
Collaborative Composition with Creative Systems:
Reflections on the First Musebot Ensemble

Arne Eigenfeldt Oliver Bown Benjamin Carey
School for the Contemporary Arts

Simon Fraser University
Vancouver, Canada

arne_e@sfu.ca

Design Lab
University of Sydney

NSA, Australia
oliver.bown@sydney.edu.au

Creativity and Cognition Studios,
University of Technology Sydney

NSW, Australia
Benjamin.Carey@uts.edu.au

Abstract

In this paper, we describe the musebot and the musebot en-
semble, and our creation of the first implementations of the-
se novel creative forms. We discuss the need of new oppor-
tunities for practitioners in the field of musical metacreation
to explore collaborative methodologies in order to make
meaningful creative and technical contributions in the field.
With the release of the musebot specification, such opportu-
nities are possible through an open-source, community-
based approach in which individual software agents are
combined to create ensembles that produce a collective
composition. We describe the creation of the first ensemble
of autonomous musical agents created by the authors, and
the questions and issues raised in its implementation.

Introduction
Musical metacreation (MuMe) is an emerging term de-
scribing the body of research concerned with the automa-
tion of any or all aspects of musical creativity. It looks to
bring together and build upon existing academic fields
such as algorithmic composition (Nierhaus 2009), genera-
tive music (Dahlstedt and McBurney 2006), machine mu-
sicianship (Rowe 2004) and live algorithms (Blackwell and
Young 2005). Metacreation (Whitelaw 2004) involves us-
ing tools and techniques from artificial intelligence, artifi-
cial life, and machine learning, themselves often inspired
by cognitive and life sciences. MuMe suggests exciting
new opportunities for creative music making: discovery
and exploration of novel musical styles and content, col-
laboration between human performers and creative soft-
ware partners, and design of systems in gaming, entertain-
ment and other experiences that dynamically generate or
modify music.
 A recent trend in computational creativity, echoing other
fields, has been to develop software infrastructures that
enable researchers and practitioners to work more closely
together, taking a modular approach that allows the rapid
exchange of submodule elements in the top-down design of
algorithms, facilitating serendipitous discovery and rapid
prototyping of designs. It is widely recognised that such
infrastructure-building can accelerate developments in the
field for a number of reasons: getting large numbers of
researchers to work together on larger-scale projects, forc-
ing researchers to develop their software in a sharable for-
mat, enabling the like-for-like comparison of different sys-
tem designs, education, and directly providing a large

framework for further software development. Charnley et
al. (2014), for example, has proposed a cloud-based col-
laborative creativity tool, supported by a web interface,
that allows the rapid creation of text-based, domain specif-
ic, creative agents such as Twitter bots.
 Our research in MuMe, which risks being too localised
and insular, will benefit from a similar direction, and for
this reason we have proposed the “musebot ensemble”, a
creative context designed to bring researchers together and
get their realtime generative software systems playing to-
gether. We present a recent effort to design and build the
infrastructure necessary to bring together community-
created software agents in multi-agent performances, an
elaboration on the motivation for doing so and the oppor-
tunities it offers, and some of the challenges this project
brings. So far, we have set up a specification for musebot
interaction, involving a community engagement process
for getting a diversity of thoughts on the design of this
specification, and we have built a number of tools that im-
plement that specification, including musebots and a
musebot conductor.
 Following the outline of the system, we describe the
creation of our first exploratory attempts to create and run
a MuMe ensemble. We describe our initial experiences
working creatively with networks of musebots. We con-
clude the paper with several open questions that were
raised in the implementation of this collaborative composi-
tional experience.

Towards a Collaborative Composition by
Creative Systems

The established practice of creating autonomous software
agents for free improvised musical performance (Lewis
1999) – the most common domain of activity in MuMe
research – often involves idiosyncratic, non-idiomatic sys-
tems, created by artist-programmers (Rowe 1992, Yee-
King 2007). A recent paper by the authors (Bown et al.
2013) discussed how evaluating the degree of autonomy in
such systems is non-trivial and involves detailed discussion
and analysis, including subjective factors. The paper iden-
tified the gradual emergence of MuMe specific genres —
i.e., sets of aesthetic and social conventions — within
which meaningful questions of relevance to MuMe re-
search could be further explored. We posited that through

Proceedings of the Sixth International Conference on Computational Creativity June 2015 134

the exploration of experimental MuMe genres we could
create novel but clear creative and technical challenges
against which MuMe practitioners could measure progress.
 One potential MuMe genre that we considered involves
spontaneous performance by autonomous musical agents
interacting with one-another in a software-only ensemble,
created collaboratively by multiple practitioners. While
there have been isolated instances of MuMe software
agents being set up to play with other MuMe software
agents, this has never been seriously developed as a col-
laborative project. The ongoing growth of a community of
practice around generative music systems leads us to be-
lieve that enabling multi-agent performances will support
new forms of innovation in MuMe research and open up
exciting new interactive and creative possibilities.

The Musebot Ensemble
A musebot is defined as a “piece of software that autono-
mously creates music collaboratively with other muse-
bots”. Our project is concerned with putting together
musebot ensembles, consisting of community-created
musebots, and setting them up as ongoing autonomous
musical installations. The relationship of musebots to relat-
ed forms of music-making such as laptop performance is
discussed in detail in our manifesto (Bown et al. 2015).
 The creation of intelligent music performance software
has been predominantly associated with simulating human
behaviour (e.g., Assayag et al.). However, a parallel strand
of research has shed the human reference point to look
more constructively at how software agents can be used to
autonomously perform or create music. Regardless of
whether they actually simulate human approaches to per-
forming music (Eldridge 2007), such approaches look in-
stead at more general issues of software performativity and
agency in creative contexts (Bown et al. 2014). The con-
cept of a “musebot ensemble” is couched in this view. i.e.,
it should be understood as a new musical form which does
not necessarily take its precedent from a human band.
 Our initial steps in this process included specifying how
musebots should be made and controlled so that combining
them in musebot ensembles would be feasible, and have
predictable results for musebot makers and musebot en-
semble organisers. Musebots needn’t necessarily exhibit
high levels of creative autonomy, although this is one of
the things we hope and expect they will do. Instead, the
current focus is on enabling agents to work together, com-
plement each other, and contribute to collective creative
outcomes: that is, good music.
 This defines a technological challenge which, although
intuitive and easy to state, hasn’t been successfully set out
before in a way that can be worked on collaboratively. For
example, Blackwell and Young (2004) called on practi-
tioners to work collaboratively on modular tools to create
live algorithms (Blackwell and Young 2005), but little
community consensus was established for what interfaces
should exist between modules, and there was no suitably
compelling common framework under which practitioners

could agree to work. In our case, the modules correspond
clearly to the instrumentation in a piece of music, and the
context is more amenable to individuals working in their
preferred development environment.
 In order for musebots to make music together, some
basic conditions needed to be established: most obviously
the agents must be able to listen to each other and respond
accordingly. However, since we do not limit musebot in-
teraction to human modes of interaction, we do not require
that they communicate only via human senses; machine-
readable symbolic communication (i.e., network messag-
ing) has the potential to provide much more useful infor-
mation about what musebots are doing, how they are inter-
nally representing musical information, or what they are
planning to do. Following the open community-driven ap-
proach, we remain open to the myriad ways in which par-
ties might choose to structure musebot communication,
imposing only a minimal set of strict requirements, and
offering a number of optional, largely utilitarian concepts
for structuring interaction.

Motivation and Inspiration
One initial practical motivation for establishing a musebot
ensemble was as a way of expanding the range of genres
presented at MuMe musical events. To date, these events
have focused heavily on free improvised duets between
human instrumental musicians and software agents. This
format has been widely explored by a large number of
practitioners; however, it runs the risk of stylistically pi-
geonholing MuMe activity.
 For the present project, the genre we chose to target was
electronic dance music (EDM), which, because it is fully
or predominantly electronic in its production, offers great
opportunities for MuMe practice; furthermore, metacrea-
tive research into this genre has already been undertaken
(Diakopoulos et al. 2009; Eigenfeldt and Pasquier 2013).
The 2013 MuMe Algorave (Sydney, 2013) showcased al-
gorithmically composed electronic dance music, an activity
originally associated with live coding (Collins and McLean
2014). However, rather than presenting individual systems
with singular solutions to generating such styles, it was
agreed that performances should be collaborative, with
various agents contributing different elements of a piece of
music. This context therefore embodies the common crea-
tive musical challenge of getting elements to work togeth-
er, reconceived as a collective metacreative task. Although
the metaphor of a jam comes to mind in describing this
interactive scenario, we prefer to imagine our agents acting
more like the separate tracks in a carefully crafted musical
composition.
 We acknowledge the relationship of musebot ensembles
to multi-agent systems (MAS); however, rather than con-
centrate upon the depth of research within this field, we
have designed the specification in such a way so as to
combine generality and extensibility with domain specific
functionality. As will be described, at heart the musebot
project is simply a set of message specifications that are

Proceedings of the Sixth International Conference on Computational Creativity June 2015 135

domain specific to the idea of multiple musical agents. We
feel that there is no need to draw on more specific MAS
tools and specifications, as there is nothing that is not
simply handled by the definition of a few messages. Tak-
ing this general approach has the advantage that if people
want to incorporate the musebot specification into their
MAS frameworks, they can. It is intentionally barebones so
that it is simple for people to adapt their existing agents to
be musebots. At the same time, we also acknowledge that
MAS have been incorporated into MuMe in typically idio-
syncratic ways, replicating the interaction between human
musicians (Eigenfeldt 2007) while also exploring non-
human modes (Gimenes et al. 2005); our intention is for
musebots to explore both approaches.
 We summarise the other opportunities we see in pursu-
ing this project as follows, beginning with items of more
theoretical interest, followed by those of more applied in-
terest:
• Currently, collaborative music performance using agents

is limited to human-computer scenarios. These present a
certain subset of challenges, whereas computer-
computer collaborative scenarios would avoid some of
these whilst presenting others. Such challenges stimulate
us to think about the design of metacreative systems in
new and potentially innovative ways;

• It provides a platform for peer-review of systems and
community evaluation of the resulting musical outputs,
as well as stimulating sharing of code;

• It provides an easy way into MuMe methods and technol-
ogies, as musebots can take the form of the simplest
generative units, whereas at present the creation of a
MuMe agent is an unwieldy and poorly bounded task;

• It outlines a new creative domain, which explores new
music and music technology possibilities;

• It encourages and supports the creation of work in a pub-
licly distributed form that may be of immediate use as
software tools for other artists;

• It allows us to build an infrastructure which can be useful
for commercial MuMe applications. Specifically, it pro-
vides a modular solution for the metacreative work-
stations of the future;

• It defines a clear unit for software development. Muse-
bots may be used as modular components in other con-
texts besides musebot ensembles.

The Musebot Agent Specification
An official musebot agent specification is maintained as a
collaborative document, which can be commented on by
anyone and edited by the musebot team1. An accompany-
ing BitBucket software repository maintains source sam-

1 tinyurl.com/ph3p6ax

ples and examples for different common languages and
platforms2.
 A musebot ensemble consists of one musebot conductor
(MC) and any number of musebots, running on the same
machine or multiple machines over a local area network
(LAN). The MC is notified of each musebot’s location and
paths to its directories, allowing it to build an inventory of
the available musebots in the ensemble. Thus, for the user,
adding a musebot to the ensemble simply means down-
loading it to a known musebot folder. Musebots contain
config files that are controlled by the MC, and hu-
man/machine readable info files that give information
about the musebots.
 The MC is responsible for high level control of connect-
ed musebot agents in the network, setting the overall clock
tempo of the ensemble performance and managing the
temporal arrangement of agent performances (see Tables 1
and 2). The MC also assists communication between con-
nected agents by continuously broadcasting a list of all
connected agents to the network, and relaying those mes-
sages that musebots choose to broadcast. The MC is not
necessarily “in charge”. Currently, it is just a simple GUI
program that allows users to control musebots remotely.
Ultimately we will automate ensemble parameters such as
tempo and key either by making specific variants of the
MC, or by writing dedicated planning agents that issue
instructions to the MC, or by allowing a distributed self-
organising approach in which different agents can influ-
ence these parameters. These are all valid designs for a
musebot ensemble.

/mc/time <double: tempo in BPM> <int: ticks>
This is the clock source and timing information. A beat/tick count,
starting at zero and incrementing indefinitely, is sent at a rate of
16 ticks per beat at the specified tempo, to be used for synchro-
nising your client bot. The downbeat is on (tick % 16 == 0).
/mc/agentList <string: musebot ID>
[<string: musebot ID> …]
List of connected musebots in your network. Use this list to reveal
messages sent from specific musebots,
/mc/statechange <string: {first,next,previous,any}>
This parameter is designed to facilitate high level state changes,
which could be anything, depending on the program; however
some examples might be overall density of events, range/register,
key changes, change in timbre etc.

Table 1. Example messages broadcast by the MC
to all musebot agents.

/agent/kill (no args)
Exit gracefully upon receiving this message from the MC.
/agent/gain <double: gain> [<double: duration ms>]
Scale your output amplitude, used to apply a linear multiplication
of your output audio signal.

Table 2. Example messages sent between the MC
and specific musebot agents.

2 bitbucket.org/obown/musebot-developer-kit

Proceedings of the Sixth International Conference on Computational Creativity June 2015 136

 Musebots may broadcast any messages they want to the
network, providing they maintain their unique name space
allocated for inter-musebot communication (see Table 3).
Our musebot specification states that a musebot should
also “respond in some way to its environment”, which may
include any OSC messages (Wright 1997) as well as the
audio stream that is provided: a cumulative stereo mix of
all musebot agents actively performing. It should also not
require any human intervention in its operation. Beyond
these strict conformity requirements, the qualities that
make a good musebot will emerge as the project continues.

/broadcast/statechange <string: musebot ID>
<string: {first,next,previous,any}>
Locally controllable high level state change. Use this parameter
if you want to prompt other clients to make changes to their high
level state. Equally, respond to this message if you want other
musebots to prompt high-level changes.
/broadcast/notepool <string: musebot ID>
<int_array: pitch class MIDI values>
A list of MIDI note values, pitch classes only, no octave info, to
be shared with the network - e.g. chord or scale you are currently
playing.
/broadcast/datapool <string: musebot ID>
<double_array: datapoints>
Array of floating-point values.
Table 3. Example messages broadcast by musebot agents. These

messages are speculative, and open for discussion.

The First Musebot Ensemble
At the time of writing, a draft musebot conductor is im-
plemented and published and a call has gone out for partic-
ipation in the first public musebot ensemble. Our first ex-
periments with making musebot ensembles followed the
obvious path of taking the systems we have already created
and adapting them to fit the specification. This step consti-
tuted provisional user testing of the specification and sup-
port tools and also gave us a sense of what sort of creative
and collaborative process was involved in working with
musebots.
 We present two studies here. In the first case, the first
author built a musebot ensemble entirely alone. The first
author works regularly with multi-agent systems within his
MuMe practice, so this was a natural adaptation of his ex-
isting approach. In the second study, each of the authors
contributed a system that they had developed previously,
and we looked at the ways that these systems could use the
musebot specification to interact musically.

First Author Working Alone
In the first study, several musebots were designed in isola-
tion by the first author. While lacking the musebot goal of
cooperative development, the situation did allow for the
design of ensembles with a singular musical goal, includ-
ing specific roles for each musebot. For example, a Pro-
ducerBot was created that functions to control various oth-

er instrumental bots – a DrumBot, a PercussionBot, a
BassBot, a KeyboardBot, etc. – in a hierarchical fashion.
The organisation of such an ensemble reflects
one conception in achieving a generative EDM work, in
which each run produces a new composition whose musi-
cal structure is generated by the ProducerBot, and the mu-
sical surface is produced and continuously varied by the
individual instrumental musebots. Such a design has been
previously implemented by the first author (Eigenfeldt
2014) to produce successful musical results. This top-
down, track-by-track breakdown of relations between mu-
sical parts is of course completely familiar to users of
DAWs, with the difference that each track is a generative
process that receives high-level musical instructions from
the ProducerBot. In this case, the ProducerBot sends out
information at initialisation, including a suggested phrase
length (i.e. 8 measures), and subpattern, which represents
how the phrase repetition scheme can be represented (i.e.
aabaaabc). It individually turns instrumental musebots on
and off during performance, including syncronising them
at startup. Furthermore, it sends a relative density request –
a subjective number of possible events to perform within a
measure – every 250 milliseconds, as well as progress
through the current phrase. Lastly, at the end of a phrase, it
may send out a section message (i.e. A B C D E). When an
instrumental musebot receives this section descriptor, it
looks to see if it has data stored for that section: if not, it
stores its current contents (patterns), and generates new
patterns for the next section; if it does have data for that
section, it recalls that data, thereby allowing for large-scale
repetition to occur within the ensemble.
 As with a DAW, via the musebot specification, we in-
herently allow for community contributions that accept
specific instructions from the ProducerBot: swapping a
different BassBot, for example, in the ensemble would
result in a different musical realisation, as it is left to the
musebots to interpret the performance messages.

Multiple Authors Working Together
In the second study, the three authors brought together ex-
isting systems into the first collaboratively made musebot
ensemble. No assumptions were made in advance about
how the systems would be made to interact, except that the
second and third authors drew their contributions from
existing work with live algorithms in an improvisation
context (Blackwell and Young 2005), where the audio
stream is typically the only channel of interaction.
 A BeatBot was created by the first author, which com-
bines the rhythmic aspects of both the former drum and
percussion musebots, together with the structure-
generating aspects of the ProducerBot, resulting in a com-
plex and autonomous beat generating musebot. With each
run, a different combination of audio samples is selected
for the drums and four percussion players, along with con-
strained limitations to the amount of signal processing ap-
plied. A musical form is generated as a finite number of
phrases, themselves probabilistically generated from
weightings of 2, 4, 8, 16, and 32 measures. Each phrase has

Proceedings of the Sixth International Conference on Computational Creativity June 2015 137

a continuously varying density, to which each internal in-
strument responds differently by masking elements of its
generated pattern. The metre is generated through additive
processes, combining groups of 2 and 3, and resulting in
metres of between 12 and 24 sixteenths. Finally, the
amount of active layers for each phrase is generated. All of
the generated material – metre, phrase length, rhythmic
grouping, density, and active layers – is broadcast to the
ensemble as messages.
 The second author’s DeciderBOT was adapted from his
live algorithm system Zamyatin, an improvising agent that
is based upon evolved complex dynamical systems behav-
iours derived from behavioural robotics (Bown et al.
2014). The internal system controls a series of voices that
are hand-coded generative behaviours. Zamyatin is most
easily described as a reactive system that comes to rest
when presented with no input, and is jolted to live when
stimulated by some input. The stimulation can send it into
complex or cyclic behavior.
 The final contribution to the first musebot ensemble was
_derivationsBOT, designed by the third author. An adapted
version of the author's _derivations interactive perfor-
mance system (Carey 2012), _derivationsBOT was de-
signed to provide a contextually-aware textural layer in the
musebot ensemble, responding to a steady stream of audio
analysis from the other bots connected to the network. Dur-
ing performance, _derivationsBOT analyses the overall
mix of the musebot ensemble by segmenting statistics on
MFCC vectors analysed from the live audio. The musebot
compares these statistics with a corpus of segmented audio
recordings, retrieving pre-analysed audio events to process,
that compliment the current sonic environment. Synchro-
nised to the overall clock pulse received from the MC, a
generative timing mechanism conducts six internal players
that process and re-synthesise these audio events via vari-
ous signal processing. Importantly, the choice of audio
events made available for processing is based upon com-
parisons both between statistics analysed from the live
audio stream, as well as statistics passed between the inter-
nal players themselves. Thus, without audio input for anal-
ysis _derivationsBOT self-references, imbuing it with a
sense of generative autonomy in addition to its sensitivity
to its current sonic environment. To facilitate this,
_derivationsBOT is randomly provided an internal state
upon launch, enabling the musebot to begin audio genera-
tion with or without receiving a stream of live audio to
analyse.
 With the three musebots launched, a quirky, timbrally
varied, somewhat aggressive, EDM results. Like much
experimental electronic music, the listening pleasure is
partly due to the strangeness and suspense associated with
the curious interactions between sounds. The BeatBot was
not designed to respond to any input and so drove the in-
teraction, with the other two systems reacting. Thus, alt-
hough very simple and asymmetrical as an ensemble, the
musical output was nevertheless coupled. Since the Beat-
Bot is not limited to regular 4/4 metre, it creates dubious
non-corporeal beats to which both DeciderBot and

_derivationsBot respond in esoteric fashions. In addition,
BeatBot kills itself once its structure is complete, and the
other two audio-responsive musebots, lacking a consistent
audio stream to which to react, tend to slowly expire,
bringing an end to each ensemble composition.

Figure 1. Audio and message routing in the second described

musebot ensemble.

 Example interactions between musebots, including this
second example, are available online3.

Issues and Questions
These studies give insights into how a musebot approach
can serve innovation in musical metacreation. Two areas of
interest are: (1) what can we learn by dividing up musically
metacreative systems into agents and thinking about how
the communication between these serves musical goals?
(2) related to this, how do we work with others and negoti-
ate the system design challenges?
1. Increasingly, musicians are incorporating generative

music processes into their work. Thus, the situation de-
scribed above — managing several generative interact-
ing processes — is not uncommon. The creative process
is different to traditional electronic music composition
because rather than making a specific change and listen-
ing to a specific effect that results from that change, one
is in a state of continuous listening, as the result of a
change might have multiple effects or take time to play
out. It is common for electronic music composers to
work with complex systems of feedback, and this pro-
cess is similar, if more algorithmic. One effect of this is
that it can dull decision making, as one gives over to the
nature of the systems, or is unclear on what modifica-
tions will influence them effectively. Placing these
musebots together in an ensemble positions us as both
curator and designer: in the former case, one is forced to
decide whether the musebots are interacting in a fashion
that is considered interesting, and whether fewer, or
more, musebots would solve any musical issues. We
foresee such decisions to be more common as we accu-

3 http://metacreation.net/musebot-video/

Proceedings of the Sixth International Conference on Computational Creativity June 2015 138

mulate more musebots, particularly those with clear sty-
listic bents. In the latter case, as designers we are placed
into a more traditional role, in which continual iteration
between coding, listening, critiquing, re-designing, and
coding again guides both technical and aesthetic deci-
sions. While we have no control over the other muse-
bots, we can individually control how our own musebot
reacts to other musebot actions, even if those actions are
seemingly unpredictable.

2. Working together in this way offers a new approach to
musical metacreation, along with a new set of challeng-
es. In building systems, we are typically free to pursue
our own aesthetic directions, and make individual deci-
sions, both technical and aesthetic, as to how these sys-
tems should act and react. In the case of BeatBot, such a
“closed system” is maintained, albeit with the addition
of transmitting messages regarding its current state. In
the case of DeciderBot and _derivationsBot, these exist-
ing systems had previously interacted with human musi-
cians, and could rely upon the performer’s intuitive mu-
sical responses to enhance those decisions made compu-
tationally. Within the musebot ensemble, both systems
are now reacting to other machines: one that is essential-
ly indifferent, and another whose reactions had previous-
ly been keyed to human actions.

As is often the case in experimental music production, hav-
ing set up the interaction between agents and listening to
how this interaction unfolds, we found clearly musically
interesting content in this first attempt at a musebot en-
semble. We anticipate many more musebots being de-
signed and contributed, and imagine that through the unex-
pected combinations of such autonomous music-generating
systems new thinking about automating musical creativity,
and making it available to a wide community of users,
might arise.
 The current work is a small affirmation of the potential
of a musebot approach, and several questions have arisen
regarding the next stage of development. Our next step is
to curate a number of musebots to be presented in an on-
going installation of interchangeable ensembles across dif-
ferent genres. In order to reach such a stage of develop-
ment, the following questions need to be addressed:

What kinds of interaction are useful – both computa-
tionally and musically? At the moment, the three muse-
bots are not sharing any information in the form of network
messages. Firstly, the BeatBot is generating beats, entirely
unaware of any reactions to its audio, and while the two
responsive audio musebots generate emergent musical ma-
terial driven by audio analysis, they are oblivious to any
structural decisions being made by the rest of the ensemble
due to their lack of messaging. While such independence is
one aesthetic solution, a more responsive and self-aware
environment will need to be explored, if for no other rea-
son than structural variety. In the present ensemble, one
approach could be to augment the capabilities of Decider-
BOT and _derivationsBOT to allow network messages
from BeatBOT to have an affect on their internal genera-

tive capabilities, such as levels of density and musical tim-
ing. Alternatively, an augmentation of BeatBOT’s capabili-
ties as a producer could enable it to direct high-level
changes in state in each of the connected bots, a possibility
anticipated in the musebot specification by the availability
of the statechange message.

What is the minimum amount of information necessary
to be shared between Bots to have a musical interac-
tion? A next step is determining the kind of information
that should be shared between musebots. The MC is gener-
ating a constant click, which affords an acceptance over a
common pulse: how that pulse is organised in time (i.e. the
metre) is a basic parameter of which each musebot should
be aware. However, where should this be determined?
Sharing of pitch information is also natural, but should an
underlying method of pitch organisation also be shared (i.e.
a harmonic pattern)? What happens when conflicting in-
formation is generated? Lastly, how should form be deter-
mined? An accepted paradigm of improvised music is the
evolutionary form produced by self-organisation resulting
from autonomous agents (human or computer); however,
EDM tends to display a more rigorous structure. How
should this be determined?

What relationship to human composition and perfor-
mance should be incorporated? Within the MuMe com-
munity, research has been undertaken to model human
interaction within an improvisational ensemble of human
performers (Blackwell et al. 2012). We suggest that muse-
bots are not merely a “robot jam”. To quote from the Call
for Participation, “‘human musicians having a jam’ can
make for a useful metaphor, but computers can do things
differently, so we prefer not to fixate on that metaphor.
Either way, getting software agents to work together re-
quires thinking about how music is constructed, and work-
ing out shared paradigms for its automation.”

What aspects of the interaction can go beyond human
performance modeling? A great deal of what humans do
in performance has been extremely difficult, if not impos-
sible, to model. For example, simply tracking a beat is
something we assume any musician can do with 100%
accuracy, while computers are seldom better than 90% at
this task. However, there are limits to human interaction,
which computers can potentially overcome. For example,
computers can share and negotiate plans, and thus exhibit a
collective telepathic series of intentions. Young and Bown
(2010) have offered some interesting possibilities for inter-
action between agents that could certainly be explored be-
tween musebots.

What role should stylistic and aesthetic concerns play
in formulating ensembles? We imagine that in the future,
musebots can query one another as to their stylistic pro-
clivity, and generate interesting and unforeseen ensembles
on their own. At the moment, the notion of human curation
is still necessary. With only three musebots, the variety of
musical output is obviously limited, but we imagine muse-
bots being designed to produce specific stylistic traits. A

Proceedings of the Sixth International Conference on Computational Creativity June 2015 139

related question is how the musebots can, or should, deal
with expectation: certain styles of EDM exhibit certain
expectations in the listeners; while we acknowledge that
we are not constrained to existing stylistic limitations, we
are expecting humans to listen to, and hopefully appreciate,
the generated music. Ignoring musical expectation outright
is perhaps not the best strategy when offering a new para-
digm in music-making.

What steps would we need to take to make this a more
intelligent system of interaction and/or coordination?
Many existing MuMe systems have already demonstrated
musical intelligence in their abilities to self-organise, exe-
cute plans, and react appropriately to novel situations.
However, the designers often rely upon ad hoc methodolo-
gies to produce idiosyncratic, non-idiomatic systems. How
can such systems communicate their internal states effi-
ciently, or is this even necessary?

What are the emerging decisions that we would make
about messaging? How could we categorise these and
generalise them? While audio analysis is one possible
method for musebots to determine their environment, rely-
ing upon such analyses alone would take up huge amounts
of processing cycles, without any guarantee as to an accu-
rate cognitive conception of what is actually going on mu-
sically. Furthermore, given that each musebot would re-
quire its own complex audio processing module, the hard-
ware demands would be inordinate. For this reason, having
musebots simply tell other musebots what they are doing
through messages seems much more efficient. However,
how much information does a musebot need to broadcast
about its current, or possibly future, state, in order for other
musebots to interact with it musically?

What is the furthest we could get with just “in the mo-
ment?” From the above discussion, it is clear that an im-
portant concern for musebot ensembles is addressing the
tensions that exist between self-organised generativity and
coordinated, hierarchical musical structures. Clearly, ‘in
the moment’ generation of musical materials is a trivial
task for complex musical automata like the musebots de-
scribed in this paper. A balance between autonomy on the
one hand, and controlled, structural decisions will need to
be carefully considered in the design of both musebots
themselves, and their curation into musical ensembles.
Ultimately, curatorial decisions surrounding style and mu-
sical aesthetic also go hand in hand with concerns regard-
ing determinacy/indeterminacy in musical composition and
performance, and we are excited to see how this ongoing
tension will influence musebot designers and curators into
the future.

Conclusion
A primary goal in developing the musebot and musebot
ensemble is to facilitate the exchange of ideas regarding
how developers of musical metacreative systems can begin
to collaborate, rather than continue to build individual idio-

syncratic, non-idiomatic systems that rely upon ad hoc
decisions. As we are targeting existing developers of
MuMe and interactive systems, we recognize the variety
of languages, tools, and approaches that are currently being
used, and the reticence at adopting new frameworks that
might inhibit established working methods. As such, our
goal is to make the specification as easy as possible to
wrap around new and existing systems and/or agents.
 The specification uses a standard messaging system that
can be incorporated within almost any language; however,
we purposefully have not specified the messages them-
selves. Our intention is for these messages to evolve natu-
rally, in response to the musical needs of developers. For
example, through the use of machine- and human-readable
info files, musebots and musebot developers can determine
the messages a specific musebot receives and sends, while
the open source specification allows for developers to pro-
pose new messages. Once these agents are performing to-
gether at a basic level, we feel that a community discussion
will begin on the type of information that could, and
should, be shared.
 We have presented a description of our successful, albeit
limited, first implementation of what we feel is an extreme-
ly exciting new paradigm for musical metacreation. Com-
plex, autonomous musical producing systems are being
presented successfully in concert, and the musebot plat-
form is a viable method for these practitioners to collabo-
rate creatively.

References
Assayag, G., Bloch, G., Chemillier, M., Cont, A., and
Dubnov, S. 2006. Omax brothers: a dynamic topology of
agents for improvisation learning. In Proceedings of the 1st
ACM workshop on Audio and music computing multime-
dia, 125–132.
Blackwell, T., and Young, M. 2004. Self-organised music.
In Organised Sound, 9(02): 123-126.
Blackwell, T., and Young, M. 2005. Live algorithms. In
Artificial Intelligence and Simulation of Behaviour Quar-
terly, 122(7): 123.
Blackwell, T., Bown, O., and Young, M. 2012. Live Algo-
rithms: towards autonomous computer improvisers. In
Computers and Creativity, 147–174, Springer Berlin Hei-
delberg.
Bown, O., and Martin, A. 2012. Autonomy in music- gen-
erating systems. In Proceedings of the Artificial Intelli-
gence and Interactive Digital Entertainment Conference,
Palo Alto.
Bown, O., Eigenfeldt, A., Pasquier, P., Martin, A., and
Carey, B. 2013. The Musical Metacreation Weekend:
Challenges Arising from the Live Presentation of Musical-
ly Metacreative Systems. In Proceedings of the Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence, Boston.

Proceedings of the Sixth International Conference on Computational Creativity June 2015 140

Bown, O., Gemeinboeck, P., and Saunders, R. 2014. The
Machine as Autonomous Performer. In Interactive Experi-
ence in the Digital Age, 75–90, Springer International Pub-
lishing.
Bown, O., Carey, B., and Eigenfeldt, A. 2015. Manifesto
for a Musebot Ensemble: A Platform for Live Interactive
Performance Between Multiple Autonomous Musical
Agents. In Proceedings of the International Symposium of
Electronic Art 2015, Vancouver.
Carey, B. 2012. Designing for Cumulative Interactivity:
The _derivations System. In 12th International Conference
on New Interfaces for Musical Expression, Ann Arbor.
Charnley, J., Colton, S., and Llano, M. 2014. The FloWr
Framework: Automated Flowchart Construction, Optimisa-
tion, Alteration for Creative Systems, in Proceedings of the
Fifth International Conference on Computational Creativi-
ty, 315–323, Ljubljana.
Collins, N., and McLean, A. 2014. Algorave: A survey of
the history, aesthetics and technology of live performance
of algorithmic electronic dance music. In Proceedings of
the International Conference on New Interfaces for Musi-
cal Expression, London.
Dahlstedt, P., and McBurney, P. 2006. Musical agents:
Toward Computer-Aided Music Composition Using Au-
tonomous Software Agents. Leonardo, 39(5): 469–470.
Diakopoulos, D., Vallis, O., Hochenbaum, J., Murphy, J.,
and Kapur, A. 2009. 21st Century Electronica: MIR Tech-
niques for Classification and Performance In International
Society for Music Information Retrieval Conference, Kobe,
465–469.
Downie, S. 2008. The music information retrieval evalua-
tion exchange (2005-2007): A window into music infor-
mation retrieval research. In Acoustical Science and Tech-
nology, 29(4): 247–255.
Eigenfeldt, A. 2007. Drum Circle: Intelligent Agents in
Max/MSP. In Proceedings of the 2007 International Com-
puter Music Conference, Copenhagen.
Eigenfeldt, A., and Pasquier, P. 2013. Evolving structures
for electronic dance music. In Proceeding of the fifteenth
annual conference on Genetic and evolutionary computa-
tion conference, Amsterdam, 319–326, ACM.
Eigenfeldt, A., Bown, O., Pasquier, P., and Martin, A.
2013. Towards a Taxonomy of Musical Metacreation: Re-
flections on the First Musical Metacreation Weekend. In
Proceedings of the Artificial Intelligence and Interactive
Digital Entertainment Conference, Boston.
Eigenfeldt, A. 2014. Generating Structure – Towards
Large-scale Formal Generation. In Proceedings of the Arti-
ficial Intelligence and Interactive Digital Entertainment
Conference, Raleigh.
Eldridge, A. 2007. Collaborating with the behaving ma-
chine: simple adaptive dynamical systems for generative
and interactive music. PhD diss., University of Sussex.

Gimenes, M., Miranda, E., and Johnson, C. 2005. A Me-
metic Approach to the Evolution of Rhythms in a Society
of Software Agents. In Proceedings of the 10th Brazilian
Symposium on Computer Music, Belo Horizonte.
Lewis, G. 1999. Interacting with latter-day musical autom-
ata. In Contemporary Music Review, 18(3): 99–112.
Nierhaus, G. 2009. Algorithmic composition: paradigms of
automated music generation, Springer Science & Business
Media.
Rowe, R. 1992. Machine composing and listening with
Cypher. In Computer Music Journal, 16(1): 43–63.
Rowe, R. 2004. Machine musicianship, MIT press.
Whitelaw, M. 2004. Metacreation: art and artificial life,
MIT Press.
Wright, M. 1997. Open Sound Control-A New Protocol for
Communicating with Sound Synthesizers. In Proceedings
of the 1997 International Computer Music Conference,
Thessaloniki, 101–104.
Yee-King, M. 2007. An automated music improviser using
a genetic algorithm driven synthesis engine. In Applica-
tions of Evolutionary Computing, Springer Berlin Heidel-
berg, 567–576.
Young, M., and Bown, O. 2010. Clap-along: A negotia-
tion strategy for creative musical interaction with computa-
tional systems. In Proceedings of the International Confer-
ence on Computational Creativity, Lisbon, Department of
Informatics Engineering University of Coimbra.

Proceedings of the Sixth International Conference on Computational Creativity June 2015 141

