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Abstract

This paper proposes a computational framework for as-
sessing the creativity of products, such as paintings,
sculptures, poetry, etc. The proposed computational
framework is based on constructing a network between
creative products and using this network to infer about
the originality and influence of its nodes. Through a
series of transformations, we construct a Creativity Im-
plication Network. We show that inference about cre-
ativity in this network reduces to a variant of network
centrality problems which can be solved efficiently. We
apply the proposed framework to the task of quantify-
ing creativity of paintings (and sculptures). We exper-
imented on two datasets with over 62K paintings to il-
lustrate the behavior of the proposed framework.

Introduction

The field of computational creativity is focused on giving
the machine the ability to generate human-level “creative”
products such as computer generated poetry, stories, jokes,
music, art, etc., as well as creative problem solving. An
important characteristic of a creative agent is its ability to
assess its creativity as well as judge other agents’ creativ-
ity. In this paper we focus on developing a computational
framework for assessing the creativity of products, such as
painting, sculpture, etc. We use the most common definition
of creativity, which emphasizes the originality of the product
and its influential value (Paul and Kaufman 2014a). In the
next section we justify the use of this definition in contrast to
other definitions. The proposed computational framework is
based on constructing a network between products and us-
ing it to infer about the originality and influence of its nodes.
Through a series of transformations, we show that the prob-
lem can reduce to a variant of network centrality problems,
which can be solved efficiently.

We apply the proposed framework to the task of quan-
tifying creativity of paintings (and sculptures). The reader
might question the feasibility, limitation, and usefulness of
performing such task by a machine. Artists, art historians
and critics use different concepts to describe pantings. In
particular, elements of arts such as space, texture, form,
shape, color, tone and line. Artists also use principles of
art including movement, unity, harmony, variety, balance,
contrast, proportion, and pattern; besides brush strokes, sub-

ject matter, and other descriptive concepts (Fichner-Rathus
2008). We collectively call these concepts artistic concepts.
These artistic concepts can, more or less, be quantified by to-
day’s computer vision technology. With the rapid progress
in computer vision, more advanced techniques are intro-
duced, which can be used to measure similarity between
paintings with respect to a given artistic concept. Whether
the state of the art is already sufficient to measure similarity
in meaningful ways, or whether this will happen in the near
or far future, the goal of this paper is to design a framework
that can use such similarity measures to quantify our cho-
sen definition of creativity in an objective way. Hence, the
proposed framework would provide a ready-to-use approach
that can utilize any future advances in computer vision that
might provide better ways for visual quantification of dig-
itized paintings. In fact, we applied the proposed frame-
work using state-of-the-art computer vision techniques and
achieved very reasonable automatic quantification of cre-
ativity on two large datasets of paintings.

One of the fundamental issues with the problem of quan-
tifying creativity of art is how to validate any results that
the algorithm can obtain. Even if art historians would agree
on a list of highly original and influential paintings that can
be used for validation, any algorithm that aims at assigning
creativity scores will encounter three major limitations: I)
Closed-world limitation: The algorithm is only limited to
the set of paintings it analyzed. It is a closed world for the
algorithm where this set is every thing it has seen about art
history. The number of images of paintings available in the
public domain is just a small fraction of what are in muse-
ums and private collections. II) Artistic concept quantifica-
tion limitation: the algorithm is limited by what it sees, in
terms of the ability of the underlying computer vision meth-
ods to encode the important elements and principles of art
that relates to judging creativity. III) Parameter setting: the
results will depend on the setting of the parameters, where
each setting would mean a different way to assign creativ-
ity scores with different interpretation and different criteria.
However, these limitations should not stop us from develop-
ing and testing algorithms to quantify creativity. The first
two limitations are bound to disappear in the future, with
more and more paintings being digitized, as well as with the
continuing advances in computer vision and machine learn-
ing. The third limitation should be thought of as an advan-
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tage, since the different settings mean a rich ability of the
algorithm to assign creativity scores based on different cri-
teria. For the purpose of validation, we propose a methodol-
ogy for validating the results of the algorithm through what
we denote as “time machine experiments”, which provides
evidence of the correctness of the algorithm.

Having discussed the feasibility and limitations, let us
discuss the value of using any computational framework
to assess creativity in art. For a detailed discussion about
the implications of using computational methods in the do-
main of aesthetic-judgment-related tasks, we refer the reader
to (Spratt and Elgammal 2014). Our goal is not to replace art
historians’ or artists’ role in judging creativity of art prod-
ucts. Providing a computational tool that can process mil-
lions of artworks to provide objective similarity measures
and assessments of creativity, given certain visual criteria
can be useful in the age of digital humanities. From a com-
putational creativity point of view, evaluating the framework
on digitized art data provides an excellent way to optimize
and validate the framework, since art history provides us
with suggestions about what is considered creative and what
might be less creative. In this work we did not use any such
hints in achieving the creativity scores, since the whole pro-
cess is unsupervised, i.e., the approach does not use any
creativity, genre, or style labels. However we can use ev-
idence from art history to judge whether the results make
sense or not. Validating the framework on digitized art data
makes it possible to be used on other products where no such
knowledge is available, for example to validate computer-
generated creative products.

On the Notion of Creativity

There is a historically long and ongoing debate on how to
define creativity. In this section we give a brief description
of some of these definitions that directly relate to the no-
tion we will use in the proposed computational framework.
Therefore, this section is by no means intended to serve as
a comprehensive overview of the subject. We refer readers
to (Taylor 1988; Paul and Kaufman 2014b) for comprehen-
sive overviews of the different definitions of creativity.

We can describe a person (e.g. artist, poet), a prod-
uct (painting, poem), or the mental process as being cre-
ative (Taylor 1988; Paul and Kaufman 2014a). Among the
various definitions of creativity it seems that there is a con-
vergence to two main conditions for a product to be called
“creative”. That product must be novel, compared to prior
work, and also has to be of value or influential (Paul and
Kaufman 2014a). These criteria resonate with Kant’s def-
inition of artistic genius, which emphasizes two conditions
“originality” and being “exemplary” !. Psychologists would

! Among four criteria for artistic genius suggested by Kant, two
describe the characteristic of a creative product “That genius 1) is
a talent for producing that for which no determinate rule can be
given, not a predisposition of skill for that which can be learned in
accordance with some rule, consequently that originality must be
it’s primary characteristic. 2) that since there can also be original
nonsense, its products must at the same time be models, i.e., exem-
plary, hence, while not themselves the result of imitation, they must

not totally agree with this definition since they favor asso-
ciating creativity with the mental process that generates the
product (Taylor 1988; Nanay 2014). However associating
creativity with products makes it possible to argue in favor
of “Computational Creativity”, since otherwise, any com-
puter product would be an output of an algorithmic process
and not a result of a creative process. Hence, in this paper
we stick to quantifying the creativity of products instead of
the mental process that create the product.

Boden suggested a distinction between two notions of
creativity: psychological creativity (P-creativity), which as-
sesses novelty of ideas with respect to its creator, and his-
torical creativity (H-creativity), which assesses novelty with
respect to the whole human history (Boden 1990). It follows
that P-creativity is a necessary but not sufficient condition
for H-creativity, while H-creativity implies P-creativity (Bo-
den 1990; Nanay 2014). This distinction is related to the
subjective (related to person) vs. objective creativity (related
to the product) suggested by Jarvie (Jarvie 1986). In this pa-
per our definition of creativity is aligned with objective/H-
creativity, since we mainly quantify creativity within a his-
torical context.

Computational Framework

According to the discussion in the previous section, a cre-
ative product must be original, compared to prior work, and
valuable (influential) moving forward. Let us construct a
network of creative products and use it to assign a creativity
score to each product in the network according to the afore-
mentioned criteria. In this section, for simplicity and with-
out loss of generality, we describe the approach based on a
network of paintings, however the framework is applicable
to other art or literature forms.

Constructing a Painting Graph

Let us denote by P = {p;,i = 1--- N} a set of paintings.
The goal is to assign a creativity score for each painting, de-
noted by C(p;) for painting p; . Every painting comes with
a time label indicating the date it was created, denoted by
t(p;). We create a directed graph where each vertex corre-
sponds to a painting. A directed edge (arc) connects painting
p; to p; if p; was created before p;. Each directed edge is
assigned a positive weight (we will discuss later where the
weights come from), we denote the weight of edge (p;,p;)
by w;;. We denote by W;; the adjacency matrix of the paint-
ing graph, where W;; = w;; if there is an edge from p; to
p; and O otherwise. Note that according to this definition, a
painting is not connected to itself, i.e., w;; = 0,4 =1--- .
By construction, w;; > 0 — wj; = 0, i.e., the graph is
anti-symmetric.

To assign the weights we assume that there is a similar-
ity function that takes two paintings and produces a positive
scalar measure of affinity between them (higher value indi-
cates higher similarity). We denote such a function by S(-, -)

yet serve others in that way, i.e., as a standard or rule for judging.”
(Guyer and Wood 2000)-p186
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Figure 1: Illustration of the construction of the Creativity Implication Network: blue arrows indicate temporal relation and

orange arrows indicate reverse creativity implication (converse).

and, therefore,

o | SWipy) i 1) < 1(p).
)0 otherwise.

Since there are multiple possible visual aspects that can be
used to measure similarity, we denote such a function by
S%(-,-) where the superscript a indicates the visual aspect
that is used to measure the similarity (color, subject mat-
ter, brush stroke, etc.) This implies that we can construct
multiple graphs, one for each similarity function. We de-
note the corresponding adjacency matrix by W, and the
induced creativity score by C'*, which measure the creativ-
ity along the dimension of visual aspect a. In the rest of this
section, for the sake of simplicity, we will assume one sim-
ilarity function and drop the superscript. Details about the
similarity function will be explained in the next section.

Creativity Propagation

Giving the constructed painting graph, how can we propa-
gate the creativity in such a network? To answer this ques-
tion we need to understand the implication of the weight of
the directed edge connecting two nodes on their creativity
scores. Let us assume that initially we assign equal creativ-
ity indices to all nodes. Consider painting p; and consider an
incoming edge from a prior painting pi. A high weight on
that edge (wy;) indicates a high similarity between p; and py,
which indicates that p; is not novel, implying that we should
lower the creativity score of p; (since p; is subsequent to
Pk and similar to it) and increase the creativity score of py.
In contrast, a low weight implies that p; is novel and hence
creative compared to py, therefore we need to increase the
creativity score of p; and decreases that of py.

Let us now consider the outgoing edges from p;. Accord-
ing to our notion of creativity, for p; to be creative it is not
enough to be novel, it has to be influential as well (some
others have to imitate it). This indicates that a high weight,
w;j, between p; and a subsequent painting p; implies that
we should increase the creativity score of p; and decrease
that of p;. In contrast, a lower weight implies that p; is not
influential on p;, and hence we should decrease the score for
p; and increase it for p;. These four cases are illustrated in

Figure 1. A careful look reveals that the two cases for the
incoming edges and those for the outgoing edges are in fact
the same. A higher weight implies the prior node is more
influential and the subsequent node is less creative, and a
lower weight implies the prior node is less influential and
the subsequent node is more creative.

Creativity Implication Network

Before converting this intuition to a computational ap-
proach, we need to define what is considered high and low
for weights. We introduce a balancing function on the graph.
Let m(7) denote a balancing value for node i, where for the
edges connected to that node a weight above m/(i) is consid-
ered high and below that value is considered low. We define
a balancing function as a linear function on the weights con-
necting to each node in the form
~J w=m(@) if w>0.
Bi(w) = { 0 otherwise.

We can think of different forms of balancing functions that
can be used. Also there are different ways to set the param-
eter m(z) with different implications, which we will discuss
in the next section. This form of balancing function basi-
cally converts weights lower than m(4) to negative values.
The more negative the weight of an edge the more creative
the subsequent node and the less influential the prior node.
The more positive the weight of an edge the less creative the
subsequent node and the more influential the prior node.

The introduction of the negative weights in the graph, de-
spite providing a solution to represent low weights, is prob-
lematic when propagating the creativity scores. The intu-
ition is, a negative edge between p; and p; is equivalent to
a positive edge between p; and p;. This directly suggests
that we should reverse all negative edges and negate their
values. Notice that the original graph construction guaran-
tees that an edge between p; and p; implies no edge between
p; and p;, therefore there is no problem with edge reversal.
This process results in what we call “Creativity Implication
Network”. We denote the weights of that graph by w;; and

its adjacency matrix by W. This process can be described
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mathematically as
B(ww) >0 — ﬁjij = B(’w”)
B('LUU) <0 — wji = —B(wij)

The Creativity Implication Network has one simple rule that
relates its weights to creativity propagation: the higher the
weight of an edge between two nodes, the less creative the
subsequent node and the more creative the prior node. Note
that the direction of the edges in this graph is no longer re-
lated to the temporal relation between its nodes, instead it
is directly inverse to the way creativity scores should prop-
agate from one painting to another. Notice that the weights
of this graph are non-negative.

Computing Creativity Scores

Given the construction of the Creativity Implication Net-
work, we are now ready to define a recursive formula for as-
signing creativity scores. We will show that the construction
of the Creativity Implication Network reduces the problem
of computing the creativity scores to a traditional network
centrality problem. The algorithm will maintain creativity
scores that sum up to one, i.e., the creativity scores form
a probability distribution over all the paintings in our set.
Given an initial equal creativity scores, the creativity score
of node p; should be updated as

« - C '
) +a§j:wij N(éj))’ (1)

where 0 < o < 1 and N(p;) = Y, Wg;. In this formula,
the creativity of node p; is computed from aggregating a
fraction « of the creativity scores from its outgoing edges
weighted by the adjusted weights w;;. The constant term
(1 — @)/N reflects the chance that similarity between two
paintings might not necessarily indicate that the subsequent
one is influenced by the prior one. For example, two paint-
ings might be similar simply because they follow a certain
style or art movement. The factor 1 — « reflects the prob-
ability of this chance. The normalization term N (p;) for
node j is the sum of its incoming weights, which means that
the contribution of node p; is split among all its incoming
nodes based on the weights, and hence, p; will collect only
a fraction w;; />, wy; of the creativity score of p;.

The recursive formula in Eq 1 can be written in a matrix
form as

Clpi) =

_(1—a) =
C = N 1+alWC, 2)

where W is a column stochastic matrix defined as W;; =
W;j/Y ) Wrj», and 1 is a vector of ones of the same size as

C. It is easy to see that since W, C, and %1 are all column
stochastic, the resulting scores will always sum up to one.
The creativity scores can be obtained by iterating over Eq 2
until conversion. Also a closed-form solution for the case
where « # 1 can be obtained as

o = M(1'—045)—11. 3)

A reader who is familiar with social network analysis lit-
erature might directly see the relation between this formu-
lation and some traditional network centrality algorithms.
Eq 2 represents a random walk in a Markov chain. Set-
ting a = 1, the formula in Eq 2 becomes a weighted vari-
ant to eigenvector centrality (Borgatti and Everett 2006),
where a solution can be obtained by the right eigenvector

corresponding to the largest eigenvalue of W. The formula-
tion in Eq 2 is also a weighted variant of Hubbell’s central-
ity (Hubbell 1965). Finally the formulation can be seen as an
inverted weighted variant of the Page Rank algorithm (Brin
and Page 1998). Notice that this reduction to traditional net-
work centrality formulations was only possible because of
the way the Creativity Implication Network was constructed.

Originality vs. Influence

The formulation above sums up the two criteria of creativity,
being original and being influential. We can modify the for-
mulation to make it possible to give more emphasis to either
of these two aspects when computing the creativity scores.
For example it might be desirable to emphasize novel works
even though they are not influential, or the other way around.
Recall that the direction of the edges in Creativity Implica-
tion Network are no longer related to the temporal relation
between the nodes. We can label (color) the edges in the
network such that each outgoing edge e(p;, p;) from a given
node p; is either labeled as a subsequent edge or a prior edge
depending on the temporal relation between p; and p;. This
can be achieved by defining two disjoint subsets of the edges
in the networks

[pprior
Esubseq

{e(pispj) : t(ps) <t(pi)}
{epispj) : t(p;) > t(pi)}

This results in two adjacency matrices, denoted by WP and
W# such that W = WP 4+ W?, where the superscripts p and
s denote the prior and subsequent edges respectively. Now
Eq 1 can be rewritten as

co) = U= “) + )

52 s+ (1= 5) 3 8y A,

where N?(p;) = >, ng and N*(p;) = >_, w;;. The
first summation collects the creativity scores stemming from
prior nodes, i.e., encodes the originality part of the score,
while the second summation collects creativity scores stem-
ming from subsequent nodes, i.e, encodes influence. We in-
troduced a parameter 0 < 3 < 1 to control the effect of the
two criteria on the result. The modified formulation above
can be written as

1— — o~
o= Na) 1+ alfWPC + (1 - BWSC], ()
where WP and W are the column stochastic adjacency ma-
trices resulting from normalizing the columns of WP and
W respectively. It is obvious that the closed-form solution
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in Eq 3 is applicable to this modified formulation where w
is defined as W = SW? + (1 — B)W>.

Creativity Network for Art

In this section we explain how the framework can be realized
for the particular case of visual art.

Visual Likelihood: For each painting we can use computer
vision techniques to obtain different feature representations
for its image, each encoding a specific visual aspect(s) re-
lated to the elements and principles of arts. We denote such
features by f;* for painting p;, where a denotes the visual
aspect that the feature quantifies. We define the similarity
between painting p; and p;, as the likelihood that painting
p; is coming from a probability model defined by painting
p;. In particular, we assume a Gaussian probability density
model for painting p;, i.e.,

S%pj,pi) = Pr(pjlps,a) = N(; fi*,0°I).

It is important to limit the connections coming to a given
painting. By construction, any painting will be connected to
all prior paintings in the graph. This makes the graph highly
biased since modern paintings will have extensive incoming
connections and early paintings will have extensive outgoing
connections. Therefore we limit the incoming connections
to any node to at most the top K edges (the K most similar
prior paintings).

Temporal Prior: It might be desirable to add a temporal
prior on the connections. If a painting in the nineteenth cen-
tury resembles a painting from the fourteenth century, we
shouldn’t necessarily penalize that as low creativity. This
is because certain styles are always reinventions of older
styles, for example neoclassicism and renaissance. There-
fore, these similarities between styles across distant time pe-
riods should not be considered as low creativity. Therefore,
we can add a temporal prior to the likelihood as

S5%(pj, pi) = Pr¥(pjlpi. a) - Pr'(p;|pi),

where the second probability is a temporal likelihood (what
is the likelihood that p; is influenced p; given their dates)
and the first is the visual likelihood. There are different ways
to define such a temporal likelihood. The simplest way is
a temporal window function, i.e., Pri(p;lp;) = 1if p; is
within K temporal neighbors prior to p; and 0 otherwise?.
Balancing Function: There are different choices for the
balancing function B(w), as well as the parameter for that
function. We mainly used a linear function for that pur-
pose. The parameter m can be set globally over the whole
graph, or locally for each time period. A global m can be
set as the p-percentile of the weights of the graph, which
is p-percentile of all the pairwise likelihoods. This di-
rectly means that p% of the edges of the graph will be re-
versed when constructing the Creativity Implication Graph.

2Alternatively, a Gaussian density can be use, Pr(p;j|p;) =
exp(—[t(p:) —t(p;)]?/o?). However, adding such temporal Gaus-
sian would complicate the algorithm since it will not be easy to
estimate a suitable oy, specially the graph can have non-uniform
density over the time line.

One disadvantage of a global balancing function is that dif-
ferent time periods have different distributions of weights.
This suggests using a local-in-time balancing function. To
achieve that we compute m; for each node as p% of the
weight distribution based on its temporal neighborhood.

Experiments and Results
Datasets and Visual Features

Artchive: This dataset was previously used for style clas-
sification and influence discovery (Saleh et al. 2014). It
contains a total of 1710 images of art works (paintings and
sculptures) by 66 artists, from 13 different styles from 1412-
1996, chosen from Mark Harden’s Artchive database of fine-
art (Harden ). The majority of the images are of the full
work, while a few are details of the work.

Wikiart.org: We used the publicly available dataset of
“Wikiart paintings”3; which, to the best of our knowledge,
is the largest online public collection of artworks. This col-
lection has images of 81,449 fine-art paintings and sculp-
tures from 1,119 artist spanning from 1400-2000+. These
paintings are from 27 different styles (Abstract, Byzantine,
Baroque, etc.) and 45 different genres (Interior, Landscape,
Portrait, etc.). We pruned the dataset to 62,254 western
paintings by removing genres and mediums that are not suit-
able for the analysis such as sculpture, graffiti, mosaic, in-
stallation, performance, photos, etc.

For both datasets the time annotation is mainly the year.
Therefore, it is not possible to tell which is prior between
any pair of paintings with the same year of creation. There-
fore no edge is added between their corresponding nodes.

We experimented with different state-of-the-art feature
representations. In particular, the results shown here are us-
ing Classeme features (Torresani, Szummer, and Fitzgibbon
2010). These features were shown to outperform other state-
of-the-art features for the task of style classification (Saleh
et al. 2014). These features (2659 dimensions) provide
semantic-level representation of images, by encoding the
presence of a set of basic-level object categories (e.g. horse,
cross, etc.), which captures the subject matter of the paint-
ing. Some of the low-level features used to learn the
Classeme features also capture the composition of the scene.

Example Results

We show qualitative and quantitative experimental results of
the framework applied to the aforementioned datasets. As
mentioned in the introduction, any result has to be evaluated
given the set of paintings available to the algorithm and the
capabilities of the visual features used. Given that the vi-
sual features used are mainly capturing subject matter and
composition, sensible creativity scores are expected to re-
flect these concept. A low creativity score does not mean
that the work is not creative in general, it just means that the
algorithm does not see it creative with respect to its encoding
of subject matter and composition.

Figures 2-top and 3 show the creativity scores obtained
on the Artchive and Wikiart datasets respectively. Figure 2-
bottom shows a zoom in to the period between 1850-1950 in

*http://www.wikiart.org/
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the Artchive dataset, which is very dense in the graph®. In all
figures we plot the scores vs. the year of the painting. The
figures visualize some of the paintings that obtained high
scores, as well as some with low scores (the scores in the
plots are scaled). We randomly sampled points with low
scores for visualization. A close look at the paintings that
scored low (bottom) reveals the presence of typical subject
matter that is common in the dataset, or in some cases the
image presents an unclear view of a sculpture (e.g. Rodin
1889 sculpture in the bottom right). The general trend shows
peaks in creativity around the time of High Renaissance (late
15th , early 16th century) and the late 19th and early 20th
centuries, and a significant increase in the second half of the
20th century.

One of the interesting findings is the algorithm’s ability to
point out wrong annotations in the dataset. For example, one
of the highest scoring paintings around 1910 was a painting
by Piet Mondrain called “ Composition en blanc, rouge et
jaune,” (see Figure 2). By examining this painting, we found
that the correct date for it is around 1936 and it was mistak-
enly annotated in the Artchive dataset as 1910 °>. Modrain
did not start to paint in this grid-based (Tableau) style untill
around 1920. So it is no surprise that wrongly dating one
of Mondrain’s tableau paintings to 1910 caused it to obtain
high creativity score, even above the cubism paintings from
that time. On the Wikiart dataset, one of the highest-scored
painting was “tornado” by contemporary artist Joe Goode,
which was found to be mistakenly dated 1911 in Wikiart °.
A closer look at the artist biography revealed that he was
born in 1937 and this painting was created in 19917, Tt
is not surprising for a painting that was created in 1991 to
score very high in creativity if it was wrongly dated to 1911.
These two examples, besides indicating that the algorithm
works, show the potential of proposed algorithm in in spot-
ting wrong annotations in large datasets, which otherwise
would require tremendous human effort.

Time Machine Experiment

Given the absence of ground truth for creativity, the afore-
mentioned wrong annotations inspired us with a methodol-
ogy to quantitatively evaluate the framework. We designed
what we call “time machine” experiment, where we change
the date of an artwork to some point in the past or some point
in the future, relative to its correct time of creation. Then we
compute the creativity scores using the wrong date, by run-
ning the algorithm on the whole data. We then compute the
gain (or loss) in the creativity score of that artwork compared
to its score using correct dating. What should we expect

*For Figure 2 a temporal window historical prior is uses.
For Figure 3 no historical prior was used. For both, we set
K=500,a=0.15

The wrong annotation is in the Artchive CD obtained in 2010.
The current online version of Artchive has corrected annotation for
this painting

Shttp://www.wikiart.org/en/search/tornado/
l#supersized-search-318512 - accessed on Feb 28th,
2015

"http://www.artnet.com/artists/joe-goode/
tornado-9-2Y7erPME95Y1khFp7DRW1A2

Table 1: Time Machine Experiment

Art movement [ avg % gain/loss | % increase
Moving backward to AD 1600
Neoclassicism 5.78%+1.28 97%+4.8
Romanticism 7.52%=+ 2.04 98%+ 4.2
Impressionism 14.66%=+2.78 | 99%+3.2
Post-Impressionism 16.82%=+2.22 99%+3.1
Symbolism 15.2%+2.94 97%+4.8
Expressionism 16.83%+2.43 98%+4.2
Cubism 13.36%=+2.43 89%+9.9
Surrealism 12.66%+1.82 95%+7.1
American Modernism | 11.75%42.99 84%+8.4
Wandering around to AD 1600
Renaissance 0.68 %= 2.05 39%+5.7
Baroque 2.85%+ 1.09 71%=+19.7
Moving forward to AD 1900
Renaissance -8.13%=+ 2.02 20%+10.5
Baroque -10.2%=+2.03 0%=+0

from an algorithm that assigns creativity in a sensible way?
Moving a creative painting back in history would increase
its creativity score, while moving a painting forward would
decrease its creativity. Therefore, we tested three settings:
I) Moving back to AD 1600: For styles that date after 1750,
we set the test paintings back to a random date around 1600
using Normal distribution with mean 1600 and std 50 years,
i.e. N(1600,50%) . II) Moving forward to AD 1900: For the
Renaissance and Baroque styles, we set the test paintings
to random dates around 1900 sampled from N (1900, 502).
IIT) Wandering about AD 1600 (baseline): In this experi-
ment, for the Renaissance and Baroque styles, we set the
test paintings to random dates around 1600 sampled from

N(1600, 50°).

Table 1 shows the results of these experiments. We ran
this experiment on the Artchive dataset with no temporal
prior. In each run we randomly selected 10 test paintings
of a given style and applied the corresponding move. We
used 10 as a small percentage of the data set (less than 1%),
not to disturb the global distribution of creativity. We re-
peated each experiment 10 times and reported the mean and
standard deviations of the runs. For each style we com-
puted the average gain/loss of creativity scores by the time
move. We also computed the percentage of the test paintings
whose scores have increased. From the table we clearly see
that paintings from Impressionist, Post-Impressionist, Ex-
pressionist, and Cubism movements have significant gain in
their creativity scores when moved back to 1600. In contrast,
Neoclassicism paintings have the least gain, which makes
sense, because Neoclassicism can be considered as revival
to Renaissance. Romanticism paintings also have a low gain
when moved back to 1600, which is justified because of the
connection between Romanticism and Gothicism and Me-
dievalism. On the other hand, paintings from Renaissance
and Baroque styles have loss in their scores when moved
forward to 1900, while they did not change much in the
wandering-around-1600 setting.
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Figure 2: Top: Creativity scores for 1710 paintings from Artchive dataset. Bottom: zoom in to the period 1850-1950. Each
point represents a painting. The thumbnails illustrate some of the paintings that scored relatively high or low compared to their
neighbors. Only artist names and dates of the paintings are shown on the graph because of limited space. The red-dotted-framed
painting by Piet Mondrain scored very high because it was wrongly dated to 1910 instead of 1936 in the dataset.
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Figure 3: Creativity scores for 62K paintings from the wikiart.org dataset

Conclusion and Discusion

The paper presented a computational framework to assess
creativity among a set of products. We showed that, by con-
structing a creativity implication network, the problem re-
duces to a traditional network centrality problem. We re-
alized the framework for the domain of visual art, where
we used computer vision to quantify similarity between art-
works. We validated the approach qualitatively and quanti-
tively on two large datasets.

In this paper we focused on “creative” as an attribute
of a product, in particular artistic products such as paint-
ing, where creativity of a painting is defined as the level of
its originality and influence. However, the computational
framework can be applied to other forms such as sculpture,
literature, science etc. Quantifying creativity as an attribute
of a product facilitates quantifying the creativity of the per-
son who made that product, as a function over the creator’s
set of products. Hence, our proposed framework also serves
as a way to quantify creativity as an attribute for people.
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