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Abstract— Selecting an effective method for combining the way that allows the overall ensemble to leverage these areas
votes of classifiers in an ensemble can have a significant impact of expertise. This work focuses on optimizing the method

on the ensemble’s overall classification accuracy. Some methods 4t ¢ompining the votes of these classifiers to increase the
cannot even achieve as high a classification accuracy as the most
overall accuracy of the ensemble.

accurate individual classifying component. To address this issue, X T . .
we present the strategy of Aggregate Confidence Ensembles, The ;Implest method' of combining the |nfqrmat|on pre-
which uses multiple measures to estimate a classifier's confi- sented in an ensemble is to allow each classifier to have one

dence in its predictions on an instance-by-instance basis. Using vote toward the final classification of an instance. A number
these confidence estimators to weight the votes in an ensemble 3t ansemble techniques such as Bagging [1] employ this

results in an overall average increase in classification accuracy . h L . .
compared to the most accurate classifier in the ensemble. These strategy. With Boosting [9], [10], training data is weigtite

aggregate measures result in higher classification accuracy than differently for each classifier, and votes are weighted by
using a collection of single confidence estimates. Aggregatethe accuracy that a given classifier achieves on the data
Confidence Ensembles outperform three baseline ensemble set on which it was trained. More complicated ensemble-
creation strategies, as well as the methods of Modified Stacking ¢, mpining strategies include the Adaptive Mixture of Local
and Arbitration, both in terms of average classification accuracy E ts strat 11 h Hi twork det .
and algorithm-by-algorithm comparisons in accuracy over 36 Xperts s r.a. egy [11], W €re a gating network determines
data sets. the probability of selecting the output of one of the base
level classifiers, and Stacking [12] which makes use of a
I. INTRODUCTION meta-level learning algorithm that discovers the best veay t

combine outputs from the base level classifiers. Arbitratio

o : 3] creates a “referee” to determine the confidence that
how classifiers should be selected for use in an ensembje

0 his t hasize diff i " f th ‘learning model has in its classification of the various
ne approach IS 1o emphasize ditierent portions ol g, 4,maing of a given problem. Information about both the
data set during training, the strategy employed in Baggin

11, Another strat is e di it tf th Qisclassification of instances and the classifiers theraselv
[ ]'. Another strategy 1S 10 generate CIVersity not rom e, .o \,seq in the development of the meta-learner referees.
training sets but from the classifiers themselves. A number These ensemble construction methods take advantage of
of techniques have been proposed to measure the diversj

. : S[\I,)é fact that individual classifiers generally perform eett
between classifiers [2], [3], and researchers have dISGUSS&,] some portions of the feature space than others: higher
correlations between classifier diversity in an ensembtk a '

; . nsemble accuracy can often be obtained by taking areas
the accuracy that the ensemble is able to achieve [4 y y 9

51 Efforts h b directed t ds develoni f specialization into account when weighting ensemble
[5]. orts have been directed towards developing searc,iag por example, Delegating [14] is an approach where a
strategies to dynamically discover a set of classifiers far u

. ; classifier assigns a class label to a given instance onlfj#st
with a given task [6], [7]. Some research has even focus qg 9 g n

. . ) . - h confidence in that particular class. If it is less confide
on discovering which classifiers and sets of classifiers Afie instance is delegated to another learner. With a teabniq
most accurate over the set of all “interesting” classifarati

. - called Dynamic Selection [15], information is collected on
tasks. For eX"?‘mp'e’ in a large scal_e e_mplrlcal stuo!y_, [8k|00how well learners perform on instances in the training set.
at the behavior of a number of individual classifiers anq'hese learners are then used to classify test set instams,
en;embles on tens of thousands of dala sefs fo determmgir collective predictions are used to determine sintyar
which demonstratg the besF overal performgqce. to different instances in the training set. The learner that
However, even if an optimal set of classifiers could b(?chieves the best performance on that area of the training

Much attention has been directed towards determini

identified for a given task, there remains the question et is then used to classify the test set instance.

how to combine the information provided by these individual g,y asian averaging is a technique that weights the predic-
classifiers. Ideally, component classifiers speC|a!|ze|ﬁ|erd tions of each classifier in an ensemble by the probability tha
ent areas of the feature SPace, and the eﬁectlvengss O.f &th model accurately represents the data [16]. In thdosy, t
ensemble can be enhanced if the votes are combined 'nst"f‘ategy could avoid pitfalls of overfit and achieve optimal
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ensemble over a data set is often no better than the accuracgss-validation on the training set. Lgtbe a vector of the
of one of the classifiers contributing to the ensemble. Itarget values for the training instances, andbe a vector
order to justify the overhead of creating an ensemble, thdescribingy; = y. In other words, ifg¥ = y*, thenzF =
ensemble should meet the criterion of having a higher olverdl; if not, zf = 0. For each classifief’;, let r; be a vector
classification accuracy than any of its component classifierof correlation values, where; is the correlation betweez
In the algorithms Dzeroski and Zenko explore, only theiandh;;. The values inr; are then scaled to sum to one.
Modified Stacking strategy was able to consistently achieve For each unlabeled instanag let 7 be the class label
this level of accuracy. assigned to instanceby classifierC;. Let hy be a vector of
This work presents the new strategy of Aggregate Confeonfidence values calculated for the classification of imsta
dence Ensembles. With this technique, the votes of classifier by classifierC;. These values will be used in determining
are weighted by confidence as determined on an instandew much weight the overall ensemble should assign to the
by-instance basis. Each classifier is trained using a difier classificationj®. In order to make the values assigned by the
algorithm on the same training set data. Then each instancevarious estimators more uniform among the classifiefsis
the test set is assigned a class value and an overall cordidenormalized using the maximum and minimum values from
rating for that classification by each ofclassifiers. Multiple the vectorh;; of values calculated for training set instances.
factors are taken into consideration when determining this Let w? be the dot product oh? andr;. This aggregate
overall confidence rating. For example, six different conmeasure is then used to weigjjt. The class label assigned
fidence estimators are used to calculate confidence in tte x by the overall ensemble is calculated by summing
prediction of a decision tree classifier. A given instancéne weights for each possible label and selecting the class
would receive six confidence ratings, reflecting propertieiabel with the maximum total. The strategy of Aggregate
such as the purity of the leaf node in which it was classifie€onfidence Ensembles is outlined in Figure 1.
and the number of instances classified at that leaf. These
six numbers are then aggregated to produce an overall
confidence rating for the decision tree’s classificationhig t 1.Train each ofx classifiersC;...C,, using training setA.
particular instance. A similar method is used to calculate a  A. Determine the following for each classifiéf;:

overall confidence rating for each of the classifiers. Thexla 1. For each instanck in A:

label assigned to the instance is then calculated by summing a. Calculate vectohi? of confidence values

the weights for each possible label and selecting the class usingm estimators specific t@’;

label with the maximum total. b. Calculatej”, the prediction of class label
The technique of Aggregate Confidence Ensembles is by C; whenk appeared in a test fold

shown to achieve higher average classification accuracy during cross-validation o

over 36 data sets than the standard combination strategies c. ldentify 3/*, the target value for instande

employed by Bagging and Boosting as well as the SelectBest 2. Definez; to be a vector describing; =y

strategy of allowing the most accurate classifier in the 3. Calculate vector; of correlation values

ensemble to make all the classifications. It also outperform wherer;; is the correlation between;; andh;;

Arbitration [13] and the Stacking algorithm presented by. For an unlabeled instanae

Dzeroski and Zenko [18] both in terms of average classi- A For each classifie€);:

f|cat|oq accuracy and.W|n/Ioss rgt|os. i 1. Determiney?, the class value ok as predicted
Section two of this work gives an overview of the by C,

Aggregate Confidence Ensembles algorithm. Section three

presents confidence estimators for five common classifitatio estimators specific 16

algorithms. Section four provides results comparing Aggre mm N P !

gate Confidence Ensembles with standard voting, voting by 3.wf =hy

accuracy, the SelectBest strategy, Arbitration, and Medifi ~ B. Class value fox = argmaxcy (X7, (y, 97 )wy)

Stacking. Section five outlines conclusions and suggests 5(y, gi) = {1 wheng; =y

options for further research. i 0 otherwise

2. Create vectoh? of confidence values using

Il. AGGREGATECONFIDENCEENSEMBLES

Let C,...C,, be classifiers constructed using instances Fig. 1. Aggregate Confidence Ensembles
from a training setd. Each classifieC’; hasm pre-defined
confidence estimators. For a given instakcda the training
set, a vectoth? of m confidence values is calculated, with
hfj representing the confidence that estimatohnas in in This section contains the information about the confidence
classifierC;’s classification of instance. estimators used to predict confidence in classifications for

For each classifie€’;, let y; be the predictions of’; over each of five different algorithms. The five algorithms used
the training set4, with j¥ being the class label assigned byin this work were selected because they are representative
classifierC; when instancé: appeared in a test fold during of standard classes of algorithms used in machine learning.

I11. M ULTIPLE CONFIDENCEESTIMATORS



Many of the confidence estimators presented here could benfidence values from 0.5 to 0.59 are all graphed as 0.5).
adapted for use with similar machine learning algorithmsThe real-valued, unbinned confidence estimates are used in
The algorithms used in this work are implemented usinthe actual classification experiments. The bar on the left fo
Weka open source code [19]. Default settings are used feach bin represents the number of instances receiving this
each of the algorithms. confidence value that were correctly classified. The baren th
While we have tried to select diverse models to represeright represents the number of instances that were indfyrec
the spectrum of machine learning algorithms, the techniqu@assified. For example, the far right-hand bin in Figure 2
of Aggregate Confidence Ensembles could be applied shows that, out of all 36 data sets, 5128 instances receiving
ensembles with any number and type of base-level classifiees confidence value of 1.0 from this confidence estimator
The ensembles of the five base-level classifiers discussed hevere correctly classified, and 863 instances receiving this
are designed simply to present the concept. One classifierafnfidence value were incorrectly classified.
each type is used for parsimony and to avoid skewing the For each of the estimators studied, higher confidence
ensemble in favor of any particular classifier. values generally corresponded with a higher percentage of
Efficacy of the various confidence estimators is evaluatesbrrectly classified instances. More specifically, insenc
using 36 data sets taken from the UCI Repository [20kssigned the highest confidence measure were more likely
Table | provides information about these data sets. Data séb be correctly classified than instances assigned the towes
were selected so as to achieve variety in number of instancesnfidence measure for each of the estimators studied. How-
attributes, attribute types, and output classes. The a@dta sever, in each case, the aggregate confidence estimator was
range from 90 to 2310 instances, 5 to 70 attributes, andsignificantly more correlated with correctness of clasaific
to 24 output classes. Roughly a third of the data sets featuien than each of the individual estimators. Each subsectio
discrete attributes, another third have real-valuedhaiteis, contains a table outlining the correlation between theovesi
and the remaining data sets have a mixture of real-valuednfidence estimators and their correlation with corresgtne
and discrete attributes. Ten of the data sets contain rgissiim test set classification.
values. In the case of discrete attributes, unknown values
were replaced by the most common value for the given
attribute. For data sets with real-valued attributes, omkn
values were replaced with the average value for the at&ribut

TABLE |
LIST OF DATA SETS

Humber of [nstances

-- m........l.l.l.l

3040506070209 1

Confidence Measures

anneal audiology autos balance-scale
bupa cancer car cmc
colic credit-a credit-g dermatology . . .

diabetes ecoli-c glass haberman Fig. 2. Confidence Estimator Treatment of Correct and Incotrestances
heart heart-cleveland heart-statlog hepatitis

ionosphere iris lymph monks

post-op primary-tumor sonar spect .
tae tic-tac-toe vehicle vote A. Decision Tree - J48
wine yeast yugoslavia-cancer 200 The J48 algorithm is the Weka implementation of the C4.5

algorithm [21], an extension of the ID3 decision tree [22% S

Each subsection contains information about the algorithufifferent confidence estimators are used to predict condielen
to be addressed and the confidence estimators specificitiothis algorithm’s classification of a given instance. Tdes
that algorithm. The subsections also contain graphs pirayid include the following: 1) The number of instances with
information about the behavior of each confidence estimattine majority classification at the leaf node when the given
on the data sets shown in Table I. Each of the classifiers wasstance is classified (the purity of classification at thade);
evaluated over each data sets using ten-fold cross validati 2) The number of instances at the leaf node; 3) The level
and instances were marked as correctly or incorrectly clasf the tree at which the given instance is classified; 4) The
sified based on the classifier's ability to classify the insta average of the information gain statistics along the diassi
when it appeared in the test set. This correctness of classifation path (normalized by maximum possible information
cation is then compared to the confidence measure assigrgain for a given data set); 5) The percentage of instances at
to each instance by each of the confidence estimators. the leaf node that were correctly classified in hold-one-out

As an example, Figure 2 shows a graph constructed faross-validation experiments on the training set; and & Th
the confidence estimator measuring purity of classificatiopercentage of instances at the leaf nodes with the majority
at the leaf node of a decision tree. The graph shows tlassification for that node that are correctly classified in
number of instances receiving a given confidence valugold-one-out cross validation on the training set. Pleade n
that were correctly and incorrectly classified. While theahat in each case where cross validation is conducted on
purity confidence estimator provides real values, for tlari a training set to determine confidence, the training set is
in graphing, confidences are grouped in discrete bins (e.gpnsidered to be the training set for a given fold of the dVera



cross-validation experiments used to predict accurach®f t particular section of the data. The sixth confidence estimat
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Incorrect Instances

DECISION TREE CONFIDENCE ESTIMATORS AND CORRELATION WITH

The first confidence estimator is a standard method for
predicting confidence in the classification of a decisior tre
[19]. The second and third provide an effective complement
to the first by providing information about the amount of
overfit and thus how much the first should be trusted. The
fourth confidence estimator provides information about how
effectively a given attribute is able to split the data atheac
level of the decision tree, assuming that strong attribwiéls
lead to more confident classifications. The fifth identifiewho

TABLE Il

CORRECTLY CLASSIFIED INSTANCES

Confidence Estimator Correlation
1. Purity of Classification 0.219

2. Instances at Leaf Node 0.167
3. Level of Leaf Node 0.199

4. Information Gain Along Path -0.072
5. Correctly Classified Instances 0.280
6. Correctly Classified Voters 0.248
Aggregate Confidence Estimator 0.292

provides information about how effectively the classifiexsw
able to classify the instances specifically contributinghte
classification of the given instance. Figure 3 shows theseha
ior of these confidence measures on instances in the thirty-
six data sets studied. Table Il shows how values assigned
by these confidence measures correlate with correctness of
classification.

B. Rule-Based Classifier - Decision Table

These experiments use one of Weka'’s rule-based classifiers
called a Decision Table [23]. This algorithm selects a set
of attributes to be used in determining classification, and
produces a classification for each combination of observed
values for these attributes. The following attributes afesh
into consideration when trying to predict confidence in this
algorithm’s classification of a given instance: 1) The numbe
of instances with the majority classification covered by the
rule; 2) The number of antecedents in the rule; 3) The
number of instances covered by the rule; 4) The percentage
of instances covered by the rule that were correctly claskifi
in hold-one-out cross-validation experiments on the tngin
set; 5) The percentage of instances covered by the rule with
the majority classification for that rule that were corrgctl
classified in hold-one-out cross-validation on the trajrset;
and 6) Whether or not this instance is covered by a rule.

The rationale for these confidence estimators is similar to
the rationale for the decision tree confidence estimatdrs. T
first is a standard measure of confidence. The second and
third assess the probability of overfit or underfit. The fourt
and fifth measure the effectiveness and strength of classifi-
cation. They indicate how effectively the decision tableswa
able to classify instances that would end up in this regiah an
how effectively the most pertinent instances in this region
can be classified. The sixth confidence estimator indicates
whether or not a rule was found in the table that covered the
given instance to be classified. Figure 4 shows the behavior
of these confidence measures on data set instances. Table IlI
shows how values assigned by these confidence measures
correlate with correctness of classification.

TABLE Il
RULE-BASED CLASSIFIER CONFIDENCE ESTIMATORS AND
CORRELATION WITH CORRECTLY CLASSIFIED INSTANCES

Confidence Estimator Correlation
1. Purity of Classification 0.147

2. Number of Antecedents -0.004
3. Number of Instances Covered 0.110
4. Correctly Classified Instances 0.139
5. Correctly Classified Voters 0.102
6. Instance is Covered by Rule 0.217
Aggregate Confidence Estimator  0.240

effective the classifier is at classifying the instanceshis t C. Instance-Based Classifier

1For a more rigorous presentation of these and all other cordide
estimators mentioned in this paper, please see http://axbgicedu/ACE.

With the instance-baseklinearest-neighbor algorithm, an
instance is classified based on the classifications ofkthe



instance. Figure 5 shows the behavior of these confidence
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7. Aggregate Confidence Measure

instances nearest that instance [24]. These experimeats us
the 5-nearest-neighbor version of the algorithm. Six d#ffe L _ _

. dt redict confidence in this al Orithm,Flg. 5. Instance-Based Classifier Confidence Estimatorstiiesd of
OptIOI.’l_S are used 1o _p ) g €orrect and Incorrect Instances
classification of a given instance: 1) The percentage of
the first five neighbors that have the same classification
as the majority classification for those five neighbors; 2) TABLE IV
The difference between the distance—weighted vote of the INSTANCE-BASED CLASSIFIER CONFIDENCEESTIMATORS AND
predicted class and the distance-weighted vote of the next  CORRELATION WITH CORRECTLY CLASSIFIED INSTANCES
highest class; 3) The average distance from this instance

to its first five neighbors (normalized and subtracted from Confidence Estimator Correlation
one); 4) The percentage of the first five neighbors that were 1. Neighbors in Agreement 0.325
- . . . 2. Highest Minus Second 0.343
correctly classified in hold-one-out cross-validation e t 3. Average Distance to Neighbors 0.114
training set; 5) The percentage of neighbors with the migjori 4. Correctly Classified Neighbors 0.276
classification that were correctly classified in hold-on-o 5. Correctly Classified Voters 0.198
lidati the traini t and 6) A . f 6. 3-NN vs. 5-NN vs. 7-NN 0.242
cross-validation on the training set; and 6) A comparison o Aggregate Confidence Estmator 0358

3-NN, 5-NN and 7-NN classifications of a given instance.
The first and second confidence estimators indicate the
general confidence in a classification, and how confident that .
classification is relative to other possible classificatiohe D- Néve Bayes Classifier
third measures how close the neighbors are to the individual The Ndve Bayes classifier uses Bayesian logic to predict
instance, making the assumption that a point closer to othelass values for each instance based on the probabilities
points is more likely to be correctly classified. The fourtfda of the attribute values for that instance [25] [26]. The
fifth confidence estimators measure the classification acciollowing are considered when trying to predict confidence
racy of instances in this region and the accuracy on instance classification of a given instance by the iXa Bayes
contributing to the classification of the instance in questi classifier: 1) Probability of the class value predicted bg th
The last confidence estimator indicates the effectivenéss Maive Bayes classifier; 2) The distance between the predicted
using this particular number of neighbors to classify thegi probability and the probability of the second most likelsisd



tation in a data set may be less effective at contributing
por to a correct classification. The fifth confidence estimator is
6000 aimed at determining how confident the classifier is in this
- region of the input space. With this confidence estimatar, th
output probabilities of all the instances in the trainindada
orm e e e e are taken into consideration. The five instances with output
T Faobability of Class Valuss 3 Frighest M Second probabilities closest to those of the instance in question
Wi w0 are then located, and the confidence estimate is calculated
zz; by observing the percentage of these five instances that
% 1000 were correctly classified in hold-one-out cross-validatio
0010203040506070.808 1 3 102030405060 10800 1 on the training set. The sixth confidence estimator focuses
Confidence Mensure: Confidence Measure: specifically on neighbors with the same classification as
3. Highest Minus Remaini 4. Value Probability Averages the given instance. Figure 6 shows the confidence measures
12000 15000 . . .
1000 assigned to correct and incorrect instances. Table V shows
how values assigned by these confidence measures correlate
with correctness of classification.
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Confidence Mansures Confidence Messures E. Multilayer Perceptron trained with Backpropagation

5. Conectly Classified Neighbors 6. Correcly Classified Voters One of the most common methods of training a multi-
o layer perceptron, backpropagation incrementally chatiyes
¥ Coracly Clasified Instances weights between nodes when these weights are responsible
® Incorrecly Classified Instances for the misclassification of instances during training [27]
0 0.10.203040.50.60.70.60. 1 The following are considered in trying to predict confidence
R in classification by the Multilayer Perceptron: 1) The aativ
tion output for the selected classification; 2) The differen
between the highest and second highest activation outputs;
Fig. 6. Néve Bayes Classifier Confidence Estimators Treatment of Oz)rrec3) The percentage of the five ne_lghbo_rs nearest in activation
and Incorrect Instances output that were correctly classified in hold-one-out cross
validation on the training set; 4) The percentage of the five
TABLE V neighbors nearest in activation output of the hidden layer
NAIVE BAYES CLASSIFIER CONFIDENCE ESTIMATORS AND that were correctly classified in hold-one-out cross-lich
CORRELATION WITH CORRECTLY CLASSIFIED INSTANCES on the training set; 5) The average difference in activation
output between the selected classification and its five seare

Nunber of Bnstances

Munber of Bustanees

000
4000
2000

o

.

FMunnber of Bnstanees

7. Aggregate Confidence Measurs

Confidence Estimator Correlation neighbors compared to the average of this statistic cordpute

1. Probability of Class Value 0.303 for all instances; and 6) The average difference in hidden-
2. Highest Minus Second 0.298 L e

3. Highest Minus Remaining 0.303 !aye_r activation output between the selected classifioatial _

4. Value Probability Averages 0.075 its five nearest neighbors compared to the average of this
5. Correctly Classified Neighbors 0.371 ot ;

6. Correctly Classified Voters 0.306 statistic computed for all instances.

The first and second confidence estimators provide infor-
mation about the confidence of a given classification and
confidence relative to other possible classifications. hird t
and fourth provide information about how confident the
value for the instance; 3) The distance between the pretlictearner is on this region of the input space. These confidence
probability and the sum of the probabilities for the remagni estimators are calculated in a similar manner to the fifth
class values; 4) The average probability across the data sehfidence estimator used for theiaBayes algorithm: all
of each attribute value in the instance; 5) The percentage tfe instances in the training set are considered, and the five
the five neighbors nearest in probability that were coryectlwith output vector most similar to the instance in question
classified in hold-one-out cross-validation on the tragrset; are then used to calculate the confidence estimator. The
and 6) The percentage of the nearest five neighbors with tiigird confidence estimator uses the outputs from the stendar
same class value as this instance that were correctly fidassi output nodes to identify the nearest neighbors. The fourth
in hold-one-out cross-validation on the training set. confidence estimator uses the outputs from the hidden nodes.

The first confidence estimator is used because it is thkhe fifth and sixth confidence estimators provide infornratio
standard way of predicting the confidence of awd¢aBayes about how similar a given instance is to previously seen
classifier. The second and third confidence estimators arestances, based on the assumption that the classifier will
attempts to gain more information about how confident thee more effective at predicting a class value for an instance
classifier is in its ordering. The fourth confidence estimatcsimilar to one that it has seen before. Figure 7 shows the
addresses the fact that attribute values with lower represebehavior of these confidence measures on data set instances.

Aggregate Confidence Estimator  0.394
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Table VI reports how values assigned by these confidenogerall accuracy of the learner on the training set. Thedthir
measures correlate with correctness of classification.

baseline method, identified here as the SelectBest method,
chooses the classifier in the ensemble that achieved the
highest accuracy on the training data and uses that classifie
alone on the test data.

The strategy of Aggregate Confidence Ensembles is also
compared to the method of Stacking found to be most effec-
tive by Dzeroski and Zenko [18]. In this method, identified
as Modified Stacking in the following analyses, the output
probabilities of each of the component classifiers are given
as input to a set of model trees. Each tree is designed
to make a binary decision about a given possible output
class, and the ensemble assigns a value to the instance
according to which model tree has the highest positive
confidence in its prediction. Table VIl shows the results of
these comparisons. Using the Wilcoxon signed-rank test to
determine significance [28], Aggregate Confidence Ensem-
bles achieved a significantly higher average accuracy than
any of the other strategies at a confidence level of 99% (p-
values<=0.001,0.003,0.014,0.003,0.008).

TABLE VI

12000

';j 1 ALGORITHM AVERAGE ACCURACY OVER 36 DATASETS

é igig B Corvectly Clazsified Instances

B B Incorrectly it stance: .

£ ™ oty Clrsifi e Standard Voting 83.65

E 0 0.10.20.30.40.50.60.70.80.2 1 Welght by ACCUI‘acy 8376
Confidence Mensure: SelectBest 83.48

7. Aggregate Confidence Measure Arbitration 83.58
Modified Stacking 83.20

Aggregate Confidence Ensembles84.32

Fig. 7. Multilayer Perceptron Confidence Estimators TreatroéCorrect
and Incorrect Instances Aggregate Confidence Ensembles also performed well in
an algorithm-by-algorithm comparison of accuracy on the
thirty-six individual data sets. Table VIII shows an algbn-
by-algorithm comparison of each of the five strategies. Each
box shows the number of wins, losses, and ties in accuracy

on each of the 36 data sets when comparing the algorithm

TABLE VI
MULTILAYER PERCEPTRONCONFIDENCE ESTIMATORS AND
CORRELATION WITH CORRECTLY CLASSIFIED INSTANCES

Confidence Estimator Correlation in the given row with the algorithm in the given column.

1. Activation Output 0.053 For example, when compared to the standard voting strategy,
2. Highest Minus Second 0.051 Aggregate Confidence Ensembles achieved a higher classi-
3. Correctly Classified Neighbors 0.295 ficati t tv-f f the dat t |

4. Correctly Classified Neighbors (Hidden Layer) 0.266 Ica |on a(_:curacy on twenty- _Our 0 € data sets, a lower
5. Average Distance to Neighbors 0.239 classification accuracy on nine of the data sets, and the
6. Average Distance to Neighbors (Hidden Layer) 0.157 same classification accuracy on three data sets. Aggregate
Aggregate Confidence Estimator 0.310 Confidence Ensembles achieved higher classification accu-

racy on a majority of the data sets studied when compared
to Standard Voting, Weighting by Accuracy, the SelectBest

IV. RESULTS ANDDISCUSSION method, Arbitration, and Modified Stacking.

In this section, the strategy of Aggregate Confidenc
Ensembles is compared with a number of different ensemb
combining strategies using average accuracy, win/less/ti Additional experiments were conducted to investigate the
ratios, and overall wins in classification accuracy. accuracy of ensembles using single confidence estimators.

Many of the single estimator ensembles were able to achieve
A. Results a higher average classification accuracy than a baseline

The first baseline comparison method is a standard votirggrategy of standard voting. However, the use of theseesingl
strategy where each classifier in an ensemble votes on theues was not sufficient to create an ensemble that produced
classification of an instance and the votes are weighted higher average predictive accuracy on a level that was
equally. The second baseline method weights the votes by thiatistically significant, so the use of additional conficken

Discussion



TABLE VIII

ALGORITHM COMPARISION USINGWIN/LOSYTIE RATIOS [l
g [3]
g 2
2 3 i~
= o <
o < 8
> - 2 c 2] [4]
° o Q 2 o
] = Q K o
E 5 3 s |5 g
8 Q I0] 2 o
n = 0 < =
W. Accuracy | 9/3/24
SelectBest 16/17/3 | 15/19/2 [6]
Arbitration 14/15/7 | 12/17/7 | 16/18/2
M. Stacking | 15/19/2 | 14/21/1 | 18/17/1 | 15/19/2 [7]
ACE 24/9/3 | 22/8/6 | 23/10/3 | 27/8/1 | 24/9/3
(8]

estimators was warrantéd.
The higher average accuracy of Aggregate Confidencé!
Ensembles does come with a higher cost of computation, but
for two-thirds of the heuristics the increase in computadio [10]
complexity is only linear in regard to the size of the data set
The other one-third of the heuristics requires cross-aiiith 1
on the training set. The computational complexity for these
heuristics could be reduced by reducing the number of fold[%]
used in these training set calculations.

V. CONCLUSION AND FUTURE WORK 23]

This work presents a new method of combining the votes
in an ensemble using multiple estimators to predict conf*4!
dence in the classification of a given instance. A number of
estimators designed for this task are proposed for eacheof fil£5]
different types of classifiers. Combinations of these messsu
are shown to be more highly correlated with correctnegss]
of classification than any of the individual measures. The
strategy of Aggregate Confidence Ensembles, which empIoMs]
all of the confidence estimators presented, is shown to
achieve a higher average classification accuracy over 36 dat
sets than five alternate ensemble strategies. It also cesp
favorably in an algorithm-by-algorithm comparison of wins
and losses in accuracy over the data sets. [29]

The confidence estimators presented in this work explore
some of the strengths and weaknesses of a given classiiig
on a given data set. This information could result in the de-
velopment of new algorithms. For example, a new instance-
based classifier might be developed in which only instancesi)
that were correctly classified in hold-one-out cross-limh
would be allowed to vote on the classification of an unseef’)
instance. The probabilities output by aiNa Bayes classifier [23]
might be altered slightly based on information gained thiou
confidence estimators like the ones presented here. Issigf?t“]
gained by observing the behavior of the confidence estimgs;)
tors on various data sets may help target areas of data sets on
which individual classifiers can improve their performance 26]
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