARISION USINGWIN /LOSS/TIE RATIOS
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W. Accuracy 9/3/24
SelectBest 16/17/3 15/19/2
Arbitration 14/15/7 12/17/7 16/18/2
M. Stacking 15/19/2 14/21/1 18/17/1 15/19/2
ACE 24/9/3 22/8/6 23/10/3 27/8/1 24/9/3

estimators was warranted.2

The higher average accuracy of Aggregate Confidence
Ensembles does come with a higher cost of computation, but
for two-thirds of the heuristics the increase in computational
complexity is only linear in regard to the size of the data set.
The other one-third of the heuristics requires cross-validation
on the training set. The computational complexity for these
heuristics could be reduced by reducing the number of folds
used in these training set calculations.

V. CONCLUSION AND FUTURE WORK

This work presents a new method of combining the votes
in an ensemble using multiple estimators to predict confi-
dence in the classification of a given instance. A number of
estimators designed for this task are proposed for each of five
different types of classifiers. Combinations of these measures
are shown to be more highly correlated with correctness
of classification than any of the individual measures. The
strategy of Aggregate Confidence Ensembles, which employs
all of the confidence estimators presented, is shown to
achieve a higher average classification accuracy over 36 data
sets than five alternate ensemble strategies. It also compares
favorably in an algorithm-by-algorithm comparison of wins
and losses in accuracy over the data sets.

The confidence estimators presented in this work explore
some of the strengths and weaknesses of a given classifier
on a given data set. This information could result in the de-
velopment of new algorithms. For example, a new instance-
based classifier might be developed in which only instances
that were correctly classified in hold-one-out cross-validation
would be allowed to vote on the classification of an unseen
instance. The probabilities output by a Naı̈ve Bayes classifier
might be altered slightly based on information gained through
confidence estimators like the ones presented here. Insights
gained by observing the behavior of the confidence estima-
tors on various data sets may help target areas of data sets on
which individual classifiers can improve their performance.
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