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Abstract – We present the Pair Attribute Learning (PAL) 
algorithm for the selection of relevant inputs and network 
topology. Correlations on training instance pairs are used to 
drive network construction of a single-hidden layer MLP. 
Results on nine learning problems demonstrate 70% less 
complexity, on average, without a significant loss of accuracy. 
 

I. INTRODUCTION 
 

 Two important parameters must be selected when 
designing a neural network to solve a given classification 
problem. First, the number, type, and range of the inputs must 
be chosen. Since this is established when the training data is 
collected and often includes many irrelevant inputs, a subset 
of these inputs should be selected that optimizes 
performance. This is known as input (or feature) selection. 
Second, the network topology must be created. That is, the 
number and organization (e.g. interconnections) of the nodes 
comprising the neural network must be specified. Since both 
of these parameters significantly affect the network’s 
performance, it is essential to have some means to select 
them appropriately. 

This paper presents an algorithm called Pair 
Attribute Learning (PAL), which addresses both input 
selection and network topology specification. The PAL 
algorithm selects features from a training set of instances that 
are then used to determine the topology of a neural network 
for solving a classification problem. The algorithm uses a 
novel search strategy based on features appearing in instance 
pairs. Features are chosen using a rank of statistical accuracy 
over the training set. The selected features drive the number 
of nodes in a single hidden layer network, and also dictate the 
connections on the input layer. The resulting network can 
then be trained using standard techniques, such as 
backpropagation.  

The PAL algorithm preprocesses the training data 
and constructs the network directly from the result – it does 
not require iterative constructive methods. In addition, the 
resulting networks are significantly less complex than those 
built using other techniques, while maintaining similar 
predictive accuracy. Experimental results on nine separate 
learning problems demonstrate that PAL constructed 
networks are 70% less complex on average than the best 
performing standard networks, while maintaining accuracy 
within 1.2%. When compared to a common heuristic 
network, the PAL constructed networks show a 38.8% 

average reduction in complexity, with a corresponding 3.1% 
increase in predictive accuracy. In addition, because the PAL 
algorithm addresses input selection and network topology 
simultaneously, it is a comprehensive solution for the 
application of a neural network on a particular problem.  

The remainder of this paper is organized as follows. 
Section II presents in detail the feature selection problem and 
summarizes the approaches that exist in the literature. Section 
III explores the issue of neural network topology and surveys 
some of the types of solutions that have been previously 
applied to this problem. Section IV gives the details of the 
proposed algorithm.  Several experiments are introduced in 
Section V along with the methods used to obtain the results. 
The results are analyzed in Section VI, and Section VII 
concludes with a summary and an outline of planned future 
work. 

 
II. FEATURE SELECTION 

 
 For a given classification problem, if the instance 
distribution is not random it will contain groups or patterns of 
instances having the same output class. These groups can be 
described as a function of some set of the inputs. These will 
be referred to as features of the input space. A feature is an 
area of the input space where certain inputs take a certain 
range or value, much like geographic features on a two 
dimensional map can be specified using coordinate values. 
Instances whose input values lie within the range of the 
feature are members of the feature. 
 For a given non-random distribution of instances, 
there exists many sets of features that can reproduce it to 
some desired level of accuracy. The learning algorithm must 
discover a set of features that promises the best performance 
on future novel instances. Biasing the search towards more 
general features increases the likelihood of future accuracy 
because these features are the most inclusive.  
 Even for a small number of inputs the search for a 
good set of features to describe the instance distribution is 
extremely complex. One means of reducing the complexity of 
this search is to reduce the size of the input space by 
eliminating an input altogether. An input can usually be 
eliminated if it is not strongly relevant to the features used to 
model the distribution. Each input removed significantly 
reduces the complexity of the input space. Selecting a 
minimal, relevant subset of the inputs can therefore reduce 



the scope of the feature search required by the learning 
algorithm, potentially improving training speed and accuracy. 
 The selection of a subset of relevant inputs is often 
referred to in the literature as the “feature subset selection 
problem” [10]. Some references use the terms feature, input, 
and attribute interchangeably. It should be emphasized that 
this paper distinguishes between a feature (as described 
above), and an input. (The term input and the term attribute 
are used synonymously throughout this paper). In this sense, 
the search for features is simply adapting the network to solve 
the classification problem (by selecting features to model the 
instance distribution). In contrast, the selection of a relevant 
subset of inputs is primarily concerned with removing 
irrelevant inputs from the representation of the problem and 
reducing the input space complexity.  
 There have been many approaches to the selection of 
relevant inputs proposed in the literature. These can be 
functionally classified as filter or wrapper algorithms [10]. A 
filter attempts to reduce the number of inputs independent of 
the learning algorithm. The filter is run in a pre-processing 
stage and uses some measure of relevance to determine the 
subset of inputs to pass to the learning algorithm [2], [4], 
[12]. A wrapper is used in conjunction with the learning 
algorithm. In this case the wrapper determines a candidate 
subset of inputs and then measures the relevance by running 
the actual learning algorithm on them [1], [6], [10]. 
   

III. Neural Network Construction 
 
There are many heuristics based on empirical 

research that can help construct a neural network with 
satisfactory results. Usually the hidden layer is set in relation 
to the number of inputs and outputs of the network. If there is 
domain knowledge about the problem, such as the expected 
number and shape of features, the hidden layer can be set 
accordingly. The network topology can then be adjusted 
based on experimental results. Unfortunately, training a 
network on a large problem can be prohibitively expensive 
and using trial and error to select the topology may not be 
feasible. 

To address this problem researchers have focused on 
two types of solutions. The first approach is to construct the 
network, usually using some iterative algorithm that starts 
with a small network and gradually increases the size until 
some desired accuracy is achieved. The second approach is to 
start with a very large network trained to the desired level of 
accuracy, and to reduce the size until some error threshold is 
exceeded. This is called pruning the network.  

A. Constructive Algorithms 
 
 Many constructive techniques produce network 
configurations unlike the standard feedforward single hidden 
layer MLP [3] [7] [24]. Other constructive techniques are 
specific to a class of learning problems, and use alternative 
activations or adaptive rules [11] [16]. Constructive 
algorithms that result in standard network configurations 

often use variations on backpropagation training, or novel 
iterative techniques  [17] [15] [20] [25] [27] [30]. 

The majority of constructive algorithms applicable 
to supervised learning of classification problems require 
iterative techniques. Like heuristic or trial and error 
approaches, for large problems, training iterative networks 
becomes prohibitive. In addition, many of these constructive 
methods produce alternative topologies that preclude the use 
of widely available tools. Although a few non-iterative 
constructive techniques exist, they typically have constraints 
on the type of problems they can be applied to. The PAL 
algorithm presented in this paper is generally applicable to all 
classification problems and does not rely on iterative methods 
to determine the network topology. 

B. Pruning Algorithms 
 

Pruning techniques can be used on individual 
weights (i.e. connections) or individual nodes. Some pruning 
methods are interactive [26], others operate after the training 
phase [8] [14] [18], and some algorithms incorporate the 
pruning into the adaptive rule itself [5] [9] [13] [21] [28] [29]. 

Pruning algorithms are generally successful at 
reducing the complexity of some networks. However, the size 
of the network to be pruned must first be determined, and 
must be large enough to easily adapt to the problem. This 
introduces the computational expense of first training a large 
network. There is also the issue of when to stop pruning (i.e. 
when a sufficient reduction in complexity has been achieved). 
In addition, pruning may only succeed in removing redundant 
elements, and not affect the internal representation adapted 
by the network, which may be hindering generalization [23]. 

 
IV. Pair Attribute Learning 

 
 This section presents a novel algorithm called Pair 
Attribute Learning (PAL) that addresses both feature 
selection and network topology. This method uses a filtering 
stage to select relevant features based on a statistical measure. 
The resulting features are used directly to construct a neural 
network. The network is trained using standard 
backpropagation and no further processing is required. 
 The PAL algorithm does not explicitly search for 
irrelevant inputs to the problem. Instead it evaluates 
individual features and determines which inputs are relevant 
to that feature. Useful features are selected based on a 
performance measure. These features are then used to 
construct a single hidden layer MLP such that each feature 
produces a corresponding hidden node with connections only 
to the inputs that were determined to be relevant to that 
feature. The algorithm is biased toward low order features 
resulting in the construction of hidden nodes with low order 
discriminants. This reduces the complexity of placing the 
discriminants while allowing the neural network to find the 
best fit for a given feature. 

The PAL algorithm uses correlations on pairs of 
instances in the training set to generate the features to be 



explored. This constrains the search to only those features 
that appear in the training set. For this to be effective, the 
distribution of the training data must model the actual 
distribution of the learning problem (a constraint shared by 
most learning algorithms). 

The algorithm generates a feature by finding the 
correlation on inputs between a pair of instances that share 
the same class. Correlated inputs are simply inputs that have 
the same value (continuous values are handled using 
discretization). All correlated inputs are relevant in the 
context of the feature (since in this case the feature is defined 
as the correlated inputs), whereas uncorrelated inputs are not 
relevant. The algorithm attempts to explore all features that 
exist in the training data by iterating through successive pairs. 
Each feature is evaluated using a statistical measure based on 
the accuracy of the feature when used to predict the class of 
the training data. This is done by finding the percent of 
instances that correlate with the feature, within the feature’s 
class. A penalty term is derived for instances that correlate 
with the feature but have a different class. Each feature is 
ranked based on the result and the top scoring features are 
selected for use in the construction of the network. The 
algorithm is biased toward more general features by selecting 
them over more specific features when both show a similar 
performance. This increases the likelihood that the network 
can generalize adequately, and is less susceptible to noise. 

Once a set of features is selected, a corresponding 
network is constructed. A node is placed in the hidden layer 
for each feature in the set. Each relevant input used in the 
feature is connected to the node with all other inputs left 
unconnected. The output layer is then fully connected. This 
produces a network with the input layer sparsely connected to 
the hidden layer, assuming the pre-processing produces low 
order features. The network can then be trained using 
standard techniques such as backpropagation. 

 
Figure I shows an example of a network constructed 

with the PAL algorithm. In this example, the classification 
problem has four inputs and two outputs. The first network 
(a) is a standard fully connected single hidden layer MLP 
with seven nodes in the hidden layer. A list of three features 
is shown under the second network (b). The features are 
given as an ordered list of 1’s and *’s corresponding to the 

four inputs. A 1 is shown for a relevant input, and * is shown 
for an irrelevant input. These features were used to construct 
the network (b) shown in the figure. 

FIGURE II 
PAL PSEUDOCODE 

 

begin Pair Attribute Learning 
 
for all classes in the training data  
   for all instance pairs in the class  
      if instance pair has a correlated feature 
         rank feature 
         add the feature and rank to a list for later processing 
 
for all classes in the training data do 

while there are more features in the list for this class and 
more features are needed 
select the feature with the highest rank for network 
construction and remove it from the list 

 
end Pair Attribute Learning 

Pseudocode for the feature selection phase of the 
Pair Attribute Learning algorithm is given in Figure II. The 
pseudocode consists of two main loops. The first loop iterates 
through all same-class pairs of instances to find features. 
These are then ranked and saved in a list. The second main 
loop selects a subset of the collected features based on rank, 
to be used in the construction of the network.  

The rank of a feature is calculated using equation (1) 
shown below, where f is the feature to be ranked, cf is the set 
of instances belonging to the class c of feature f, x is a 
training instance, m(f, x) is 1 if the feature f matches instance 
x and zero otherwise, nc is the number of training instances in 
class c, and n is the total number of training instances. 
Negative ranking features are ignored.  FIGURE I 

A FULLY CONNECTED NETWORK (a) 
A PAL CONSTRUCTED NETWORK (b) 

 
rf = 
                       

1 
nc

The rank provides a rough measure of the coverage 
and accuracy of a feature. After all features are discovered 
and ranked for a given class, they are extracted in high-low 
order until the cumulative rank of all extracted features 
reaches an empirically determined threshold. Each extracted 
feature is then used in the construction of the network. 

The PAL algorithm iterates through all possible 
pairs in the data set that share the same class. Each pair 
produces a feature, and each feature is ranked by checking it 
against all instances. This yields a worst-case time 
complexity that is cubic in the number of instances. Several 
optimizations to the algorithm reduce this time considerably 
in practice. 

One simple but effective optimization is to skip the 
evaluation of redundant features. A practical learning 

 

Feature A: 1, , *, 1  1
Feature B: 1, *, 1, *
Feature C: *, *, 1, 1 

(b) (a) 

A

B

C

- 1 
n-nc (1)

x ∈ cf

Σ m(f, x) 
x ∉ cf 
Σ m(f, x) 



problem will have features that appear many times in the 
training data and this avoids making many redundant passes 
through the training set. 

Another optimization is to have the algorithm 
discontinue searching for features if sufficient features have 
been found to model the distribution of a class. This has a 
significant benefit because good features cover many 
instances and therefore show up early in the search, allowing 
the algorithm to terminate after searching only a relatively 
few pairs.  

A further optimization is to ignore single order 
features. These features are spurious for most interesting real 
world problems, but typically occur very frequently. By 
enforcing a minimum order of two on evaluated features, the 
algorithm avoids computing the rank for these features. 

Finally, for a given instance, if a feature has been 
found to rank higher than some (empirically determined) 
threshold, the instance is no longer used to generate features 
(i.e. pairs). A good feature will cover many instances, and 
subsequent pairs using the given instance will thus be 
redundant. Allowing the algorithm to terminate a loop early 
in this case can significantly speed up execution time. 
 

V. EXPERIMENTS 
 
 The PAL algorithm was compared to conventional 
methods for implementing single hidden layer MLPs using 
eight real-world learning problems and one artificial learning 
problem. The objective was to determine the complexity and 
accuracy of the network model constructed using the PAL 
algorithm, versus conventional models. 

The following data sets were used: blood [22], 
cancer, credit, echo, iris, lenses, zoo, mushroom, and monk3. 
The size of each data set is listed in Table I. Except where 
otherwise noted, all data sets were taken from the UCI 
repository [19]. 

All results reported in this research were obtained 
using a modified form of ten-fold stratified cross validation, 
where each “holdout” set was used strictly for evaluation 
after training was completed. A small portion of the training 
instances was used to determine when to stop training. 

 The network corresponding to the best recorded  
SSE, over the entire training run, was used to measure 
performance on the holdout set. This implies that even if the 
network began to overfit the training data, this would not be 
reflected in the test results because a previous version of the 
network was saved for use in the testing. 

The networks were trained using standard 
backpropagation with no momentum. The connection weights 
were first randomly initialized between –0.2 and 0.2 using a 
uniform distribution. The networks were then trained on-line 
(vs. batch mode) using a learning rate of 0.2. Continuous 
inputs were first discretized. 

 In order to have the most meaningful results, the 
standard network, comprised of a fully connected single 
hidden layer MLP, was exhaustively tested to find the best 
performing topology to use for comparison. Standard 

networks were built with hidden layers from 1 to 15 nodes, 
and (for larger problems) 15 to 100 nodes in 5 node 
increments. The topology with the highest accuracy was 
selected for comparison with the PAL constructed network. 
This is referred to as the Best Iterative Network (BIN). The 
common heuristic of using twice the number of inputs for the 
size of the hidden layer was also reported for comparison. 
This is referred to as the Double Input Network (DIN). 

Because the number of nodes does not determine the 
number of connections directly in a PAL constructed 
network, the metric used for comparing complexity was the 
number of connections in the network, regardless of the 
number of nodes. The network complexities for the best 
iterative topology (BIN), and the heuristic topology (DIN), 
are pre-determined and remain constant over cross-validation 
because the topologies are not a function of the training data. 
This is not true for the PAL algorithm, however. In this case, 
the PAL algorithm produces a (potentially) different topology 
for each mix in the cross validation because the training data 
will contain different examples (and thus different features). 
To compare network complexities, it was necessary to 
average the complexities of the PAL constructed topologies 
over the ten-fold cross-validation. These are the scores 
reported in the results. 

FIGURE III 
ACCURACY AND COMPLEXITY FOR THE 

PAL, BIN, AND DIN NETWORKS 
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VI. RESULTS 

 
 The results of running the PAL algorithm on all nine 
data sets, along with the results from the BIN and DIN 
methods, are shown in the bar charts in Figure III. The top 
chart shows the percent accuracy for each method on each 
data set. The BIN slightly outperformed the other methods on 
all but the mushroom data sets, where the PAL algorithm was 
the most accurate. The PAL algorithm was within 3.4% of the 
BIN method in every case. The DIN also had very similar 
performance to the BIN method, but suffered on the Lenses 
data set. The DIN method under performed PAL on all but 
three of the problems.  

The BIN results represent the best accuracy possible 
given a standard single hidden layer MLP, since all 
(reasonable) sizes for the hidden layer were tested. Any 
constructive technique that produces a standard single hidden 
layer MLP was implicitly tested by iteratively testing all 
network sizes. Constructive algorithms that produce 
alternative topologies were not used for comparison. 

The lower chart in Figure III shows the complexity 
of the resulting network for each method as a percentage of 
the most complex network. The most complex network is 
shown as 100%. Table I gives the actual complexities 
(number of connections) produced by each method, as well as 
the number of inputs, output classes, and training instances 
for each learning problem. The PAL algorithm produced 
significantly less complex networks than the BIN method in 
all cases. In three cases the DIN method produced slightly 
less complex networks than the PAL algorithm. These were 
the Iris, Lenses, and Monk3 data sets. Of the three, the 
accuracy of the DIN method was only better than the PAL 
algorithm on the Iris data set. 

Overall, the PAL algorithm produced networks 70% 
less complex than the BIN method, and 38.8% less complex 
than the DIN method. The accuracy of the PAL networks was 
only 1.2% lower than the most accurate network (BIN), on 
average. These results demonstrate that using the PAL 
algorithm produces small, accurate networks without the 
computational overhead of iterative construction techniques, 
or the uncertainties of heuristic approaches.  

One shortcoming of the PAL algorithm is that it 
lacks a facility for removing redundant inputs. Since there is 
no explicit measure of correlation on inputs within a feature, 
all inputs that are correlated in an instance pair are used for 
the feature. Redundant inputs will then appear as connections 
in the constructed network, adding to the network 
complexity. 

The PAL algorithm potentially discovers all features 
that appear in the training set. Not every feature is useful for 
generalizing so some means of selecting the features to drive 
the network construction must exist. As explained in Section 
IV, the PAL algorithm ranks the features based on predictive 
accuracy, but a heuristic had to be empirically determined to 
set the threshold for feature selection.  

 The threshold 
enough features could be 
was not necessarily the op
why for certain problems
than the DIN method. M
case than were necessar
suffer significantly. 

NETWORK COMPLEXIT
 

ComLearning 
Problem BIN D

Blood 54 48

Cancer 143 19

Credit 425 51

Echo 150 16

Iris 700 56

Lenses 350 56

Zoo 1035 73

Mushroom 120 105

Monk3 360 96

 
VII. CONCLUSIO
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Some parameters of the PAL algorithm, such as the 
cumulative rank threshold, were determined empirically over 
the nine data sets used in the experiments. Future work will 
focus on removing dependence on these parameters, such as 
dependent ranking to avoid overlap. Also, further work will 
extend the feature search to more general features by 
reducing instance pair correlations (e.g. removing spurious 
inputs). Other extensions to be explored include optimizing 
the algorithm to improve execution time, provisions for 
problems where class outputs are underrepresented by the 
selected features, and sparsely connecting the output layer. 
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