
In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

IMPROVED BACKPROPAGATION LEARNING IN NEURAL NETWORKS WITH 
WINDOWED MOMENTUM 

 
Ernest Istook, Tony Martinez 

butch@axon.cs.byu.edu, martinez@cs.byu.edu  
Brigham Young University 

Computer Science Department 
                            
  

 Backpropagation, which is frequently used in Neural Network training, often 

takes a great deal of time to converge on an acceptable solution.  Momentum is a 

standard technique that is used to speed up convergence and maintain generalization 

performance.  In this paper we present the Windowed momentum algorithm, which 

increases speedup over standard momentum.  Windowed momentum is designed to use a 

fixed width history of recent weight updates for each connection in a neural network.  By 

using this additional information, Windowed momentum gives significant speed-up over 

a set of applications with same or improved accuracy.  Windowed Momentum achieved 

an average speed-up of 32% in convergence time on 15 data sets, including a large OCR 

data set with over 500,000 samples.  In addition to this speedup, we present the 

consequences of sample presentation order.  We show that Windowed momentum is able 

to overcome these effects that can occur with poor presentation order and still maintain 

its speed-up advantages. 

 

Keywords: backprop, neural networks, momentum, second-order, sample presentation 

order 

 

mailto:butch@axon.cs.byu.edu
mailto:martinez@cs.byu.edu


In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

1. Introduction  

Due to the time required to train a Neural Network, many researchers have devoted their 

efforts to developing speedup techniques [1 – 7].  Various efforts range from 

optimizations of current algorithms to development of original algorithms.  One of the 

most commonly discussed extensions is momentum. [3, 8-14] 

This paper presents the Windowed Momentum algorithm, with  analysis of its benefits.  

Windowed Momentum is designed to overcome some of the problems associated with 

standard backprop training.  Many algorithms use information from previous weight 

updates to determine how large an update can be made without diverging [1,13,15].  This 

typically uses some form of historical information about a particular weight’s gradient.  

Unfortunately, some of these algorithms have other difficulties to deal with [3,10] as 

discussed in section 2. 

Windowed Momentum relies on historical update information for each weight.  This 

information is used to judge the worth of the individual updates resulting in better overall 

weight changes.  Windowed Momentum achieved an average speed-up of 32% in 

convergence time on 15 data sets, including a large OCR data set with over 500,000 

samples with same or improved accuracy. The computational complexity of Windowed 

Momentum is identical to that of Standard momentum with only a minor increase in 

memory requirements.  

A background of standard neural network (NN) training with momentum and other 

speed-up techniques is discussed in Section 2.  In Section 3, Windowed Momentum is 

analyzed.  Section 4 describes the methodology of the experimentation.  The results of 

1 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

the experiments are presented in Section 5.  Section 6 summarizes the efficacy of 

Windowed Momentum and presents further directions for research. 

2. Background 

With the Generalized Delta Rule (GDR), small updates are made to each weight such that 

the updates are proportional to the backpropagated error term at the node.  The update 

rule for the GDR is 

(1) ∆ wij(t) = ηδjxji 

where i is the index of the source node, j is the index of the target node, η is the learning 

rate, δj is the backpropagated error term, and x is the value of the input into the weight.  

This update rule is effective, but slow in practice.  For standard backprop the error term 

for output nodes is equal to (tj - oj) * f ′ (netj) where tj is the target for output node j and 

netj is the activation value at node j.  With a sigmoid activation function,  (netf ′ j) = oj * 

(1 - oj ), where oj is the actual value for output node j. This makes the final local gradient 

term  

(1b) δj = (tj - oj) * oj * (1 - oj ) 

The gradient for hidden nodes, where I is the input at that node, is calculated using  

(1c) δh  = Ioh * (1 - oh) *  ∑
∈outputsk

kkhw δ

2 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

In a binary classification problem typical values are 0 ≤ tj , oj  ≤ 1. Therefore, the 

maximum this local gradient term can take on is 0.1481.  When combined with typical 

values for η [~0.2 … 0.5] and non-saturated weights, the change to weights each update 

is on the order of 10-2.  Although increasing the learning rate will result in larger updates, 

the likelihood of convergence decreases [3, 16].  Due to the gradient descent nature of 

backprop, many iterations are required for convergence and the individual steps must be 

small.  An excessive learning rate can disrupt the gradient descent and possibly miss the 

local minimum; therefore a solution is not guaranteed. 

2.1 Update Styles 

When training a NN, weight updates can occur at several times.  The two most common 

methods are called online and batch training.  In batch training, all samples are presented 

and the sum of the error at each weight is used to perform one single update.  In other 

words, the error is calculated for all samples before a single update is made such that the 

error is based on  - over all j samples.  Conversely, online training updates weights 

after each sample is presented, thus providing j updates – one for each sample.  This 

update style was used for the experiments presented here.  By using batch training, fewer 

updates are made, but each update considers the entire set of samples.  In online training, 

the current sample and the most recent samples (in the case of using momentum) are the 

only factors. 

∑
j

jδ

In addition to batch and online training, there is also semi-batch training.  In semi-batch 

training, updates are made after every k samples. This gives more frequent updates than 

3 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

batch mode and more accurate estimates of the true error gradient.  Wilson and Martinez 

[17] discuss the efficacy of batch training when compared to online and semi-batch 

training.  They conclude that batch training is ineffectual for large training sets and that 

online training is more efficient due to the increased frequency of updates. 

Although frequent updates provide a speed up relative to batch mode, there are still other 

algorithms that can be used for improved performance.  One of these is known as 

standard momentum. 

2.2 Standard Momentum 

When using momentum the update rule from equation (1) is modified to be 

(2) ∆ wij(t) = ηδjxji + α∆wij(t-1) 

where α is the momentum.  Momentum in NNs behave similar to momentum in physics.  

In Machine Learning by Tom Mitchell [18, p. 100], momentum is described: 

“To see the effect of this momentum term, consider that the gradient descent 
search trajectory is analogous to that of a (momentumless) ball rolling down the 
error surface. The effect of α is to add momentum that tends to keep the ball 
rolling down the error surface.” 

In order to speed up training, many researchers augment each weight update based on the 

previous weight update.  This effectively increases the learning rate [9]. Because many 

updates to a particular weight are in the same direction, adding momentum will typically 

result in a speedup of training time for many applications.  This speedup has been shown 

to be several orders of magnitude in simpler applications with lower complexity decision 

boundaries [18].

4 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

Even though momentum is a well-known algorithm in the neural network community, 

there are certain criteria that have been considered when extending momentum.  Jacobs 

[1] enumerates these criteria and analyzes the problems with basic backprop by giving 

several heuristics that should be used in neural network design: 

• Each weight should have a local learning rate 
• Each learning rate should be allowed to vary over time 
• Consecutive updates to a weight should increase the weights’ learning rate 
• Alternating updates to a weight should decrease the weights’ learning rate 

Because Jacobs’ Delta Bar Delta algorithm is criticized for being overly sensitive with 

respect to parameter selection [3] the approach taken with this research has sought to 

minimize the difficulty associated with parameter selection.   This goal is placed at a 

higher priority when compared against the four principles just mentioned. 

Another attempt to improve momentum is called Second-Order Momentum.  The idea is 

that by using second order related information, a larger update can be made to the 

weights.  This particular algorithm was shown to be ineffective in [10], but Magoulas and 

Vrahatis [19] have found success using second order error information in other 

algorithms to adapt local learning rates. 

2.3 Momentum Performance 

Although momentum speeds up performance, there are times when an improper selection 

of the momentum term causes a network to diverge [3, 16]. This means that instead of 

distinguishing one class from another, the network will always output a single selection. 

In one batch of experiments done by Leonard and Kramer [2], 24% of the trials did not 

converge to a solution in a reasonable amount of time. 

5 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

Because of these problems, various efforts have focused on deriving additional forms of 

momentum.  One such method is to give more weight to previously presented examples 

and less weight to the current example.  By so doing, momentum is preserved when a 

sample attempts to update contrary to the most recent updates.  Jacobs [1] efforts to face 

these problems resulted in: 

(2b) ∆ wij(t) = (1 - α)ηδjxji + α∆wij(t-1) 

This variant can give more influence to the historical updates based on the value of α. It 

should be noted that setting α to zero in equation (2b) results in equation (1).  

Unfortunately, the performance of equation (2b) in Jacob’s work was comparable to the 

general performance from equation (2).   

2.4 Sample Presentation in standard momentum 

Momentum is a locally adaptive approach.  Each weight remembers the most recent 

update.  By doing this, each weight is able to update independent of other weights.  This 

helps adhere to the principles previously mentioned by Jacobs [1].  Building on 

momentum can show improved performance, as seen in the SuperSAB algorithm by 

Tollenaere [6].  He integrates the standard form of momentum from (1) with a locally 

adaptive learning rate per node.  His work, like that of Jacobs, uses a linear increase in 

local learning rates.  Locally adaptive approaches, however, put a stronger emphasis on 

the most recent updates.  

Because the presentation order is often randomized in machine learning algorithms, there 

will be circumstances where consecutive samples produce alternate directions of weight 

6 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

updates.  The problem with these approaches relates to presentation order.  The worst-

case scenario occurs if updates to any particular weight alternate directions.  In those 

situations, only the most recent update will be important. 

Many algorithms are susceptible to this problem.  By using successive updates to 

determine changes in momentum, the presentation order becomes critical.  All 

momentum-based algorithms suffer from this same shortcoming.  In order to alleviate 

this problem, an algorithm should be robust to the sample presentation order. 

2.5 Momentum Parameters 

Neural networks have other parameters that can cause difficulty.  In addition to having a 

momentum rate and learning rate, the network topology, activation function, and error 

functions must be chosen. The large number of these parameters can make network 

design difficult.  Neural networks appear to be especially sensitive to the selection of 

learning rate and momentum.  One specific property that Tollenaere mentions is that the 

higher a rate of momentum, the lower the learning rate should to be.  This dependence 

between learning rate and momentum makes network initialization more complex. 

Because of the potential of momentum, researchers have devoted their efforts to 

optimizing the effectiveness of momentum.  Momentum can speed up learning, but there 

is still a large set of parameters that must be tuned for many momentum based equations.  

For example, the SuperSAB algorithm by Tollenaere [6] has various parameters to 

govern the increase and decrease of each local momentum rate. There are separate 

parameters for increasing and decreasing the momentum rate.   

7 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

Although momentum can have a positive effect, introducing additional parameters can 

mitigate these improvements.  By increasing the number and sensitivity of parameters, a 

learning task becomes prefaced by a phase of parameter optimization.  This phase 

complicates the problem and can overcome the targeted speed gains.  

 

3. Windowed Momentum 

In this paper we propose the Windowed Momentum algorithm that is derived from basic 

momentum and locally adaptive algorithms.  By augmenting the historical scope of the 

local weights, there is more freedom to use information obtained on previous updates. 

Windowed Momentum uses a fixed width window that captures more information than 

that used by standard momentum.  By using more memory it is possible to overcome the 

problems of presentation order. 

By using Windowed Momentum, one can establish how much of a history to use.  This 

approaches batch training by allowing more samples to affect each update, but the 

regularity of updates is akin to online training.  This gives the Windowed Momentum 

algorithm additional performance over batch training because more updates are made 

with fewer computations. 

3.1 Principles of Windowed Momentum 

The Windowed Momentum algorithm is a method that functions in a way similar to 

standard momentum.  Momentum functions by remembering the most recent update to 

each weight and adding a fraction of that value to the next update.  Windowed 

8 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

momentum remembers the most recent n updates and uses that information in the current 

update for each weight.  With standard momentum, the error from one previous update is 

partially applied.  In the worst case, some consecutive samples will have opposite 

updates. This situation can disrupt the momentum that may have built up and it could 

take longer to train.  Windowed momentum is able to look at a broader history to 

determine how much affect momentum should have. 

In order to remove the problems related to presentation order, a sliding window is used 

which treats the most recent k updates as members of a set as opposed to elements in an 

ordered list.   This eliminates the problems of alternating updates, but the computation 

still needs to be manageable.  This is achieved with rolling averages.  An accumulator is 

used to store the current sum of the sliding window.  Then, as the window slides forward 

the oldest element is removed from that accumulator and the newest element can be 

added with a minimal number of operations.  An example showing individual updates 

and their rolling averages is shown in Figure 1.  This figure shows that averaging the 

previous 5 updates can smooth a chaotic sample presentation. 

Weight Updates over Time

time

up
da

te
 a

m
ou

nt Update
Amount

Rolling
Average

 
 Figure 1 – Using a window size of 5 can smooth chaotic presentations 

 

9 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

 

3.2 Analysis of Windowed Momentum 

A performance analysis of the Windowed Momentum algorithm begins with the weight 

level.  Assume w is a single weight and T is the set of all training points.  Let ∆we be the 

change in the weight that would come from training on e∈  T.  Batch mode operation 

would compute a ∆wT  that considers all e ∈  T.   

For Windowed Momentum, a set S  T is used to approximate the gradient at weight w.  

The set S is comprised of the most recent samples that have been trained.  In traditional 

batch mode training, the update to w is 

⊆

(4) ∆wT = ∑ ∆T

x

x

T
w

||
. 

Windowed Momentum computes  

(5) ∑ ∆
=

S

x

x

S
w

||
a  

which gives an estimate to the traditional Batch mode gradient.  At each presentation of a 

sample t, ∆we is compared to a.  If a and ∆we are in the same direction, either both 

positive or both negative, then the weight is updated w = w + ∆we.  Otherwise the ∆we is 

considered spurious and w remains unchanged.  By using an approximation to the true 

gradient, the likelihood of updating a particular weight contrary to the true gradient is 

reduced. 

 

In order to maintain efficiency, the set S is comprised of the most recent samples trained.  

After a sample t is presented and the average ∆we is computed, the oldest element of S is 

10 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

removed and t is added to S. The benefit of Windowed momentum is realized because an 

update can be made with every sample presented and any updates made are more likely 

to be in the direction of the true gradient. Additionally, training occurs much quicker 

because each presentation of a sample is likely to update several weights.  Instead of 

waiting until the end of an epoch, Windowed Momentum updates weights for each 

presented sample.  By approximating the true gradient and not postponing weight 

updates, Windowed momentum is able to converge on a solution considerably faster than 

batch mode training.  This is shown empirically in section 3.3.2.  In the extreme case, S = 

T, the information being used would be similar to batch training.  The primary difference 

is that more updates will be made than with batch training.  

3.3 Windowed Momentum Formula 

To create windowed momentum, equation (1) is altered to 

 (6) ∆ wij(t) = ηδjxji + ƒ(ηδjxji , ∆wij(t – 1), ∆wij(t – 2), …, ∆wij(t – k)). 

Equation (6) makes use of a function ƒ creating a family of Windowed Momentum 

functions.  This function determines how to use the history of weight updates for each 

particular weight.  There are k+1 arguments to the function ƒ, the first is the current 

update and the remainder are the k previous updates where k is the window size for the 

windowed momentum algorithm.   

In order to minimize the sensitivity of parameters, the f function used here has no 

adjustable parameters aside from window size.  An analysis of the window size is 

discussed in section 4.1.3.  However, the goal is to obtain an algorithm that will still do 

11 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

reasonably well with sub-optimal parameters.  To optimize learning speed simple 

formulae are favored. 

The following ƒ function is tested: 

(7) ƒ(z, δ1, …, δk) =  






≥

<−

∑
∑

0*0

0*

i

i

zif

zifz

δ

δ
 

Equation (7) ignores any updates that are in the opposite direction from the sum of the 

most recent k updates.  Updates that do not conform to the recent gradient are ignored.  

3.4 Computational Complexity of Standard Momentum 

When training a multi-layer perceptron, there are several factors that determine the 

computational complexity.  We will assume that any multi-layer network can be 

computed with a single hidden layer network [20 – 22], thus we only need consider the 

single hidden layer scenario.  It is assumed that the network is fully connected.   

 

For this discussion, the following terms are used: 

i = number of input nodes 
n = number of hidden nodes 
o = number of output nodes 
 

The dominating factor in training is the number of weights.  For the fully connected case, 

there are n * i weights from the inputs to the hidden nodes, and n * o weights from the 

hidden nodes to the output nodes.  This gives a total of n * (i + o) weights.  Because the 

number of inputs and outputs for a given problem are generally fixed, the only variable 

term is n.   

12 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

 

In terms of complexity, the feed forward phase of multi-layer perceptrons is fixed.  This 

leaves the back propagation of error phase.  The computation of error at the output nodes 

uses the same backpropagation error term as mentioned in equation (1b), which is 

repeated here for convenience.  

(1b) δj = (tj - oj) * oj * (1 - oj ) 

This error term is O(1) for each output node and that there are o*n output weights, which 

yields O(o*n) for the output layer.  After computing the error at the output nodes, the 

error at each hidden node is computed.  Using the same assumptions as for equation (1b)  

(3) δh = oh * (1 - oh ) *  ∑
∈outputsk

kkhw δ

where wkh represents the weight from node h in the hidden layer to node k in the output 

layer.  Note that this computation is O(o) for each hidden node and that there are n*i 

weights, yielding O(i*o*n) for the entire hidden layer. 

The total order of complexity is O(i*o*n + n*o) or O(n * o * (i+1)) for training a single 

epoch.  When using standard momentum, this order of complexity is unchanged but 

fewer epochs are required for convergence than without momentum.  Standard 

momentum merely requires additional storage for each weight.  Storage requirements are 

directly proportional to the number of weights.  With n * (i + o) weights, there are 2 * n * 

(i + o) values to store. 

13 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

3.5 Computational Complexity of Windowed Momentum 

Windowed Momentum has the same time complexity as Standard momentum.  In order 

to compute the complexity of Windowed momentum, the complexity of Standard 

momentum is used as a staring point.  As stated in the section 3.4, the order of 

complexity for training is O(n * o * (i+1)) per epoch.  When training with Windowed 

momentum, each weight update is conditional on the previous k updates – where k is the 

window size used.  This raises the complexity for training to O(n * o * (i+1) * k) per 

epoch.   

In order to efficiently compute the weight updates with Windowed momentum, there are 

additional storage requirements.  At each weight, an additional k - 1 values are needed.  

This raises the memory requirements from 2 * n * (i + o) numbers with standard 

momentum to k * n * (i + o) numbers for Windowed momentum.   

There are additional optimizations that can improve the computation speed in exchange 

for additional memory requirements.  Since the most recent k weight changes for each 

weight are already stored it is simple to iterate and compute the sum.  However, instead 

of iteratively computing the direction of the previous k weight changes, an accumulator 

can be used to store the sum.   Since the most recent k weight changes must be stored 

already, it is a trivial task to subtract the oldest weight change from the accumulator and 

add the newest weight change to the accumulator.  By doing this, the computational 

complexity of Windowed momentum becomes the same as standard momentum.  The 

cost for this is adding an accumulator for each weight, thereby increasing the required 

storage space to (k + 1) * n * (i + o) numbers. 

14 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

 
3.6 Combination Momentum 
 

Without addition of time complexity and a minor increase in memory required, one could 

use Windowed momentum in conjunction with Standard momentum.  We call this 

merging of algorithms Combination momentum.  Combination momentum starts with 

Windowed Momentum, which is defined in equation (6) from section 3.3: 

 (6) ∆ wij(t) = ηδjxji + ƒ(ηδjxji , ∆wij(t – 1), ∆wij(t – 2), …, ∆wij(t – k)). 

For simplicity, let  
 
(8)  ft = ƒ(ηδjxji , ∆wij(t – 1), ∆wij(t – 2), …, ∆wij(t – k)). 

 
Then combine equation (6) with (8), resulting in 

 (9) ∆ wij(t) = ηδjxji + ƒt. 

Next incorporate the momentum parameter α and the momentum term: 

 (10) ∆  




≠

=∆+
=

00

0)(
)(

t

tijjij
ij fif

fiftwx
tw

αηδ

Note that the update becomes a standard momentum based update or no update at all. 

4. Experimental Methods 
[Note: An on-line appendix found at http://axon.cs.byu.edu/~butch/wm_appendix01.ps. 

contains additional information relating to the experiments discussed in this paper.  The 

full tables of results pertaining to the UCI data sets are found first, followed by the results 

of varying window size for the UCI data sets.  Next is a reproduction of the letter 

15 

http://axon.cs.byu.edu/~butch/wm_appendix01.ps


In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

distribution found in Hahn [1994].  Finally, the full results pertaining to the character 

recognition experiments are listed.] 

There were two major rounds of experimentation.  The preliminary round was designed 

to explore the properties of Windowed Momentum using relatively small data sets.  

During this round of experiments we tested the effects of window size and learning rate 

and the effects of sample presentation order.  The final round of experiments used the 

results of round one and applied them to a large real-world data set.  In all cases a 

standard sigmoidal activation function was used. 

4.1 Preliminary Experiments 

In this round of experimentation we performed three main trials.  Windowed Momentum 

was tested in conjunction with varying learning rates and window sizes.   

Unless otherwise noted, each experiment was run 20 times with different random seeds 

and the results were averaged to produce the final statistics.  All stopping criteria were 

based purely on the results from the training data and each test was run until either of two 

stopping criteria was met.   If the sum-squared error did not decrease on the training set 

for 50 epochs then the results were computed and the test halted.  Additionally, if the 

sum-squared error decreased below a certain threshold the results were computed and the 

test halted.  This threshold was arbitrarily fixed at 4 for the duration of the experiments.  

The error and accuracy values reported come solely from test set performance. 

16 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

A comparison was not made to batch or semi-batch training because the comparison 

would not be accurate.  Batch training has been shown to be less effective [17] and the 

use of semi-batch would perform k times slower with a k sample batch size. 

Separate experiments were conducted with varying learning rates and varying window 

sizes to determine general performance of Windowed Momentum as compared to 

Combination Momentum and Standard Momentum.  The number of epochs required to 

converge and the accuracy were both measured. 

4.1.1 Data Sets 

The following data sets were used for the experiments in this round.  Each data set was 

separated into a training set and a test set with 70% of the data used for training.  All data 

sets listed come from the UC Irvine Machine Learning Database.   

abalone – 4,177 instances with 7 numeric attributes and one nominal attribute.  

The goal is to predict the age of an abalone from physical measurements. 

balance – 625 instances with 8 numeric attributes.  The output class represents 

the direction the scale will tip towards. 

cmc – 1,473 instances with  5 numeric attributes and 4 nominal attributes.  The 

inputs represent socio-economic characteristics of married women and the goal is 

to determine the contraceptive method currently used. 

17 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

derm – 366 instances with 34 numeric attributes.  This task is to determine the 

presence of various skin diseases based on personal and family history 

information. 

digit – 5,620 instances with 64 numeric attributes. Standard recognition of hand-

written digits. 

ecoli – 336 instances with 7 numeric attributes.  The goal is to determine the 

localization site of various proteins based on the input attributes. 

glass – 214 instances with 9 numeric attributes.  Various measurements of the 

contents of glass samples are used to determine the usage of the glass sample. 

haberman – 306 instances with 3 numeric attributes. The output classes are 

whether or not a patient survived 5 years after breast cancer surgery. 

iris – 150 instances with 4 numeric attributes.  This classic machine learning data 

set classifies the species of various iris plants based on physical measurements.  

This data set was only used in the sample presentation order experiments. 

ionosphere – 351 instances with 34 numeric attributes.  This data set classifies 

the presence of free electrons in the ionosphere. 

pendigits – 10,992 instances with 16 numeric attributes.  This is another set for 

handwritten digit recognition. 

18 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

pima – 768 instances with 8 numeric attributes.  The predictive class in this data 

set is whether or not the tested individual has diabetes. 

spam – 4,601 instances with  57 numeric attributes.  The goal is to distinguish 

unsolicited emails from normal emails based on word frequencies. 

wine – 178 instances with 13 numeric attributes.  The attributes give various parts 

of the chemical composition of the wine and the task is to determine the wines’ 

origins. 

yeast – 1,484 instances with 8 numeric attributes.  The task is to predict the 

localization site of various proteins based on the composition of the wines. 

Further experiments tested Windowed Momentum on a large data set consisting of 

samples of handwritten characters.  This OCR data consists of over 500,000 samples of 

characters and numbers that have been hand classified.  The letter distribution followed 

that of the English language.  The results of the preliminary experiments were used to 

determine learning rate, window size and momentum settings.  A separate NN was 

trained for each desired output class using approximately 80% of the data for training and 

the remaining 20% as test data.  Each sample was partitioned into an 8 x 8 grid for inputs.  

Unless otherwise mentioned a window size of 100 was used. 

The number of nodes used for each Data set is listed below. 

19 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

 

Data Set Hidden Nodes Used 
Abalone 11 
Balance 12 

Cmc 14 
Derm 51 
Digit 96 
Ecoli 11 
Glass 13 

Haberman 5 
Iris 6 

Ionosphere 51 
Pendigits 24 

Pima 12 
Spam 86 
Wine 20 
Yeast 12 

 

4.2 Sample Presentation Order 

When training a NN, the standard approach has been to randomly shuffle the training 

samples before presentation.  However, different approaches to sample presentation order 

can affect the training speed.  This set of experiments was designed to determine the 

effects of presentation order. 

The presentation order used was either shuffled or alternated.  Shuffled data is 

synonymous to random presentation order within an epoch.  Alternated data trains 

alternately on positive and negative examples.  Both presentation orders used the same 

random seed so that all data was arranged in identical orderings.  Every sample in the 

training set was trained on with shuffled data, but with alternated data samples of the 

class last trained on are skipped.  For example, when a positive sample was presented 

20 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

immediately after another positive sample it was skipped.  It is worth noting that the 

number of samples trained on per epoch using shuffled presentation order is a constant 

while the number of samples trained on per epoch varied using alternated presentation 

order.  The number of samples used in a single epoch was approximately 40% less than 

that used in shuffled presentation. 

The momentum rule used was Standard, Combination or no momentum.  Standard 

momentum is the same as mentioned in Equation (2) in section 2.2.  Combination 

momentum is the conjunction of both Standard momentum and Windowed momentum as 

shown in equation (10) in section 3.5.  Combination Momentum was chosen in lieu of 

Windowed Momentum because Combination Momentum empirically performed better 

than Windowed Momentum for low learning rates. 

The remainder of parameters in each NN was identical.  In order to easily determine the 

results a low learning rate (0.05) was used.  A subset of the UCI data was chosen for this 

experiment. 

5 Experimental Results 

This section contains the results and basic analysis of the experiments described in 

Section 4. 

The preliminary experiments tested accuracy and convergence speed of Standard 

Momentum, Combination Momentum and Windowed Momentum.  First the results from 

the UC Irvine data sets are presented followed by the OCR data results.  Finally the 

results related to sample presentation order are presented. 

21 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

5.1 Learning Rate 

In order to determine the effectiveness of Windowed and Combination Momentum 

relative to Standard Momentum, we tested the UCI data sets at a variety of learning rates 

ranging from 0.05 to 1.0 at increments of 0.05.  The momentum parameter was held 

constant at 0.4.  This value was determined based on initial experimentation.  It was 

shown to be enough momentum to recognize its effect without increasing the risk of 

divergence. For each learning rate and data set combination, 20 separate test runs were 

conducted.  The topology of the NN was a single hidden layer that was fully connected to 

all input and output nodes.  The size of the hidden layer was arbitrarily set at 1.5 times 

the number of inputs.   

Figures 2 and 3 show summary information that was obtained by averaging the 

performance over all UCI data sets and all test runs.  In Figure 2 it is shown that the 

quickest convergence consistently came from Combination Momentum.  At the lowest 

tested learning rate of 0.05, Standard Momentum took approximately 370 epochs to 

converge while Combination Momentum took about 205 epochs and Windowed 

Momentum took around 295 epochs.  As the learning rate increased, all three algorithms 

tended to converge in approximately the same number of epochs with Windowed and 

Combination momentum taking slightly fewer epochs. 

Although speed to converge is important, one cannot ignore the accuracy of the tested 

NNs.  The Combination Momentum algorithm performed poorest when subjected to a 

high learning rate, but it had the greatest performance for low learning rates.  Overall, 

Windowed and Standard momentum produced equivalent accuracy.  The point at which 

22 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

the highest accuracy for Windowed and Standard Momentum was obtained corresponded 

to a learning rate of 0.2 and at this point Windowed Momentum took about 16% fewer 

epochs.  The window size experiments further improve on this speed-up and used 0.2 as 

the learning rate because the best accuracy obtained using Standard Momentum was at 

this point. 

Average Epochs to Converge as a function of Learning Rate

.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9
5
0.9

75 1

Learning Rate

Ep
oc

hs
 to

 c
on

ve
rg

e

Standard Momentum
Combination Momentum
Windowed Momentum

 

Figure 2 – Comparison of convergence time on the UCI data sets 

0
50

100
150
200
250
300
350
400

0.0
5 0

Average Accuracy as a function of Learning Rate

85
85.5

86
86.5

87
87.5

88
88.5

89
89.5

90

0.0
5 0.2 0.4 0.6 0.8 0.9

5 1

Learning Rate

A
cc

ur
ac

y

Standard Momentum

Combination
Momentum
Windowed Momentum

 

Figure 3 – Comparison of accuracy on the UCI data sets 

23 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

After analyzing the results, it becomes apparent that Combination Momentum is overly 

aggressive when the learning rate gets large.  This occurs because the individual weight 

updates get too large too quickly.  By having such large updates, the ability to perform a 

successful gradient descent is lost.  Windowed Momentum shows the best balance of 

speed and accuracy. 

5.2 Window Size 

The next experiment was designed to observe the effects of varying window size of 

Windowed Momentum.  The window sizes used ranged from 5 to 50 at increments of 5 

and from 60 to 150 in increments of 10.  The learning rate was held constant at 0.2.  

Again we used the UCI data sets and the network topology was identical to that listed in 

4.1.2. 

Figures 4 and 5 show the behavior of convergence speed and accuracy as a function of 

window size.  These results are averaged over all test runs in the same manner described 

in section 5.1. 

By increasing the window size the time to converge decreased by an additional 16% 

(from 170 down to 142) as shown in figure 5. Also note in figure 4 that accuracy 

increases as window size increases. These experiments confirm that a larger window size 

improves training speed.  When comparing the results of Standard Momentum with the 

same learning rate of 0.2 we are able to decrease time to converge from 202 down to 142.  

This shows that Standard Momentum required approximately 31% more epochs on 

average to converge.   

24 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

When looking at the behavior relative to window size it becomes apparent that the 

accuracy improves when the window size increases.  This occurs because the weight 

change is considering more data points at each update.  This allows the NN to make 

smarter updates that allow for more accurate recognition.  The effect of varying the 

window size on a large data set is shown in the next section. 

 

Average Convergence time for Varying Window 
Sizes

0

50

100

150

200

250

5 15 25 35 45 60 80 10
0

15
0

Window Size

Ep
oc

hs Windowed
Momentum

 

 

 

 

 

Figure 4 – Accuracy on UCI data sets with varying window size 

25 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

Average Accuracy for Varying Window Sizes

88.9
89

89.1
89.2
89.3
89.4
89.5
89.6
89.7
89.8
89.9

90

5 15 25 35 45 60 80 10
0

15
0

Window Size

A
cc

ur
ac

y

Windowed
Momentum

 
Figure 5 – Convergence time for UCI data sets with varying window size 

 

5.3 OCR Experiments 

An initial experiment was conducted to determine the required time to train since run-

times are so long. A NN was trained with the letter ‘a’ as the positive class.  The 

performance on the training set at each epoch was recorded.  After approximately 45 

epochs there was little to no improvement on the test set.  Based on these results we 

report only the accuracy of the other letters for the first 50 epochs.  The letters were still 

trained on until completion so that the convergence results could be reported. 

Due to the large time requirements for training, a subset of letters was selected.  This 

selection was made based on letter frequencies in the English language.  There are many 

sources of letter distributions so we arbitrarily selected one that was based on occurrences 

in Dickens’ A Tale of Two Cities [23].  This letter distribution has been used in 

26 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

cryptographic research [24].  We then selected every other letter from that list so that a 

variety of common and rare letters could be trained.  This resulted in half of the 26 

English letters being trained.  Letters with distinct upper and lower case variants were 

trained on both versions. 

Further experiments were conducted to determine convergence speed.  Due to the 

extreme time requirements on such a large data set each letter variant was only tested 

twice.  The parameter settings were identical to those of the 50-epoch limited experiment. 

Finally the window size was varied from 25 to 300 in increments of 25.  This was done 

on a single letter with 3 random runs for each value of window size. 

Over all the letters trained, Standard Momentum took 1409 epochs to converge on 

average.  Windowed Momentum required 32% less epochs and Combination Momentum 

required 52% less epochs. Table 1 shows the average convergence time for all the letters. 

 

27 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

Table 1 – Total Epochs to Converge on OCR data  (based on training set) 

  
 Combination Windowed Standard
a 1184 946 1440 
A 448 613 1508 
c 591 1147 1657 
C 993 1442 1470 
e 1114 877 1344 
E 384 1065 1639 
g 197 1695 2204 
G 672 597 608 
h 894 671 1526 
H 543 1074 1230 
j 786 1167 1467 
J 582 928 1947 
l 610 1895 2730 
L 607 1060 1492 
M 717 1211 1360 
n 1364 1206 1162 
N 448 967 1844 
P 526 678 1245 
q 298 466 444 
Q 467 303 455 
r 1412 1181 1694 
R 470 564 1003 
V 293 331 952 
Average 678.26 960.17 1409.60

The next experiment is the accuracy test.  Over all the letters trained, there seemed to be 

two types of results.  On 59% of the letters the Windowed momentum algorithm clearly 

achieved better results. One example of this behavior is shown in figure 6.  The 

remaining 41% appeared to have no significant differences in performance.  The 

performance of Combination Momentum gave consistently higher error over all letters.  

The average error over all letters is shown in figure 7.  The full set of individual letter 

graphs is available in the online appendix.  

28 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

29 

General performance of windowed momentum varies from comparable to better 

depending on the particular letter.  Windowed Momentum never did consistently worse 

than Standard Momentum for any of the letters tested. 

Average Error for 'J'

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 6 11 16 21 26 31 36 41 46

Epochs

%
 e

rr
or

Window ed

Normal

Combination

 
Figure 6 – Classification accuracy on OCR data for a single letter based on test set results 

            

Average Error over all Letters

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 6 11 16 21 26 31 36 41 46

Epochs

%
 E

ro
rr Window ed

Standard

Combination

 
Figure 7 – Classification accuracy on OCR data averaged over all letters based on test set results 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

In order to determine how varying window sizes affected the time to converge, the letter 

‘e’ was trained with window sizes ranging from 25 to 300 inclusive.  Each window size 

was started with three separate random seeds.  The results are shown in Figure 8. 

 

Average Convergence time for 'e'

0

100

200

300

400

500

600

700

800

25 50 75 100 125 150 175 200 225 250 275 300

Window Size

Ep
oc

hs
 to

 C
on

ve
rg

e

 
Figure 8 – Convergence time on OCR data with varying window size 

 

The minimum convergence speed occurs with a window size of 100. This closely 

correlates with the optimum window size of 90 for the UCI data sets. An increased 

window size tends to lengthen the convergence time due to the gradient information 

becoming out-of-date.  Because the information used in a window size of 200 was 

computed over the previous 200 samples presented, it becomes increasingly less reliable.    

 

30 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

5.4 Sample Presentation Order 

For this experiment the derm, iris, and ionosphere datasets were arbitrarily selected.  The 

results are found in the table below.  The results for the Ionosphere data set with the 

Shuffled presentation order (italicized in the results) diverged in a few of the test runs.  In 

these cases, there was a single sample that was being misclassified.  The epoch at which 

all other points were correctly classified was used for determining convergence time for 

the Ionosphere dataset. 

Table 2 – Average epochs to converge with varying presentation order 

  Alternated Shuffled 
  derm iris ionosphere derm iris ionosphere 
Windowed M. 
Combination M. 

57.3 
48.1 

16.1 
13.7 

133.2 
122.7 

56.2 
49.1 

18.2 
9.4 

128.2 
120.8 

Standard M. 68 111.4 669.2 87.8 288.1 1218.4 
No Momentum 89.5 200.5 1267.4 113.1 577.7 3712.8 

 

 

To explain the difference in convergence times we must consider the behavior associated 

with training the NN.  Assume a positive sample is presented to a single output NN and is 

misclassified.  During training, this will result in the output node being updated to 

produce a more positive value.  The net effect of training any sample is to bias the NN in 

the direction of that sample.  Training on several consecutive samples from a single class 

tends to over bias the output nodes against the other output classes.  This hinders the 

training of the NN and results in a longer training time when compared to Alternated 

presentation.   

31 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

For the Standard and No momentum cases, Alternated presentation order took between 

21% and 66% fewer epochs to converge and never took longer then Shuffled presentation 

order. However, it is interesting to note that the Windowed and Combination momentum 

algorithms converged quicker than the Standard or No momentum cases.  Additionally, 

note the similarity in convergence times for Alternated and Shuffled presentation order 

within the Combination and Windowed momentum tests.  The small difference in the 

number of epochs for Windowed Momentum to converge shows that the algorithm is 

able to overcome the affects of sample presentation order. 

6 Conclusion 

Windowed Momentum achieved an average speed-up of 32% in convergence time on 15 

data sets, including a large OCR data set with over 500,000 samples.  Windowed 

Momentum is also able to overcome the effects that can occur with poor presentation 

order and still maintain its speed-up advantages.  Accuracy on all data sets was same or 

improved over Standard momentum.  This algorithm gives several new directions for 

research and can be used anywhere that Standard momentum is used. 

6.1 Future Research 

Future work will examine additional f functions.  One additional f function was examined 

during the course of the original experimentation but was unsuccessful.  Further 

optimizations can determine appropriate constants to improve this new f function. For 

this equation, let n equal the percent of δi in the same direction as z, and let θ  be a 

scaling parameter: 

32 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

(11) ƒ(z, δ1, …, δk) =   




>−−+
<

5.0))1)(12(1(*
5.0*2

nifnz
nifzn
θ

The affect of this particular f function is to diminish the effect of the update when less 

than half of the recent updates are in the same direction.  Conversely, the update is 

increased proportional to the percentage of historical updates that are in the same 

direction.  If all updates from the window are in the same direction then the update will 

be multiplied by .θ   If all updates from the window are in the opposite direction from the 

update being considered then there will be no change applied to the weights. 

In addition to the investigation of Windowed Momentum the behavior related to sample 

presentation order merits further analysis. Larger and more complex data sets or data sets 

with large (10+) numbers of classes may require a different style of algorithm to improve 

performance.   

One alternative f function that was tested used a history that was diminished over time.  

An update considered from n time steps ago was decayed by 0.95n.  This produced poor 

results but a full examination and optimization phase was not performed.  

Finally, the Windowed Momentum algorithm can be altered to use the historical 

information for the weight updates.  Instead of comparing the average from the previous 

k updates to the current update, the average can be used in place of the current update.   

33 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

7. Bibliography  

1. Jacobs, Robert A., “Increased Rates of Convergence Through Learning Rate 
Adaption”, Neural Networks, Vol. 1, pp 295-307, 1988.  

2. Leonard, J. and Kramer, M. A.: Improvement of the Backpropagation Algorithm for 
Training Neural Networks, Computers Chem. Engng., Volume 14, No. 3, pp 337-341, 
1990. 

3. Minai, A. A., and Williams, R. D., Acceleration of Back-Propagation Through 
Learning Rate and Momentum Adaptation, in International Joint Conference on Neural 
Networks, IEEE, pp 676-679, 1990. 

4. Schiffmann, W., Joost, M., and Werner, R., “Comparison of Optimized Backprop 
Algorithms”, Artificial Nerual Networks. European Symposium, D-Facto Publications, 
Brussels, Belgium, 1993. 

5. Silva, Fernando M., & Almeida, Luis B.: “Speeding up Backpropagation”, Advanced 
Neural Computers, Eckmiller R. (Editor), page 151-158, 1990. 

6. Tollenaere, Tom, “SuperSAB: Fast Adaptive Backpropagation with Good Scaling 
Properties”, Neural Networks, Vol. 3, pp 561-573, 1990. 

7. Wilamowski, Bogdan W., Chen, Yixin, and Malinowski, Aleksander, “Efficient 
Algorithm for Training Neural Networks with one Hidden Layer”, Proceedings on the 
International Conference on Neural Networks, San Diego, CA, 1997. 

8. Ampazis, N., and Perantonis, S. J., “Levenberg-Marquardt Algorithm with Adaptive 
Momentum for the Effiecient Training of Feedforward Networks, in International Joint 
Conference on Neural Networks, IEEE, 2000. 

9. Hagiwara, M., Theoretical Derivation of Momentum Term in Back-Propagation, in 
International Joint Conference on Neural Networks, IEEE, pp682-686, 1992. 

10. Pearlmutter, Barak A., Gradient descent: Second-order momentum and saturating 
error. In Advances in Neural Information Processing Systems 4, pp 887-894. Morgan 
Kaufmann, 1992. 

11. Rattray, M., and Saad, D., The Dynamics of Matrix Momentum, in Proceedings of 
the Eighth International Conference on Neural Networks, New York, 2 vols, pp 183-188, 
1998. 

12. Scarpetta, S., Rattray, M., and Saad, D., Natural Gradient Matrix Momentum, in 
Proceedings of the Ninth International Conference on Neural Networks, The Institution 
of Electrical Engineers, London, pp 43-48, 1999. 

34 



In International Journal of Neural Systems, vol. 12, no.3&4, pp. 303-318. 

13. Swanston, D. J., Bishop, J. M., and Mitchell, R. J., “Simple Adaptive momentum: 
new algorithm for training multiplayer perceptrons”, Electronics Letters, Vol. 30, pp 
1498-1500, 1994. 

14. Wiegerinck, W., Komoda, A., and Heskes., T., Stochastic dynamics of learning with 
momentum in neural networks. Journal of Physics A, 27:4425--4437, 1994. 

15. Schraudolph, Nicol N., “Fast Second-Order Gradient Descent via O(n) Curvature 
Matrix-Vector Products”, Neural Computation 2000. 

16. Qui, G., Varley, M. R., and Terrell, T. J., Accelerated Training of Backpropagation 
Networks by Using Adaptive Momentum Step, IEE Electronics Letters, Vol. 28, No. 4, 
pp 377-379, 1992. 

17. Wilson, D. Randall, and Tony R. Martinez, The Inefficiency of Batch Training for 
Large Training Sets, In Proceedings of the International Joint Conference on Neural 
Networks (IJCNN2000), Vol. II, pp. 113-117, July 2000. 

18. Mitchell, Tom M., Machine Learning, McGraw-Hill, Boston, MA, 1997. p 119 

19. Magoulas, G.D., Androulakis, G. S., and Vrahatis, M.N., Improving the Convergence 
of the Backpropagation Algorithm Using Learning Rate Adaptation Methods., in Neural 
Computation, Vol. 11, pp 1769-1796, 1999, MIT Press.  

20. Cybenko, G., Approximation by Superpositions of a sigmoidal function, 
Mathematical Control Signals Systems, Vol. 2, pp 303-314, 1989. 

21. Hornik, K., Stinchcomber, M., and White, H., Multilayer feedforward networks are 
universal approximators, Neural Networks, Vol. 2, pp 359 – 366, 1989. 

22. Funahashi, K.-I., On the approximate realization of continuous mappings by neural 
networks, Neural Networks,Vol. 2, pp 183-192, 1989. 

23. Hahn, Karl, “Frequency of Letters”, English Letter Usage Statistics using as a sample, 
“A Tale of Two Cities” by Charles Dickens, Usenet Sci.Crypt, 4 Aug 1994.  (statistics 
archived at http://www.arachnaut.org/archive/freq.html) 

24. Nichols, Randall K., Classical Cryptography Course, Aegean Park Press Laeguna 
Hills, CA, 1996. 
 
 

35 


	1.Introduction
	2.Background
	3. Windowed Momentum
	4. Experimental Methods
	5 Experimental Results
	6 Conclusion

