
A chart generation system for topical metrical poetry

Berty Chrismartin Lumban Tobing and Ruli Manurung
Faculty of Computer Science

Universitas Indonesia
Depok 16424, West Java, Indonesia

berty.chrismartin@ui.ac.id,maruli@cs.ui.ac.id

Abstract

Several poetry generation systems that are in some way
inspired or motivated by existing articles such as news-
paper stories have recently appeared. However, most
if not all of them employ template-based generation,
which limits both the expressiveness of the system and
the ability to faithfully convey the message of the source
article. In this paper we present our work on a po-
etry generation system that uses a dependency parser
to extract the predicate argument structure of the in-
put article, and tries to maintain this structure through
deep syntactic text generation whilst complying with a
given target form. The combinatorial nature of this task
presents huge challenges, and we describe several im-
provements that have been applied in an attempt to pro-
duce poetry in a tractable fashion.

Introduction
Poetry generators are systems that are capable of automat-
ically generating poetry given certain restrictions and con-
texts. Gervás (2002) presents an overall evaluation of var-
ious poetry generators. Various generation approaches are
employed, e.g. evolutionary algorithms (Manurung, Ritchie,
and Thompson 2012), case-based reasoning (Diaz-Agudo,
Gervás, and González-Calero 2002), template-based gen-
eration (Colton, Goodwin, and Veale 2012), (Rashel and
Manurung 2014), and constraint programming (Toivanen,
Järvisalo, and Toivonen 2013).

In this paper, the task we are aiming to solve can be re-
ferred to as meaningful poetry generation, where the goal is
to generate a text that exhibits poetic aspects such as rhyme,
metre, alliteration, and other phonetic or orthographic pat-
terns, but also broadly tries to convey a given meaning rep-
resentation. This last requirement is what distinguishes this
task from other forms of poetry generation, which primarily
focus on generating texts that take the form of a poem.

The way in which an input meaning representation is pro-
vided, and the manner in which a poetry generation system
attempts to preserve the fidelity of the input meaning rep-
resentation, varies. Most systems can be said to be “loosely
inspired” by their input meaning representations, as they use
words and phrases from the input as fillers for textual tem-
plates. Although the resulting poems may include words
derived from the input, they do not necessarily take into

account aspects such as predicate-argument structure and
head-modifier relationships that are crucial towards seman-
tic interpretation. For example, it is possible that a poetry
generator that extracts keywords from an article about the
Gulf War writes a poem about Iraq invading the USA, and
not the other way around. Some notable exceptions are Po-
eTryMe (Gonçalo Oliveira 2012) and MCGONAGALL (Ma-
nurung, Ritchie, and Thompson 2012). PoeTryMe selects
content in the form of a set of words and relations between
them that are obtained from a semantic graph, and conveys
this content using templates that are known to express such
specific relations. MCGONAGALL employs a fitness func-
tion that measures the semantic similarity between a candi-
date poem and a given target semantics in such a way that
structural similarity is significantly preferred. One other in-
teresting related work is Gervás (2015), which explores var-
ious modifications and extensions to an existing poetry gen-
eration system, WASP, to consider much tighter constraints
on the content of generated poems.

This paper describes a system that uses a meaning repre-
sentation that explicitly captures predicate-argument struc-
ture and tries to maintain this structure through deep syn-
tactic text generation whilst complying with a given target
form.

We first discuss chart generation, the basic mechanism
the system employs to produce text, before discussing how
we extract meaning representations from input news articles.
Some results from experiments using this initial system are
shown. We then present a complexity analysis of the algo-
rithm and suggest four different improvements to make the
system generate meaningful metrical poems in a much more
tractable manner. Finally, some results are shown from ex-
periments using the revised system.

Chart Generation
Moreso than an author of prose, an author of poetry may
have to perform a lot of rewording, paraphrasing, and vari-
ous other alterations to the text, in order that the end result
can satisfy the various poetic constraints such as rhyme and
metre. Moreover, in literary texts, creative language use of-
ten results in more exibility of lexical choice, word-order,
and grammaticality, hence an even larger search space for
the paraphrasing.

One efficient method for constructing all valid para-

Proceedings of the Sixth International Conference on Computational Creativity June 2015 308

phrases of a natural language utterance is chart genera-
tion (Kay 1996). Given an input meaning representation,
a set of grammar rules, and a lexicon, it systematically gen-
erates all syntactically well-formed texts that convey the in-
put meaning. It employs a dynamic programming technique
to overcome the inefficiency caused by backtracking due to
the pervasive non-determinism in natural language grammar
rules.

A data structure known as the chart stores all complete
constituents once they are generated, so regardless of the
number of paraphrases they may appear in, they will only
be constructed once. The chart also stores incomplete con-
stituents, which are predictions of larger constituents yet to
be generated. A chart contains entries that are labelled with
‘dotted rules’ which describe both complete constituents,
called inactive edges, and incomplete constituents, called ac-
tive edges. An active and an inactive edge can combine to
yield a new edge that represents a larger constituent.

An example of an inactive edge is np ! det noun •,
which represents a noun phrase (np) constituent that consists
of a determiner followed by a noun, whereas an example
of an active edge is np ! det • noun which represents
a partially constructed noun phrase which is still lacking a
noun. Note the position of the dot (•) that delineates the
portion of the constituent that has been constructed from that
which is still lacking.

For chart generation, it is not enough for the dotted rules
to simply state syntactic constituency. They must also state
the semantics of each constituent, and how their arguments
must unify when being combined. When two edges com-
bine, their semantics must also be unioned to obtain the se-
mantics of the new edge. Moreover, some semantic sub-
sumption checking must be performed to prevent false sen-
tences from being generated. For example, given the input
semantics loves(john,mary), an edge with the semantics
loves(john,X), where the variable X indicates an unbound
argument, can be added to the chart, because its seman-
tics still subsume the input. However, according to the in-
put grammar, a chart generator may also construct an edge
with the semantics loves(X, john), whose semantics does
not subsume the input. Therefore, it must be rejected.

The algorithm can be informally described as follows:

1. Add entries for all words whose semantics subsume the
target semantics to the chart.

2. Bottom-up prediction: for each inactive edge in the chart,
add new active edges to the chart for each grammar rule
that have it as the first constituent on the right hand side.

3. Scanning: for each active edge in the chart, look for in-
active edges whose category matches that of the first con-
stituent needed, and add a new edge that combines the
two.

4. Completion: for each inactive edge in the chart, look for
an active edge that is looking for a constituent with a
matching category.

5. The above processes are repeatedly applied to all new en-
tries to the chart until no more new entries can be added.

Let us consider a simple example. Suppose the following
target semantics are to be generated: {dog(d), definite(d),
see(s), cat(c), definite(c), arg1(s,d), arg2(s,c)}.

Assume the grammar consists of the following three rules:
s(x) ! np(y)vp(x, y)
np(x) ! det(x)noun(x)
vp(x, y) ! verb(x, y, z)np(z)

and the lexicon consists of the following four entries:
Word Category Semantics
cat noun(x) x:{cat(x)}
saw verb(x,y,z) x:{see(x),arg1(x,y),arg2(x,z)}
dog noun(x) x:{dog(x)}
the det(x) x:{definite(x)}
Following the algorithm described above, edges are en-

tered to form the chart seen in Table 1. The process is as
follows:
• Initially, edges 1,2,4,6, and 7 enter the chart. They rep-

resent the lexical items that convey a portion of the target
semantics.

• Edges 3,5, and 8 enter the chart as a result of the pre-
diction operation. Based on the grammar, the algorithm
hypothesises the existence of larger constituents.

• Edges 9 and 11 enter the chart as a result of combining
the inactive and active edges 1+3 and 6+8 respectively.

• Edges 10 and 12 enter the chart as a result of the pre-
diction operation on edges 9 and 11. Note that edge 12,
although cannot form any part of a sentence that conveys
the input semantics, still enters the chart, but will not com-
bine with any other edge due to the semantic subsumption
checking.

• Edge 13 and subsequently edge 14 enter the chart as a
result of combining edges 5+11 and 10+13 respectively.

Metre compatibility
Manurung (1999) first introduced an extension to chart gen-
eration to take into account rhythmic constraints of poetry.

In most forms of poetry, metre is the arrangement of
words such that rhythmic patterns emerge from their lexical
stress, which is the relative prominence of stress received by
syllables in a word. To simplify matters, we will assume
that syllables may receive one of either two types of lexi-
cal stress: weak stress or strong stress. Thus, the rhythm of
natural language strings can be represented as lists, which
we call stress patterns, denoting the type of stress received
by each syllable in an utterance, which can be either weak
(denoted as ’w’) or strong (denoted as ’s’). For example, the
list [w,s,w,s,w,s,w,s,w,s]would be a stress pattern
that represents a line of iambic pentameter.

These stress patterns can be used as the representation for
specifying the metrical constraints that are provided as input
for the chart generator. The starting point for constructing
stress patterns is lexical stress, which can be obtained from
pronunciation dictionaries such as the CMU Pronouncing
Dictionary1.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Proceedings of the Sixth International Conference on Computational Creativity June 2015 309

No. Phrase Category Semantics Operator
1 dog noun(d) d:dog(d) Lexical
2 the det(d) d:definite(d) Lexical
3 the np(d) ! det(d) • noun(d) d:definite(d) Prediction (2)
4 saw verb(s, d, c) s:see(s), arg1(s,d), arg2(s,c) Lexical
5 saw vp(s, d) ! verb(s, d, c) • np(c) s:see(s), arg1(s,d), arg2(s,c) Prediction (4)
6 cat noun(c) c:cat(c) Lexical
7 the det(c) c:definite(c) Lexical
8 the np(c) ! det(c) • noun(c)) c:definite(c) Prediction (7)
9 the dog np(d) ! det(d) noun(d)• d:definite(d),dog(d) (1)+(3)
10 the dog s() ! np(d) • vp(, d) d:definite(d),dog(d) Prediction (9)
11 the cat np(c) ! det(c) noun(c)• c:definite(c),cat(c) (6)+(8)
12 the cat s() ! np(c) • vp(, c) c:definite(c),cat(c) Prediction (11)
13 saw the cat vp(s, d) ! verb(s, d, c) np(c)• s:see(s), arg1(s,d), arg2(s,c), definite(c),

cat(c)
(5)+(11)

14 the dog saw the cat s(s) ! np(d) vp(s, d)• s:see(s), arg1(s,d), arg2(s,c), definite(c),
cat(c), definite(d), dog(d)

(10)+(13)

Table 1: Sample entries during chart generation for “the dog saw the cat”

Stress patterns are not only used to represent input tar-
get forms, but also the metre of texts that are incrementally
constructed through chart generation. When two edges are
combined, their stress patterns are appended to obtain the
stress pattern of the new edge that arises. Therefore, when
attempting to add a new edge to the chart, the system can
first check whether or not its stress pattern can appear as
a contiguous subsequence of the target stress pattern. For
example, the verb phrase “saw the cat” has a stress pattern
[s,w,s], and can thus be said to be compatible with an
iambic pentameter metre because it can appear as a sub-
sequence of [w,s,w,s,w,s,w,s,w,s]. However, the
prepositional phrase “with the cat” has a stress pattern of
[w,w,s], and is thus not compatible, and hence should not
be added to the chart.

By applying this metre check everytime an entry is at-
tempted to be added to the chart, the search space can be
significantly reduced, as it ensures that only texts that sat-
isfy the metre constraints will be added to the chart.

Implementing topicality
As mentioned above, we aim to generate poems that ex-
plicitly convey a given meaning representation, preserving
the fidelity of the message by taking into account predicate-
argument structure, head-modifier relationships, and lexical
semantics.

To that end, we implemented a preprocessing module that
obtains meaning representations from a given text, which
in our case is a newspaper article from an online website.
An input URL is provided, and the main article content is
extracted using a popular context extraction tool2.

The article is split up into sentences, and each sentence
is parsed using the Stanford Dependency parser3 (Klein and
Manning 2003). The set of dependency relations produced
is taken to be the input meaning representation for the poem
to be generated. Strictly speaking, a dependency parse can-

2https://code.google.com/p/boilerpipe/
3http://nlp.stanford.edu/software/lex-parser.shtml

not be said to be a genuine semantic representation, as it is
still closely related to the constituent structure of the origi-
nal sentence. Although the dependency relations do include
semantic relations of an entity being the agent, subject, or
object of another entity, a genuine semantic representation
should abstract away from any syntactic decisions, whereas
the dependency parse still contains relations such as advmod
(adverb modifier) and xcomp (open clausal complement).

Nevertheless, such a representation is still a useful ab-
straction from the original text, and arguably does convey
the semantics of the original text. In fact, the Stanford
CoreNLP tool4 actually refers to the dependency parse as
a “semantic graph”. In particular, it represents predicate-
argument and head-modifier relations very well. It is pre-
cisely such relations that the keyword and phrase extraction-
based approaches of previous topical poetry generation sys-
tems fail to capture.

For example, given an input sentence “The fox jumps over
the dog.”, the dependency parse output is as follows:

{det(fox-2, The-1),
nsubj(jumps-3, fox-2),
root(ROOT-0, jumps-3),
det(dog-6, the-5),
prep_over(jumps-3, dog-6)}

Since the chart generator will populate the initial chart
with lexical entries based on the input meaning represen-
tation, whereas the relations above actually define relations
between words, we must first explicitly add clauses for each
word by introducing a lex relation and introduce a new
variable for each word. Subsequently, we replace the ar-
guments in the dependency relations to unify with these new
variables, yielding the following representation:

{lex(a, [the, det]),
lex(b, [fox, noun]),
lex(c, [jumps, verb]),
lex(d, [over, prep]),
lex(e, [the, det]),

4http://nlp.stanford.edu/software/corenlp.shtml

Proceedings of the Sixth International Conference on Computational Creativity June 2015 310

Synset ID Gloss
#102118333 alert carnivorous mammal with

pointed muzzle and ears and a
bushy tail; most are predators that
do not hunt in packs

#110022759 a shifty deceptive person
#114764910 the grey or reddish-brown fur of a

fox

Table 2: WordNet entries for the noun “fox”

lex(f, [dog, n]),
det(b,a),
nsubj(c,b),
det(f,e),
prep_over(c,f)}

Mapping words to concepts
Although the meaning representation from the dependency
parse explicitly states predicate-argument and head-modifier
relations, it does so over strings of text such as “fox” and
“jumps”. To properly treat this as a semantic input, and to
maximize the paraphrasing power of the generation compo-
nent, these strings must first be transformed into semantic
concepts. To achieve this, these strings are mapped onto ap-
propriate WordNet synsets (Fellbaum 1998).

This increases the paraphrasing power of the generator,
as it enables the generator to select synonyms to convey the
concept, which may be necessary to satisfy rhythmic con-
straints.

Unfortunately, words are ambiguous symbols that may
have many meanings, and such a mapping process raises the
issue of word sense disambiguation (Agirre and Edmonds
2007). For example, given the word “fox” as a noun, Word-
Net has three different senses, which can be seen in Table 2.

In the initial version of the system that we develop, we
simply take all possible senses for the word given the ap-
propriate part of speech tag as returned by the dependency
parser. Thus, in the example of “fox” above, all three senses
of the noun are considered, but the three senses of “fox” as
a verb are not.

Lexical resources
To accommodate the input meaning representations ob-
tained from the dependency parser, the grammar, lexicon,
and semantic representations must first be suitably modified.
The lexicon is constructed by consulting WordNet and the
CMU pronouncing dictionary. Before mapping to WordNet
synsets, lemmatization is first applied to the words found in
the dependency parses. Since WordNet only contains open
class words, entries for closed class words such as determin-
ers, prepositions, etc. are added manually.

Initial Experiments
To summarize the previous two sections, given an input URL
and a target form, the poetry generation system proceeds as
follows:

Ask in french surface
Call her years, check her
Think were toy tennis
Skid in chase, land her

(a)

Game were this tuesday
Is her but basket
James were drill friday
He were this target

(b)

This baby tell me
That I can miss you?
That you should hold me
Will know I miss you

(c)

Table 3: Sample output of initial experiments

1. Given an input URL, download the page and extract the
main news content.

2. Parse each sentence of the text using the dependency
parser.

3. For each sentence, apply chart generation to produce a
text that conveys target semantics in the form of the target
stress pattern.

4. Assemble all possible poems from the successfully gen-
erated sentences.

To test this system, three input articles were provided:
two news articles from the sports section of the New York
Times: “Maria Sharapova Is Finding Her Stride On Clay
at Roland Garros”5 and “James and the Heat Coolly Even
the N.B.A. Finals”6, and the lyrics to a contemporary R&B
song, “Officially Missing You”7. From each of these input
articles poems were generated using target stress patterns of
4 lines long, each consisting of 5 syllables, with a rhyming
pattern of AB-AB. For the two news articles a stress pattern
of [s,w,s,s,w] was specified, but for the song lyrics the
generator was only constrained by the number of syllables.
Table 3 shows some randomly selected sample output for
each input article. Note that they are all perfect in terms of
rhyme and metre, and they all roughly convey some aspects
of semantics of their respective input articles.

Improving runtime complexity
Despite the fact that chart generation utilizes dynamic pro-
gramming to make the process efficient, and that metre com-
patibility checking can substantially reduce the search space,
the system as described is still very inefficient, and takes sev-

5http://www.nytimes.com/2014/06/07/sports/tennis/maria-
sharapova-is-finding-her-stride-on-clay-at-roland-garros.html

6http://www.nytimes.com/2014/06/09/sports/basketball/lebron-
james-and-miami-heat-coolly-even-the-series.html

7http://en.wikipedia.org/wiki/Officially Missing You

Proceedings of the Sixth International Conference on Computational Creativity June 2015 311

eral hours on a modern desktop PC to compute the sample
output presented in the previous section.

A brief algorithm analysis will now be presented, together
with some insights on how to speed up the process.

Assume that we are trying to generate a poem consisting
of A lines based on an input article containing Z sentences.
Assume also an input target semantics of N clauses, where
for each word appearing in the semantics there are L possi-
ble WordNet synsets, with each synset having K synonyms.
The lexicon that needs to be considered contains a total of
N⇥L⇥K entries. Finally, assume a grammar that contains
M rules.

The chart generation process starts by considering all
words from the lexicon that can possibly convey a section of
the input semantics, and the bottom-up operator checks the
M rules whether they predict the appearance of a word with
the appropriate syntactic category. By taking into consid-
eration repeated application of the scanning and completion
operators discussed previously, until no more entries can be
added to the chart, the theoretical worst case complexity is
estimated to be:

O((((L⇥K)A ⇥ P (N,A)⇥M ⇥A)⇥ Z)P) (1)

where P (N,A) is the permutation function,
N !

(N �A)!
.

Idea 1: Summarizing input text
In our initial experiment described above, the entire input
news article is parsed and processed. As an example, the
New York Times article about Maria Sharapova consisted
of 1198 words. One idea to reduce complexity would be
to try to summarize the article beforehand, and extract the
semantic representation of the summary as input for the po-
etry generator instead. Aside from issues of complexity, at-
tempting to convey the meaning of an entire news article in
a short poem without really considering issues of discourse
processing and coherence is slightly naive. Document sum-
marization systems are precisely designed to analyse a text
at the discourse level and to determine the most salient por-
tions. Thus, aside from reducing complexity, this approach
may also leverage the ability of such summarization systems
to select a subset of content from the input news article that
is more relevant to be conveyed.

Assuming that the Z sentences of the news article is sum-
marized into P sentences, where P is the number of lines in
the target form to be generated and is < Z, the complexity
becomes:

O((((L⇥K)A ⇥ P (N,A)⇥M ⇥A)⇥ P)P) (2)

In our experiments, we use the popular document summa-
rization tool MEAD8 (Radev et al. 2003).

Idea 2: Sense disambiguation
In our initial version, the system simply considers all possi-
ble senses of a word when mapping to WordNet concepts.
Given that this is done for all words in the input text, this

8http://www.summarization.com/mead/

creates a combinatorial explosion, many of which are likely
to be incoherent combinations of senses.

To select the most appropriate word sense, the context of
the target word, in this case the sentence in the news arti-
cle to which it belongs, is compared against the context of
the various available senses, i.e. the gloss and/or example
sentences from WordNet. The modified Lesk algorithm is
a well-known instance of this approach (Banerjee and Ped-
ersen 2002). We employ a vector space model approach,
where the two contexts are represented as vectors in a high-
dimensional space and the sense that yields the highest co-
sine similarity is selected as the appropriate sense. In recent
years, so-called word embeddings that have been trained
using neural networks on very large corpora have yielded
very good results. We use pre-trained vectors that have been
made available as part of the GloVe9 (Global Vectors for
Word Representation) toolkit.

By applying word sense disambiguation, L = 1, thus the
complexity becomes:

O(((KA ⇥ P (N,A)⇥M ⇥A)⇥ P)P) (3)

Idea 3: Positional indexing
Chart generation is actually a dynamic programming ap-
proach to text generation that is motivated by chart parsing,
which analyses a sentence and produces all parse trees based
on a given grammar. In chart parsing, bottom-up process-
ing starts with adding entries for each word appearing in the
text to be parsed. However, since the order of the words
is already known, entries in the chart are indexed based on
the position they appear in the sentence. This index speeds
up the process, since only edges that are incident to each
other can possibly combine to yield new edges that repre-
sent larger constituent structures.

However, in chart generation such positional indexing is
typically not used, as one does not know beforehand where
words will appear in the sentence, and the overriding aspect
that governs which edges can combine is that of semantic
subsumption.

When considering metre compatibility during an attempt
to add an edge to the chart, the system currently checks
whether it can appear as a contiguous substring in the tar-
get form, but does not specify where precisely this substring
is located. As a result, this substring matching process must
be repeated every time, for every edge. When considering
the interaction of this aspect with that of rhyme, it is pos-
sible that the chart generator spends a lot of time building
partial structures that appear to be valid constructions early
on, but eventually cannot fit the metre.

To overcome this, we augment the chart data structure
by also recording the start and end position of each edge in
terms of the syllable count within the poem. When adding
lexical items to the chart at the beginning of the generation
process, multiple instances are recorded for each word at
each possible position within the poem. However, the metre
compatibility check need only be computed once during the
beginning, and when the generation subsequently proceeds,

9http://nlp.stanford.edu/projects/glove/

Proceedings of the Sixth International Conference on Computational Creativity June 2015 312

the system need only ensure that pairs of incident edges are
being combined, without having to perform any additional
metre substring matching.

The complexity is thus further reduced to become:

O(((KA ⇥ P (N,A)⇥M)⇥ P)P) (4)
Note, however, that due to the additional bookkeeping

overhead and redundancy of having multiple entries for
words based on the position they appear in, the memory
complexity increases.

Idea 4: Greedy collation
In our initial version above, for each input sentence, chart
generation is applied to produce a text that conveys the tar-
get semantics in the form of the target stress pattern for one
line. Following this process, all possible combinations of
these lines are assemble to yield all possible poems. This is
a major source of inefficiency. The final modification that is
carried out in an attempt to improve the efficiency of the gen-
eration algorithm is to replace this exhaustive combinatorial
process with a greedy algorithm that selects subsequent lines
so as to maximize an objective function that considers the
aspects of rhyme, metre, and semantics.

Firstly, all possible candidates for the first line are tried in
turn. For each subsequent line l, a candidate is selected that
maximizes the following objective function:

f(l) = ↵1 ⇥ rhyme(l) + ↵2 ⇥ syll(l) + ↵3 ⇥ sem(l)

where:
• ↵1,↵2, and↵3 are weight factors in the interval [0,1] and

↵1 + ↵2 + ↵3 = 1.
• rhyme(l) is a function that returns a value of 1 if l ends

with a correct rhyme, 0 otherwise.
• syll(l) is a function that returns a normalized syllable

count, e.g. the ratio of the number of syllables found in l
to the number of syllables in the target form for that line.

• sem(l) is a function that returns a normalized semantic
content count, e.g. the ratio of the number of semantic
clauses conveyed by l to the maximum number semantic
clauses obtained for that sentence during generation.
The complexity is thus further reduced to become:

O((KA ⇥ P (N,A)⇥M)⇥ P) (5)

Subsequent experiment
To test the various modifications that were designed and im-
plemented, the system was run with the exact same input
as during the initial experiment, and results can be seen in
Table 4. As can be seen, the overall quality of the results
suffers as a result of some of the modifications, and possibly
most notably the use of a greedy algorithm to assemble the
resulting poem. For instance, from the point of view of the
rhyme and metre the solutions are sub-optimal.

On the other hand, whereas previously the generator
would run for many hours to complete, the empirical run-
ning time measurements from the modified system show
that the modified system typically takes approximately 20-
30 seconds to generate poems given the same size of input.

Is she
Court were full even
She were take couple
She were a woman

(a)

James were a system
Are an air system
Was a james
Aver get way

(b)

Tell me are you
Wish you now call me
Fix over with you
Guess was it was I

(c)

Table 4: Sample output of subsequent experiments

Discussion & summary
In this paper we have presented work in progress on the de-
velopment of a poetry generation system that uses a depen-
dency parser to extract the predicate argument structure of
the input article, and tries to maintain this structure through
deep syntactic text generation whilst complying with a given
target form. The combinatorial nature of this task presents
huge challenges, and several improvements have been sug-
gested and applied in an attempt to produce poetry in a
tractable fashion. Whilst this does drastically improve the
complexity of the algorithm, changing the running time from
several hours to a matter of seconds, the quality of the output
seems to visibly suffer.

Deep natural language generation that is constrained by a
target semantics at one end and a target form on the other
end is a very difficult task. Whereas other poetry generation
systems try to achieve this through the means of evolution-
ary computation and template-based generation, our work
can be seen to be related to the work reported in (Toivanen,
Järvisalo, and Toivonen 2013), as the task can be cast as
a constraint satisfaction problem. Unfortunately, imposing
syntactic constraints on a constraint satisfaction problem,
where the syntactic constraints are defined as context-free
grammar rules is a very computationally expensive problem.
Our approach is to utilize chart generation, a well-known dy-
namic programming technique where the grammar rules are
a fundamental component of the algorithm. Another strategy
worth considering for future work is context-free grammar
filtering (Kadioglu and Sellmann 2008), a time and space
efficient arc-consistency algorithm that allows the formal
specification of constraints as a context-free grammar within
a constraint satisfaction problem framework.

References
Agirre, E., and Edmonds, P., eds. 2007. Word Sense Disam-
biguation: Algorithms and Applications. Springer.
Banerjee, S., and Pedersen, T. 2002. An adapted lesk al-

Proceedings of the Sixth International Conference on Computational Creativity June 2015 313

gorithm for word sense disambiguation using wordnet. In
Gelbukh, A., ed., Computational Linguistics and Intelligent
Text Processing, volume 2276 of Lecture Notes in Computer
Science, 136–145. Springer Berlin Heidelberg.
Colton, S.; Goodwin, J.; and Veale, T. 2012. Full-face po-
etry generation. In Proceedings of the Third International
Conference on Computational Creativity, 95–102.
Diaz-Agudo, B.; Gervás, P.; and González-Calero, P. 2002.
Poetry generation in COLIBRI. In Proceedings of the 6th
European Conference on Case Based Reasoning (ECCBR
2002).
Fellbaum, C., ed. 1998. WordNet: An Electronic Lexical
Database. MIT Press.
Gervás, P. 2002. Exploring quantitative evaluations of the
creativity of automatic poets. In Proceedings of the 2nd.
Workshop on Creative Systems, Approaches to Creativity in
Artificial Intelligence and Cognitive Science, 15th European
Conference on Artificial Intelligence (ECAI 2002).
Gervás, P. 2015. Tightening the constraints on form and
content for an existing computer poet. In AISB 2015 Sym-
posium on Computational Creativity. University of Kent,
Canterbury, United Kingdom: Society for the Study of Arti-
ficial Intelligence and Simulation of Behaviour.
Gonçalo Oliveira, H. 2012. PoeTryMe: a versatile plat-
form for poetry generation. In Proceedings of the ECAI 2012
Workshop on Computational Creativity, Concept Invention,
and General Intelligence, C3GI 2012.
Kadioglu, S., and Sellmann, M. 2008. Efficient context-free
grammar constraints. In AAAI’08: Proceedings of the 23rd
national conference on Artificial intelligence, 310–316.
Kay, M. 1996. Chart generation. In Proceedings of the
34th Annual Meeting of the Association for Computational
Linguistics, 200–204. Santa Cruz, USA: ACL.
Klein, D., and Manning, C. D. 2003. Accurate unlexicalized
parsing. In Proceedings of the 41st Meeting of the Associ-
ation for Computational Linguistics, 423–430. Association
for Computational Linguistics.
Manurung, R.; Ritchie, G.; and Thompson, H. 2012. Using
genetic algorithms to create meaningful poetic text. Jour-
nal of Experimental & Theoretical Artificial Intelligence
24(1):43–64.
Manurung, H. M. 1999. A chart generator for rhythm pat-
terned text. In Proceedings of the First International Work-
shop on Literature in Cognition and Computer.
Radev, D.; Otterbacher, J.; Qi, H.; and Tam, D. 2003.
MEAD ReDUCs: Michigan at DUC 2003. In DUC03. Ed-
monton, Alberta, Canada: Association for Computational
Linguistics.
Rashel, F., and Manurung, R. 2014. Pemuisi: A constraint
satisfaction-based generator of topical indonesian poetry. In
Proceedings of the Fifth International Conference on Com-
putational Creativity.
Toivanen, J. M.; Järvisalo, M.; and Toivonen, H. 2013.
Harnessing constraint programming for poetry composition.
In Proceedings of the Fourth International Conference on
Computational Creativity, 160–167.

Proceedings of the Sixth International Conference on Computational Creativity June 2015 314

