

Pair Attribute Learning:
Network Construction Using Pair Features

Eric K. Henderson

Cambridge University
122 Tenison Rd

Cambridge, CB1 2DW
UK

Tony R. Martinez
Brigham Young University

Computer Science Department
3361 TMCB

Provo, UT, 84602

Abstract – We present the Pair Attribute Learning (PAL)
algorithm for the selection of relevant inputs and network
topology. Correlations on training instance pairs are used to
drive network construction of a single-hidden layer MLP.
Results on nine learning problems demonstrate 70% less
complexity, on average, without a significant loss of accuracy.

I. INTRODUCTION

 Two important parameters must be selected when
designing a neural network to solve a given classification
problem. First, the number, type, and range of the inputs must
be chosen. Since this is established when the training data is
collected and often includes many irrelevant inputs, a subset
of these inputs should be selected that optimizes
performance. This is known as input (or feature) selection.
Second, the network topology must be created. That is, the
number and organization (e.g. interconnections) of the nodes
comprising the neural network must be specified. Since both
of these parameters significantly affect the network’s
performance, it is essential to have some means to select
them appropriately.

This paper presents an algorithm called Pair
Attribute Learning (PAL), which addresses both input
selection and network topology specification. The PAL
algorithm selects features from a training set of instances that
are then used to determine the topology of a neural network
for solving a classification problem. The algorithm uses a
novel search strategy based on features appearing in instance
pairs. Features are chosen using a rank of statistical accuracy
over the training set. The selected features drive the number
of nodes in a single hidden layer network, and also dictate the
connections on the input layer. The resulting network can
then be trained using standard techniques, such as
backpropagation.

The PAL algorithm preprocesses the training data
and constructs the network directly from the result – it does
not require iterative constructive methods. In addition, the
resulting networks are significantly less complex than those
built using other techniques, while maintaining similar
predictive accuracy. Experimental results on nine separate
learning problems demonstrate that PAL constructed
networks are 70% less complex on average than the best
performing standard networks, while maintaining accuracy
within 1.2%. When compared to a common heuristic
network, the PAL constructed networks show a 38.8%

average reduction in complexity, with a corresponding 3.1%
increase in predictive accuracy. In addition, because the PAL
algorithm addresses input selection and network topology
simultaneously, it is a comprehensive solution for the
application of a neural network on a particular problem.

The remainder of this paper is organized as follows.
Section II presents in detail the feature selection problem and
summarizes the approaches that exist in the literature. Section
III explores the issue of neural network topology and surveys
some of the types of solutions that have been previously
applied to this problem. Section IV gives the details of the
proposed algorithm. Several experiments are introduced in
Section V along with the methods used to obtain the results.
The results are analyzed in Section VI, and Section VII
concludes with a summary and an outline of planned future
work.

II. FEATURE SELECTION

 For a given classification problem, if the instance
distribution is not random it will contain groups or patterns of
instances having the same output class. These groups can be
described as a function of some set of the inputs. These will
be referred to as features of the input space. A feature is an
area of the input space where certain inputs take a certain
range or value, much like geographic features on a two
dimensional map can be specified using coordinate values.
Instances whose input values lie within the range of the
feature are members of the feature.
 For a given non-random distribution of instances,
there exists many sets of features that can reproduce it to
some desired level of accuracy. The learning algorithm must
discover a set of features that promises the best performance
on future novel instances. Biasing the search towards more
general features increases the likelihood of future accuracy
because these features are the most inclusive.
 Even for a small number of inputs the search for a
good set of features to describe the instance distribution is
extremely complex. One means of reducing the complexity of
this search is to reduce the size of the input space by
eliminating an input altogether. An input can usually be
eliminated if it is not strongly relevant to the features used to
model the distribution. Each input removed significantly
reduces the complexity of the input space. Selecting a
minimal, relevant subset of the inputs can therefore reduce

the scope of the feature search required by the learning
algorithm, potentially improving training speed and accuracy.
 The selection of a subset of relevant inputs is often
referred to in the literature as the “feature subset selection
problem” [10]. Some references use the terms feature, input,
and attribute interchangeably. It should be emphasized that
this paper distinguishes between a feature (as described
above), and an input. (The term input and the term attribute
are used synonymously throughout this paper). In this sense,
the search for features is simply adapting the network to solve
the classification problem (by selecting features to model the
instance distribution). In contrast, the selection of a relevant
subset of inputs is primarily concerned with removing
irrelevant inputs from the representation of the problem and
reducing the input space complexity.
 There have been many approaches to the selection of
relevant inputs proposed in the literature. These can be
functionally classified as filter or wrapper algorithms [10]. A
filter attempts to reduce the number of inputs independent of
the learning algorithm. The filter is run in a pre-processing
stage and uses some measure of relevance to determine the
subset of inputs to pass to the learning algorithm [2], [4],
[12]. A wrapper is used in conjunction with the learning
algorithm. In this case the wrapper determines a candidate
subset of inputs and then measures the relevance by running
the actual learning algorithm on them [1], [6], [10].

III. Neural Network Construction

There are many heuristics based on empirical

research that can help construct a neural network with
satisfactory results. Usually the hidden layer is set in relation
to the number of inputs and outputs of the network. If there is
domain knowledge about the problem, such as the expected
number and shape of features, the hidden layer can be set
accordingly. The network topology can then be adjusted
based on experimental results. Unfortunately, training a
network on a large problem can be prohibitively expensive
and using trial and error to select the topology may not be
feasible.

To address this problem researchers have focused on
two types of solutions. The first approach is to construct the
network, usually using some iterative algorithm that starts
with a small network and gradually increases the size until
some desired accuracy is achieved. The second approach is to
start with a very large network trained to the desired level of
accuracy, and to reduce the size until some error threshold is
exceeded. This is called pruning the network.

A. Constructive Algorithms

 Many constructive techniques produce network
configurations unlike the standard feedforward single hidden
layer MLP [3] [7] [24]. Other constructive techniques are
specific to a class of learning problems, and use alternative
activations or adaptive rules [11] [16]. Constructive
algorithms that result in standard network configurations

often use variations on backpropagation training, or novel
iterative techniques [17] [15] [20] [25] [27] [30].

The majority of constructive algorithms applicable
to supervised learning of classification problems require
iterative techniques. Like heuristic or trial and error
approaches, for large problems, training iterative networks
becomes prohibitive. In addition, many of these constructive
methods produce alternative topologies that preclude the use
of widely available tools. Although a few non-iterative
constructive techniques exist, they typically have constraints
on the type of problems they can be applied to. The PAL
algorithm presented in this paper is generally applicable to all
classification problems and does not rely on iterative methods
to determine the network topology.

B. Pruning Algorithms

Pruning techniques can be used on individual
weights (i.e. connections) or individual nodes. Some pruning
methods are interactive [26], others operate after the training
phase [8] [14] [18], and some algorithms incorporate the
pruning into the adaptive rule itself [5] [9] [13] [21] [28] [29].

Pruning algorithms are generally successful at
reducing the complexity of some networks. However, the size
of the network to be pruned must first be determined, and
must be large enough to easily adapt to the problem. This
introduces the computational expense of first training a large
network. There is also the issue of when to stop pruning (i.e.
when a sufficient reduction in complexity has been achieved).
In addition, pruning may only succeed in removing redundant
elements, and not affect the internal representation adapted
by the network, which may be hindering generalization [23].

IV. Pair Attribute Learning

 This section presents a novel algorithm called Pair
Attribute Learning (PAL) that addresses both feature
selection and network topology. This method uses a filtering
stage to select relevant features based on a statistical measure.
The resulting features are used directly to construct a neural
network. The network is trained using standard
backpropagation and no further processing is required.
 The PAL algorithm does not explicitly search for
irrelevant inputs to the problem. Instead it evaluates
individual features and determines which inputs are relevant
to that feature. Useful features are selected based on a
performance measure. These features are then used to
construct a single hidden layer MLP such that each feature
produces a corresponding hidden node with connections only
to the inputs that were determined to be relevant to that
feature. The algorithm is biased toward low order features
resulting in the construction of hidden nodes with low order
discriminants. This reduces the complexity of placing the
discriminants while allowing the neural network to find the
best fit for a given feature.

The PAL algorithm uses correlations on pairs of
instances in the training set to generate the features to be

explored. This constrains the search to only those features
that appear in the training set. For this to be effective, the
distribution of the training data must model the actual
distribution of the learning problem (a constraint shared by
most learning algorithms).

The algorithm generates a feature by finding the
correlation on inputs between a pair of instances that share
the same class. Correlated inputs are simply inputs that have
the same value (continuous values are handled using
discretization). All correlated inputs are relevant in the
context of the feature (since in this case the feature is defined
as the correlated inputs), whereas uncorrelated inputs are not
relevant. The algorithm attempts to explore all features that
exist in the training data by iterating through successive pairs.
Each feature is evaluated using a statistical measure based on
the accuracy of the feature when used to predict the class of
the training data. This is done by finding the percent of
instances that correlate with the feature, within the feature’s
class. A penalty term is derived for instances that correlate
with the feature but have a different class. Each feature is
ranked based on the result and the top scoring features are
selected for use in the construction of the network. The
algorithm is biased toward more general features by selecting
them over more specific features when both show a similar
performance. This increases the likelihood that the network
can generalize adequately, and is less susceptible to noise.

Once a set of features is selected, a corresponding
network is constructed. A node is placed in the hidden layer
for each feature in the set. Each relevant input used in the
feature is connected to the node with all other inputs left
unconnected. The output layer is then fully connected. This
produces a network with the input layer sparsely connected to
the hidden layer, assuming the pre-processing produces low
order features. The network can then be trained using
standard techniques such as backpropagation.

Figure I shows an example of a network constructed

with the PAL algorithm. In this example, the classification
problem has four inputs and two outputs. The first network
(a) is a standard fully connected single hidden layer MLP
with seven nodes in the hidden layer. A list of three features
is shown under the second network (b). The features are
given as an ordered list of 1’s and *’s corresponding to the

four inputs. A 1 is shown for a relevant input, and * is shown
for an irrelevant input. These features were used to construct
the network (b) shown in the figure.

FIGURE II
PAL PSEUDOCODE

begin Pair Attribute Learning

for all classes in the training data
 for all instance pairs in the class
 if instance pair has a correlated feature
 rank feature
 add the feature and rank to a list for later processing

for all classes in the training data do

while there are more features in the list for this class and
more features are needed
select the feature with the highest rank for network
construction and remove it from the list

end Pair Attribute Learning

Pseudocode for the feature selection phase of the
Pair Attribute Learning algorithm is given in Figure II. The
pseudocode consists of two main loops. The first loop iterates
through all same-class pairs of instances to find features.
These are then ranked and saved in a list. The second main
loop selects a subset of the collected features based on rank,
to be used in the construction of the network.

The rank of a feature is calculated using equation (1)
shown below, where f is the feature to be ranked, cf is the set
of instances belonging to the class c of feature f, x is a
training instance, m(f, x) is 1 if the feature f matches instance
x and zero otherwise, nc is the number of training instances in
class c, and n is the total number of training instances.
Negative ranking features are ignored. FIGURE I

A FULLY CONNECTED NETWORK (a)
A PAL CONSTRUCTED NETWORK (b)

rf =

1
nc

The rank provides a rough measure of the coverage
and accuracy of a feature. After all features are discovered
and ranked for a given class, they are extracted in high-low
order until the cumulative rank of all extracted features
reaches an empirically determined threshold. Each extracted
feature is then used in the construction of the network.

The PAL algorithm iterates through all possible
pairs in the data set that share the same class. Each pair
produces a feature, and each feature is ranked by checking it
against all instances. This yields a worst-case time
complexity that is cubic in the number of instances. Several
optimizations to the algorithm reduce this time considerably
in practice.

One simple but effective optimization is to skip the
evaluation of redundant features. A practical learning

Feature A: 1, , *, 1 1
Feature B: 1, *, 1, *
Feature C: *, *, 1, 1

(b) (a)

A

B

C

- 1
n-nc (1)

x ∈ cf

Σ m(f, x)
x ∉ cf
Σ m(f, x)

problem will have features that appear many times in the
training data and this avoids making many redundant passes
through the training set.

Another optimization is to have the algorithm
discontinue searching for features if sufficient features have
been found to model the distribution of a class. This has a
significant benefit because good features cover many
instances and therefore show up early in the search, allowing
the algorithm to terminate after searching only a relatively
few pairs.

A further optimization is to ignore single order
features. These features are spurious for most interesting real
world problems, but typically occur very frequently. By
enforcing a minimum order of two on evaluated features, the
algorithm avoids computing the rank for these features.

Finally, for a given instance, if a feature has been
found to rank higher than some (empirically determined)
threshold, the instance is no longer used to generate features
(i.e. pairs). A good feature will cover many instances, and
subsequent pairs using the given instance will thus be
redundant. Allowing the algorithm to terminate a loop early
in this case can significantly speed up execution time.

V. EXPERIMENTS

 The PAL algorithm was compared to conventional
methods for implementing single hidden layer MLPs using
eight real-world learning problems and one artificial learning
problem. The objective was to determine the complexity and
accuracy of the network model constructed using the PAL
algorithm, versus conventional models.

The following data sets were used: blood [22],
cancer, credit, echo, iris, lenses, zoo, mushroom, and monk3.
The size of each data set is listed in Table I. Except where
otherwise noted, all data sets were taken from the UCI
repository [19].

All results reported in this research were obtained
using a modified form of ten-fold stratified cross validation,
where each “holdout” set was used strictly for evaluation
after training was completed. A small portion of the training
instances was used to determine when to stop training.

 The network corresponding to the best recorded
SSE, over the entire training run, was used to measure
performance on the holdout set. This implies that even if the
network began to overfit the training data, this would not be
reflected in the test results because a previous version of the
network was saved for use in the testing.

The networks were trained using standard
backpropagation with no momentum. The connection weights
were first randomly initialized between –0.2 and 0.2 using a
uniform distribution. The networks were then trained on-line
(vs. batch mode) using a learning rate of 0.2. Continuous
inputs were first discretized.

 In order to have the most meaningful results, the
standard network, comprised of a fully connected single
hidden layer MLP, was exhaustively tested to find the best
performing topology to use for comparison. Standard

networks were built with hidden layers from 1 to 15 nodes,
and (for larger problems) 15 to 100 nodes in 5 node
increments. The topology with the highest accuracy was
selected for comparison with the PAL constructed network.
This is referred to as the Best Iterative Network (BIN). The
common heuristic of using twice the number of inputs for the
size of the hidden layer was also reported for comparison.
This is referred to as the Double Input Network (DIN).

Because the number of nodes does not determine the
number of connections directly in a PAL constructed
network, the metric used for comparing complexity was the
number of connections in the network, regardless of the
number of nodes. The network complexities for the best
iterative topology (BIN), and the heuristic topology (DIN),
are pre-determined and remain constant over cross-validation
because the topologies are not a function of the training data.
This is not true for the PAL algorithm, however. In this case,
the PAL algorithm produces a (potentially) different topology
for each mix in the cross validation because the training data
will contain different examples (and thus different features).
To compare network complexities, it was necessary to
average the complexities of the PAL constructed topologies
over the ten-fold cross-validation. These are the scores
reported in the results.

FIGURE III
ACCURACY AND COMPLEXITY FOR THE

PAL, BIN, AND DIN NETWORKS

0
10
20
30
40
50
60
70
80
90
100

Blo
od

Ca
nc
er
Cr
ed
it
Ec
ho Iris

Le
ns
es Zo

o

Mu
sh
roo
m
Mo
nk
3

Pe
rc

en
t A

cc
ur

ac
y

PAL
BIN
DIN

0
10
20
30
40
50
60
70
80
90
100

Blo
od

Ca
nc
er
Cr
ed
it
Ec
ho Iris

Le
ns
es Zo

o

Mu
sh
roo
m
Mo
nk
3

Pe
rc

en
t C

om
pl

ex
ity

PAL
BIN
DIN

VI. RESULTS

 The results of running the PAL algorithm on all nine
data sets, along with the results from the BIN and DIN
methods, are shown in the bar charts in Figure III. The top
chart shows the percent accuracy for each method on each
data set. The BIN slightly outperformed the other methods on
all but the mushroom data sets, where the PAL algorithm was
the most accurate. The PAL algorithm was within 3.4% of the
BIN method in every case. The DIN also had very similar
performance to the BIN method, but suffered on the Lenses
data set. The DIN method under performed PAL on all but
three of the problems.

The BIN results represent the best accuracy possible
given a standard single hidden layer MLP, since all
(reasonable) sizes for the hidden layer were tested. Any
constructive technique that produces a standard single hidden
layer MLP was implicitly tested by iteratively testing all
network sizes. Constructive algorithms that produce
alternative topologies were not used for comparison.

The lower chart in Figure III shows the complexity
of the resulting network for each method as a percentage of
the most complex network. The most complex network is
shown as 100%. Table I gives the actual complexities
(number of connections) produced by each method, as well as
the number of inputs, output classes, and training instances
for each learning problem. The PAL algorithm produced
significantly less complex networks than the BIN method in
all cases. In three cases the DIN method produced slightly
less complex networks than the PAL algorithm. These were
the Iris, Lenses, and Monk3 data sets. Of the three, the
accuracy of the DIN method was only better than the PAL
algorithm on the Iris data set.

Overall, the PAL algorithm produced networks 70%
less complex than the BIN method, and 38.8% less complex
than the DIN method. The accuracy of the PAL networks was
only 1.2% lower than the most accurate network (BIN), on
average. These results demonstrate that using the PAL
algorithm produces small, accurate networks without the
computational overhead of iterative construction techniques,
or the uncertainties of heuristic approaches.

One shortcoming of the PAL algorithm is that it
lacks a facility for removing redundant inputs. Since there is
no explicit measure of correlation on inputs within a feature,
all inputs that are correlated in an instance pair are used for
the feature. Redundant inputs will then appear as connections
in the constructed network, adding to the network
complexity.

The PAL algorithm potentially discovers all features
that appear in the training set. Not every feature is useful for
generalizing so some means of selecting the features to drive
the network construction must exist. As explained in Section
IV, the PAL algorithm ranks the features based on predictive
accuracy, but a heuristic had to be empirically determined to
set the threshold for feature selection.

 The threshold
enough features could be
was not necessarily the op
why for certain problems
than the DIN method. M
case than were necessar
suffer significantly.

NETWORK COMPLEXIT

ComLearning
Problem BIN D

Blood 54 48

Cancer 143 19

Credit 425 51

Echo 150 16

Iris 700 56

Lenses 350 56

Zoo 1035 73

Mushroom 120 105

Monk3 360 96

VII. CONCLUSIO

Two important is

of a neural network to s
examined in this paper, na
topology. The choices
implementation, related to
significantly impact the p
presently a need for bette
of neural network design.

The Pair Attrib
both these issues simulta
feature search to drive n
extracted as correlations o
on a statistical measure.
constructed with a hidd
selected feature. The hidd
inputs that are relevant in
connected, and the ne
backpropagation.

Results from nin
the PAL algorithm constr
a 70% reduction in comp
performing standard netw
networks were significa
accuracy remained on av
recorded accuracy. This
selected in the first phase
hidden layer connections,
or extraneous hidden node
TABLE I

IES AND GENERAL PARAMETERS

plexity Parameters
IN PAL Inputs Outputs Instances
 18.1 4 2 209
8 12.1 9 2 683

0 84.2 15 2 653

0 83.8 8 2 62

 83.7 4 3 150

 62.7 4 3 24

6 341.6 16 7 101

6 67.3 22 2 5644

 119 6 2 554
value was chosen to ensure that
selected to cover each class, but this
timum for a given problem. This is

 the PAL network is more complex
ore features were selected in this
y, although the accuracy did not

N AND FUTURE WORK

sues relating to the implementation
olve a classification problem were
mely feature selection and network
for certain parameters of the

 feature selection and topology, can
erformance of the network. There is
r methods to address these aspects

ute Learning algorithm addresses
neously by using the results of a
etwork construction. Features are
f instance pairs, and selected based
A single hidden layer network is
en layer node inserted for each
en layer node is only connected to
the feature. The output layer is fully
twork is trained via standard

e different experiments show that
ucts networks that have on average
lexity when compared to the best
ork topology. Although the PAL

ntly less complex, the predictive
erage within 1.2% of the highest
is due to the low order features

 of the algorithm that determine the
 and the minimization of redundant
s.

Some parameters of the PAL algorithm, such as the
cumulative rank threshold, were determined empirically over
the nine data sets used in the experiments. Future work will
focus on removing dependence on these parameters, such as
dependent ranking to avoid overlap. Also, further work will
extend the feature search to more general features by
reducing instance pair correlations (e.g. removing spurious
inputs). Other extensions to be explored include optimizing
the algorithm to improve execution time, provisions for
problems where class outputs are underrepresented by the
selected features, and sparsely connecting the output layer.

VIII. REFERENCES

[1] D. W. Aha and R. L. Bankert, “A Comparative Evaluation of

Sequential Feature Selection Algorithms,” D. Fisher and J. H. Lenz
(eds.), Artificial Intelligence and Statistics V. New York: Springer-
Verlag, 1996.

[2] H. Almuallim and T. G. Dietterich, “Learning with Many Irrelevant

Features,” Proceedings of the Ninth National Conference on Artificial
Intelligence, 547-522. San Jose, California: AAAI Press, 1991.

[3] T. L. Andersen and T. R. Martinez, “A Dynamic Multi-Layer

Perceptron Construction Algorithm,” International Journal of Neural
Systems, 11(2):145-166, 2001.

[4] C. Cardie, “Using Decision Trees to Improve Case-Based Learning,”

Proceedings of the Tenth International Conference on Machine
Learning, 25-32. Amherst, Massachusetts: Morgan Kaufmann, 1993.

[5] Y. A. Chauvin, “A Back-propagation Algorithm with Optimal Use of

Hidden Units,” Advances in Neural Information Processing Systems
(1), ed. D. S. Touretzky, pp. 519-526. Morgan Kaufmann, San Mateo,
1989.

[6] P. Domingos, “Context-Sensitive Feature Selection for Lazy Learners,”

Artificial Intelligence Review, 11:227-253, 1997.

[7] S. E. Fahlman C. and Lebiere, “The Cascade-Correlation Learning

Algorithm,” Technical Report CMU-CS-90-100, Carnegie Mellon
University, 1991.

[8] B. Hassibi and D. G. Stork, “Optimal Brain Surgeon,” Advances in

Neural Information Processing Systems (5), eds. S. J. Hanson, J. D.
Cowan, and C. L. Giles, pp. 164-171. Morgan Kaufmann, San Mateo,
1993.

[9] M. Ishikawa, “A Structural Learning Algorithm with Forgetting of

Link Weights,” Technical Report TR-90-7. Electrotechnical
Laboratory, Tsukuba-City, Japan, 1990.

[10] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant Features and the

Subset Selection Problem,” Machine Learning: Proceedings of the
Eleventh International Conference, 121-129, 1994.

[11] J. H. Kim and S. K. Park, “The Geometrical Learning of Binary Neural

Networks,” IEEE Transactions on Neural Networks, 6(1), 1995.

[12] K. Kira and L. Rendell, “A Practical Approach to Feature Selection,”

Proceedings of the Ninth International Conference on Machine
Learning, 249-256. Aberdeen, Scotland: Morgan Kaufmann, 1992.

[13] J. K. Kruschke, “Creating Local and Distributed Bottlenecks in Hidden

Layers of Back-propagation Networks,” Proceedings of the 1988
Connectionist Models Summer School, eds. D. Touretzky, G. Hinton,
and T. Sejnowski, pp. 120-126, Morgan Kaufmann, San Mateo, 1989.

[14] Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal Brain Damage,”

Advances in Neural Information Processing Systems, 2:598-605, 1990.

[15] M. Lehtokangas, “Modelling with Constructive Backpropagation,”
Neural Networks, 12:707-716, 1999.

[16] T. R. Martinez, B. Hughes, and D. M. Campbell, “Priority ASOCS,”

Journal of Artificial Neural Networks, 1(3), pp. 403-429, 1994.

[17] J. Moody, “Prediction Risk and Architecture Selection for Neural

Networks,” From Statistics to Neural Networks: Theory and Pattern
Recognition Applications, eds. V. Cherkassky, J. H. Friedman, and H.
Wechsler, NATO ASI Series F, Springer-Verlag, 1994.

[18] M. C. Mozer and P. Smolensky, “Skeletonization: A Technique for

Trimming the Fat From A Network Via Relevance Assessment,”
Advances in Neural Information Processing (1), 107-115. D. S.
Touretzky, Ed., 1988.

[19] P. M. Murphy, “UCI Repository of Machine Learning Databases,”

Machine-Readable Data Repository, Department of Information and
Computer Science, University of California at Irvine, Irvine, California,
1995.

[20] D. W. Opitz and J. W. Shavlik, “Connectionist Theory Refinement:

Genetically Searching the Space of Network Topologies,” Journal of
Artificial Intelligence Research 6, pp. 177-209, 1997.

[21] D. C. Plaut, S. J. Nowlan, and G. E. Hingon, “Experiments on Learning

by Back Propagation,” Technical Report CMU-CS-86-126, Carnegie-
Mellon University, Pittsburgh, 1986.

[22] J. C. Principe, N. R. Euliano, and W. C. Lefebvre, Neural and Adaptive

Systems: Fundamentals Through Simulations. New York: John Wiley
& Sons, Inc, 2000.

[23] R. D. Reed and R. J. Marks II, Neural Smithing – Supervised Learning

in Feedforward Artificial Neural Networks. Cambridge, Massachusetts:
The MIT Press, 1999.

[24] A. Roy, L. S. Kim, and S. Mukhopadhyay, “A Polynomial Time

Algorithm for the Construction and Training of a Class of Multilayer
Perceptrons,” Neural Networks, 6:535-545, 1993.

[25] R. Setiono and L. C. K. Hui, “Use of a Quasi-Newton Method in a

Feedforward Neural Network Construction Algorithm,” IEEE
Transactions on Neural Networks, 6(1), 1995.

[26] J. Sietsma and R. J. F. Dow, “Creating Artificial Neural Networks that

Generalize,” Neural Networks 4(1), pp. 67-79, 1991.

[27] J. M. Steppe, K. W. Bauer Jr., and S. K. Rogers, “Integrated Feature

and Architecture Selection,” IEEE Transactions on Neural Networks,
7(4), 1996.

[28] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Back-

propagation, Weight-elimination and Time Series Prediction,”
Proceedings of the 1990 Connectionist Models Summer School, eds. D.
Touretzky, J. Elman, T. Sejnowski, and G. Hinton, pp. 105-116.
Morgan Kaufmann, San Mateo, 1991.

[29] D. Whitley and C. Bogart, “The Evolution of Connectivity: Pruning

Neural Networks Using Genetic Algorithms,” Proc. Int. Joint Conf.
Neural Networks, Vol. 1, p. 134. IEEE, New York, 1990.

[30] S. Young and T. Downs, “CARVE – A Constructive Algorithm for

Real-Valued Examples,” IEEE Transactions on Neural Networks, 9(6),
1998.

	Pair Attribute Learning:
	Network Construction Using Pair Features
	I. INTRODUCTION
	II. FEATURE SELECTION
	III. Neural Network Construction
	
	A. Constructive Algorithms
	B. Pruning Algorithms

	IV. Pair Attribute Learning

	V. EXPERIMENTS
	VI. RESULTS
	VII. CONCLUSION AND FUTURE WORK
	VIII. REFERENCES

